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THE PHYSICAL BASIS
 Warm spells: driven by mid-latitude moisture intrusions.

 Clear spatial footprint and underlying physical mechanism.
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THE PHYSICAL BASIS
 Warm spells: driven by mid-latitude moisture intrusions.

 Clear spatial footprint and underlying physical mechanism.

AN APPLICATION TO WARM EXTREMES
 A conventional EVT approach provides unphysical estimates.

 The spatial model improves over conventional EVT.

A SPATIAL MODEL FOR EXTREME EVENTS
 Extremes with a narrow spatial footprint are problematic.

 Need to include information on spatial exposure in model.
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THE PHYSICAL BASIS OF

WARM EXTREMES IN THE

HIGH ARCTIC

Based on Messori et al., J. Clim. (2018)
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THE PHYSICAL BASIS

Warm spells: based on domain-averaged T2m anomalies 

above 80° N in ERA-Interim.
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THE PHYSICAL BASIS

Warm spells: based on domain-averaged T2m anomalies 

above 80° N in ERA-Interim.

Warm/cold spell frequency over NDJFM

Select extreme events (~50) over 1979-2016.
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THE PHYSICAL BASIS

Removing the trend: moving average climatology.

Warm/cold spell occurrences
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THE PHYSICAL BASIS
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THE PHYSICAL BASIS
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THE PHYSICAL BASIS
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THE PHYSICAL BASIS

Moisture intrusions: intense, persistent and zonally extended 

moisture flux across 70 °N.

Basically mid-latitude airmass intrusion extremes.

Pithan et al., Nature Geosci. (2018)
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THE PHYSICAL BASIS

Mean intrusion duration and number relative to peak temperature anomalies

Moisture intrusions: clear link with warm spells:
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THE PHYSICAL BASIS

Moisture intrusions: clear link with warm spells:

Intrusion trajectories lags -8 to -2 days relative to peak temperature anomaly
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THE PHYSICAL BASIS
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THE PHYSICAL BASIS
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THE PHYSICAL BASIS

Cyclones                         Cyclogenesis Cyclolysis

Hanley and Caballero, GRL (2012)

Cyclone Climatology:
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THE PHYSICAL BASIS

Cyclone Climatology:

Frequency anomaly of cyclones, genesis and lysis for 4 days prior to warm and cold spells.

Warm

Cold

Cyclones Genesis                   Lysis
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THE PHYSICAL BASIS

Frequency anomaly of cyclones prior to warm spells.

Cyclone Climatology:
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THE PHYSICAL BASIS OF WARM

EXTREMES IN THE HIGH ARCTIC

 Mid-lat airmasses/moisture intrusions with clear 

spatial footprint  warm Arctic extremes.

 Large-scale configurations favour the intrusions/ 

extremes, chiefly in the Atlantic sector.

 Important role of cyclones on synoptic scales.
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A SPATIAL MODEL FOR

EXTREME EVENTS

Based on Wada et al., Ocean Eng. (2018)
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A SPATIAL MODEL FOR EXTREME EVENTS

The problem:

Estimate severity over long return times from short

observational data series, for geophysical extremes with a

narrow spatial footprint.

A good example:

Significant wave height from tropical cyclones.
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A SPATIAL MODEL FOR EXTREME EVENTS

A naïve attempt with classical EVT:

Max. significant Wave Height (m) in 

Todai hindcast dataset

Max. significant Wave Height (m) for an 

individual cyclone
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A SPATIAL MODEL FOR EXTREME EVENTS

A naïve attempt with classical EVT:

100-year return value estimates for 

max. significant Wave Height (m)

Max. significant Wave Height (m) in 

Todai hindcast dataset
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A SPATIAL MODEL FOR EXTREME EVENTS

STM-E Model:

Two-part model: Space-Time Maxima (STM) and Exposure (E)

STM: extract the locations of the maximum values during each

extreme event.

E: a value normalized in [0, 1] for each event, in the form of a

geographical map.

Assuming that the distributions of STM and E are 

independent, the two may be multiplied to derive the 

STM-E extreme behavior estimate at each location.
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A SPATIAL MODEL FOR EXTREME EVENTS

Define STMs: 

Select maximum for each physical event (e.g. cyclone)

{𝑠}𝑖=1
𝑛 , n being the number of events

Can then use standard EVT (e.g. GPD to compute conditional

distribution of threshold exceedances).

Define Es (N.B. sloppy notation for conciseness): 

𝑒𝑖,𝑗 = max
ℎ(𝑗,𝑡)

𝑠𝑖
, j being an index over spatial locations, and t 

being an index over timesteps for which the event lasts.
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A SPATIAL MODEL FOR EXTREME EVENTS

Combine to obtain STM-E: 

Event severity at a location j is 𝐻𝑗 = 𝐸 × 𝑆, E and S random 

variables for STM and Exposure.

Can then obtain the cumulative distribution of 𝐻𝑗.

N.B. We have thus «pooled» STMs so that all physical events

contribute to the set {si}.
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A SPATIAL MODEL FOR

EXTREME EVENTS

 Some geophysical extremes pose a challenge 

to conventional EVT estimates.

 STM-E approach presents a possible solution, 

taking into account spatial exposure and 

“pooling” space-time maxima.

 Subject to some assumption on independence 

of distributions.
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AN APPLICATION TO

WARM EXTREMES IN

THE HIGH ARCTIC

Based on Messori et al., Q. J. Roy. Met. Soc., in review.
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AN APPLICATION TO WARM EXTREMES

Focus on warm extremes driven by mid-latitude 

airmass intrusions:

Intrusion density and trajectories, 

NDJFM
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AN APPLICATION TO WARM EXTREMES

Process:

(i) Extract 2-metre air temperature anomalies for

each intrusion. N.B. Can last for multiple days.

(ii) Compute STM and retain events with STM >

22.5K (we tested sensitivity).

(iii) Set a threshold of 8 K (we tested sensitivity).

(iv) Identify contiguous geographical exceedance

regions matching the intrusions and compute E.

(v) Apply STM-E!
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AN APPLICATION TO WARM EXTREMES

Example for one event:
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AN APPLICATION TO WARM EXTREMES

STMs:
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AN APPLICATION TO WARM EXTREMES

Exposure:
Median of Exposure for all events
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AN APPLICATION TO WARM EXTREMES

100-yr return values:
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AN APPLICATION TO WARM EXTREMES

100-yr return values:
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AN APPLICATION TO WARM EXTREMES

100-yr return values:
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AN APPLICATION TO WARM EXTREMES

100-yr return values:

~12K

~132K

~14K

~30K



40

AN APPLICATION TO WARM

EXTREMES IN THE HIGH ARCTIC

 Arctic warm extremes are an example of 

geophysical extreme where a naïve EVT 

approach fails.

 The STM-E model seems to provide sensible 

estimates.

 Possible in the future to include non-stationarity 

in the framework? 
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Thank You!


