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Motivations

o Consider a dynamical system (M, T, 1) and a smooth observable
f:M— Rk

@ We want to describe the statistics of recurrence of f near a particular
value fy when computed along a trajectory of the system.

@ Methods based on recurrence properties of the system are used in
climate to compute local dimensions and inverse persistence. They
necessitate to work with trajectories of the original system, while
physicists have often only access a lower dimensional representation of
it through measurements.

e Can we still recover informations on the real underlying attractor using
observational data?
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Previous results

@ Rousseau and Saussol (2010) showed that for a large class of chaotic
systems, the recurrence rate for the observations defined as

Re(z) = lim 28 Iflk € N": 7(T%2) € B(f(2), 1)}
r—0 IOgr

and the local dimension of the image measure at the point fy are equal.

@ They were able to compute this quantity explicitly for absolutely
continuous measures and C* observables.

@ We place ourselves in an EVT context, which allows a full asymptotic
description of the statistics of recurrence, but also of the statistics of
the number of visits of the observable near fj.
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The formal approach

@ We compute along a trajectory of the system the function

¢r(x) = —log|f(x) — fo.

@ ¢ takes high values whenever f(x) is close to f : by studying the
extreme values taken by ¢r along a trajectory, one can have access to
some local properties of the image of the system near f;.

o For example, one can consider the variable

Mn(X) = max{qﬁf(X), e 7¢f(Tn_1(X))}'

e u(M, < u,) gives the the probability that the observable has not
entered the ball B(fy, e™!") after n iterations of the system (its hitting
time statistics).

e Computing u(M, < s) is a standard problem of EVT.
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Definitions

e Image measure of aset AC f(M):
fon(A) = u(F1(A)).
o Local dimension of f.u at fy :

. log fiu(B(fo, r
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Main result

o It is very easy to see that pu(¢f > u,) ~ e Undr(fo),
n—o0

@ Applying the machinery of EVT, we find that for highly chaotic

systems,

'U(Mn < Un) ~ 1-— exp(_ef exp(df(fO)un — log n))

n—oo

@ The extremal index 0 may be different from 1, in case of clustering of
the extreme events.
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|
Values of 0¢ and dr(fy)?

@ When applying EVT based methods used in climate, we actually
compute some local quantities from observational data : 6¢ and d¢(fo).

o We want to know if these quantities can provide informations on the
underlying attractor.

@ More generally, we want to know the value of these quantities since
they allow to predict the hitting time statistics of the observable in the
neighborhood of f.
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The extremal index 6+

@ Let us consider the ball B, := B(fy, r).

@ One can show with the spectral approach that if the limits defining the

following quantities exist :

. (B, NT B, N..NT*B,NnT+1B,)
gk ;= lim ,
r—0 f*IU,(Br)

for k > 1 and

the El is given by
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The extremal index 6+

@ In the standard EVT problem (f = Id), gx = 0 only when z is
(k+1)-periodic.

@ When f is continuous, we expect that if z is k-periodic, the quantity
gx—1 is not 0, so 0 # 1.

@ There is another kind of clustering that can appear, when there are
points Z/ € X such that f(z) = f(Z') and f(Tkz) = 2/, for k € N. In
this situation, the value of g could be positive and 0f < 1.

@ For generic observables, this is very unlikely to happen, and we expect
that in physical application, # = 1 when z is not periodic.
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Numerical computation of

@ Because several values of g, may be different from 1, we introduced
an estimate of 6 that computes each value of g, up to an order m:

SN TMU((Tx) > un max ¢(THxg) < un ¢(THrlxg) >

I=1,....m

Yo H@(Tixo) = u)/N

o We then compute 8, =1 — 3.7 Gy.

Q>
-
Il

@ In the standard problem, the values of g, can carry some information
on the periodicity of the target point. This estimate allows to
characterize periodic patterns of the dynamics
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An interesting example

@ In the standard problem, there are some (partially stochastic) systems
for which the El is well defined and none of the g, in the spectral
formula is 0.

@ Example : take two maps fy = 2x — modl and ; = 2x + b — modl,
0 < b < 1 and apply successively either fy or f; with probablity 1/2.
Then for the target point 0,

qk = 1/4k+1.

0=> q=2/3.
k=0
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Values of dr(fy) for Lebesgue-a.c. measures

o Rousseau Saussol (2010) : If j is a.c. with respect to Lebesgue on R/
and f is C°(R/,R¥), then d¢(f(z)) is integer valued and is equal to
the rank of Df(z) p-a.e..

e For most observables of physical interest, it is equal to min(/, k)
almost everywhere.

o We give an example where d¢(f(z)) is not integer : consider in S the
map 2x mod 1 (i = Leb) and the observable f(x) = x?. In this case,

dr(£(0)) = 1/a.
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Values of dr(fy) for fractal measures

e Many physical systems have (multi)fractal natural measures. It is
believed to be the case in climate (we proposed recently that the wide
distribution of local dimensions found in EVT methods orginates from
the multifractal structure of the atmospheric attractor).

@ The simplest case is when f a diffeormorphism : the local dimensions
are then preserved.

@ Observables used in physics are not diffeomorphisms... It is more
appropriate to see them as lower dimensional projections of the
original system.
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|
Hunt-Kaloshin theorem (1998)

o Hunt-Kaloshin (1998) : For a prevalent set of C! observables
f:R' — R and W — a.e. z,

dr(f(z)) = min(k, d(2)).

@ The notion of prevalence is analogue to the one of almost everywhere
for infinite dimensional spaces : when considering a generic observable,
the theorem should hold.

@ We propose some illustrations and discuss some important
implications of this result.
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A toy model of fractal measure : the baker's map

@ The baker’'s map is defined in the unit square by

AaXn, Yn < Q,
X g
i (1= Xp) + ApXn, ¥n > «
&7)% <Oé,
Yn+1 = e
n - —_
u7yn >a7
11—«

where av € (0,1/2], Ay + Ap < 1.

@ The invariant measure has a multifractal structure. The value of its
information dimension D; can be computed explicitly from the
different parameters.
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Structure of the image measure

@ For a given observable f, we want to know the structure of the image
measure around a point f(z), z € M.

@ In the observable has values in R, we take a point in the ball
(f(z) — r,f(z) + r) and look wether it has a preimage in M. If it is
the case for all point of this ball, we expect that the image measure is
“full’ around the point z.

@ This would give a local dimension equal to 1 for the image measure.

o Geometrically, this problem is the same as looking whether the level
curves {x € M, f(x) = f(z) £ ¢} intersect the attractor for all small
values of e.
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Figure — The baker's attractor is in blue, the level curves in dotted lines
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For a normal multivariate gaussian observable centered at z
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Figure — The baker's attractor is in blue, the level curves in dotted lines
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Numerical computations of df,, and 0

a=1/5 a=1/4 a=1/3
fo=0.1]1.00+0.01 | 1.00+0.02 | 1.00 £ 0.01
fo=0.3]1.00+0.01 | 1.00+0.01 | 1.00£0.01
fo=0.8 | 1.00+0.01 | 1.00£0.01 | 1.00+0.02

Table — Values of df, ,(fy) computed for the mean value observable, for different

values of o and f.

a=1/5|a=1/4| a=1/3
fo=0.1 1+0 1+0 1+0
fo=0.3 1+0 1+0 1+0
fo=0.8 1+0 1+0 1+0

Table — Values of 6; computed for the mean value observable, for different values
of o and fy. The error is the standard deviation of the results
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s it possible to find a C! observable which not in this
prevalent set?

@ We expect to happen when the measure has a very lacunary,
completely disconnected structure in which the level curves can
squeeze through.

o This is the case of a product of Cantor sets. We take the gaussian
observable centered at a point z.
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Peculiar case
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Figure — The product of Cantor is in blue, the level curves for the gaussian

observable is in dotted lines.
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Numerical results

z (0.994,0.0029) | (0.6679,0.9914) | (0.0861,0.2565)
dr..(F(z)) | 0.61+0.002 | 0.60 = 0.002 0.62 + 0.002

Table — Values of df, ,(f(z)) computed for the gaussian observable g, for
different points z. The error is the standard deviation of the results

@ We find values close to the local dimensions of the Cantor set
(~ 0.63).
@ In this case, the image measure has a Cantor-like structure.

o For other generic observables, the image measure is lacunary, but not
well organized. We see integer local dimensions.
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Application to climate data
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Figure — Distributions for the SLP of the El (left) and of the df, ,(f(z)) (right)
found for different points z of the attractor. We took f equal to the average value
of the pressure field.
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Discussions

o We might think that by taking an observable f : R — RK, with
k << I, df,,, = k, and all information on the fine structure of the
attractor is lost.

@ Hunt-Kaloshin theorem says that it is enough for k to be larger than
D1, the information dimension of the underlying system to have that
df,,, = min(k, D1) = Dy almost everywhere.

@ By measuring enough observations, we are able to recover some
information on the fine structure of the real underlying system !
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Distribution of local dimensions for SLP data
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Figure — Distribution of local dimensions for SLP data (Faranda et al. 2016). The
local dimensions are much lower than k = 1060, (on average around 12.8)
suggesting that the information of the underlying attractor is ~ 12.8.
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The statistics of number of visits of the observable near a

particular value

@ We are interested in the law of the number of visits in the ball
B, = B(fy,e™"") up to a suitably rescaled time :

Lu(gn)J

No(t) = D 1,(T'(x)).

=1

e EVT predicts that for chaotic enough systems, the law of N,(t) is

given asymptotically by a compound Poisson distribution v :

H(No(t) = K) = v(K)

n—o0
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Compound-Poisson distributions

@ A random variable W is compound Poisson distributed if there are
i.i.d. integer valued random variables 7; > 1 and an independent
Poisson disribution distributed P such that W = 37 ;.

@ In the present case, m; represents the size of a cluster and P the
number of clusters appearing in the interval of time considered.

LT L TR SR D EVT. PN SETEL L EMICENI 2] Extreme Value Theory for observations 28 novembre 2019 27 /31



@ For the standard observable (f = Id), the results are well known :

- if z is non periodic, v is a Poisson distribution of parameter t
- if z is periodic, N,(t) follows for large n a Polya-Aeppli law of
parameters 6 and t :

k .
B e Bty (k-1
o0 =) 2 S-S (ET])

@ What happens when f #£ Id?
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The statistics of number of visits of the observable
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Figure — Comparison between the empirical distributions of the number of visits
of the observable “mean value” in a small ball centered in f(z) and different
compound Poisson distributions for the Baker map (left) and the climate data
(right).
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Conclusions

@ The hitting time statistics of observations are described by a Gumbel
law whose scale parameter is related to the local dimension of the
image measure.

@ This allows to recover some information on the fine structure of the
underlying attractor using EVT based methods, whenever the
dimensionalty of the observations is large enough.

@ The statistics of the number of visits of the observable near a point of
interest is described asymptotically by a compound-Poisson
distribution, and a pure Poisson distribution when 6 = 1.

LT L TR SR D EVT. PN SETEL L EMICENI 2] Extreme Value Theory for observations 28 novembre 2019 30/31



Thank youl
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