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Target and Holes: The motivation

This work is motivated by the appearance of extreme events in specific
natural contexts. We are interested in the statistical description of
phenomena where a perishable dynamics (i.e., an open system) is
approaching a fixed target state.

As examples one can think of the process describing a hurricane
approaching a city or a pandemic outbreak (with the underlying space
being the spatial distribution) approaching a critical extension, before they
disappear.

Thus, the dynamical setting is novel in that it has two main features: in
the phase space, on one hand there is a target point which will be
approximated by small balls around it, and on the other hand there is an
absorbing region which terminates the process on entering it.
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Illustration
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The approach in terms of extreme value theory

A one dimensional prototype of such situation can be formulated as an
extreme value problem for an open system, thus allowing a rigorous study.
Similar setups, restricted to the presence of shrinking targets or absorbing
regions, but not both, have already been studied in many situations.

We consider a dynamical system where there is an absorbing region, a hole
H, such that an orbit entering terminates its evolution (i.e., it is lost
forever).

By considering the orbits of the whole state space, it is possible to
construct a surviving set. On this we fix a point and a small ball around it,
the target set B. We investigate the probability of hitting B for the first
time after n steps while avoiding H, in the n→∞ limit. We will show
that this question can be formulated in a precise probabilistic manner by
introducing conditionally invariant probability measures for the open
system.
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The open system

We consider Lasota–Yorke maps, i.e., uniformly expanding maps,
inf I |T ′| = β > 1, such that there exists a finite partition of the interval I
with the property that T restricted to the closure of each element is C 1

and monotone, T : I on the unit interval I and a transfer operator with a
potential g of bounded variation (BV).

We denote with L the transfer (Perron–Frobenius) operator associated to
T and g ; it acts on functions f ∈ BV ∩ L1(µg ) as

Lf (x) =
∑
Ty=x

f (y)g(y), (1)

where µg is the conformal measure left invariant by the dual L∗ of the
transfer operator,

L∗µg = eP(g)µg ,

where P(g) is the topological pressure of the potential g .
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The open system II

For simplicity, we will restrict ourselves to the potential g = 1
|T ′| . First of

all note that, in this case, the conformal measure µ|T ′|−1 will be Lebesgue
(denoted by m) and P(g) = 0.

We then consider a proper subset H ⊂ I of measure 0 < m(H) < 1, called
the hole, and its complementary set X0 = I \ H. We denote by
Xn =

⋂n
i=0 T

−iX0 the set of points that have not yet fallen into the hole
at time n. The surviving set will be denoted by X∞ =

⋂∞
n=1 Xn. The key

object in our study are conditionally invariant probability measures.

S Vaienti QLY



The open system III

A probability measure ν which is absolutely continuous with respect to
Lebesgue is called a conditionally invariant probability measure if it
satisfies for any Borel set A ⊂ I and for all n > 0 that

ν(T−nA ∩ Xn) = ν(A) ν(Xn). (2)

We use for it the abbreviation a.c.c.i.p.m.
The measure ν is supported on X0, ν(X0) = 1, and moreover

ν(Xn) = αn, where ν(X1) = ν(T−1X0) = α < 1.

We now introduce our first perturbed transfer operator defined on
bounded variation function f as

L0(f ) = L(f 1X0 ). (3)

S Vaienti QLY



The perturbed system I

We will use the following facts:

Let ν = 1X0h0m with h0 ∈ L1 then ν is an a.c.c.i.p.m. if and only if
L0h0 = αh0, for some α ∈ (0, 1].

Let α, h0 be as above. Moreover, let µ0 be a probability measure on I such
that L∗0µ0 = αµ0. Then µ0 is supported in X∞ and the measure Λ with

Λ = h0 µ0 is T -invariant.

For any v ∈ L1(µ0) and w ∈ L∞(µ0) we have the duality relationship:∫
L0v w dµ0 = α

∫
v w ◦ T dµ0. (4)
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The perturbed system II

We are now strengthening our assumptions by taking small holes since that will
allow us to apply the spectral approach of extreme value theory.

For each χ ∈ (β, 1) there exists a, b > 0, independent of H, such that, for
each w of bounded variation:

‖Lnw‖BV ≤ aχn‖w‖BV + b|w |1 (5)

‖Ln
0w‖BV ≤ aχn‖w‖BV + b|w |1. (6)

We introduce a so-called triple norm, defined by P1 := sup‖w‖BV≤1 |Pw |1,
where w ∈ BV and the linear operator P maps into L1. It is easily proven
that

L − L01 ≤ eP(g)m(H) = m(H). (7)
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The perturbed system III

The following result is proved in [Liverani-Maume]. For each χ1 ∈ (χ, 1)
and δ ∈ (0, 1− χ1), there exists ε0 > 0 such that if L0 − L1 ≤ ε0 then the
spectrum of L0 outside the disk {z ∈ C, |z | ≤ χ1} is δ-close, with
multiplicity, to the one of L.
We require that T has a unique invariant measure µ absolutely continuous
with respect m with density h and moreover the system (I ,T , µ) is mixing.
Therefore Lh = h and since L∗m = m, we have that µ = hm. Moreover,
for any function v of bounded variation, there exists a linear operator Q
with spectral radius sp(Q) strictly less than 1, such that

Lv = h

∫
v dm +Qv . (8)

By the closeness of the spectra the same representation holds for L0,
namely there will be a number λ0, a non-negative function h0 of bounded
variation, a probability measure µ0 and a linear operator Q0 with spectral
radius strictly less than λ0 such that for any v ∈ BV:

L0h0 = λ0h0, L∗0µ0 = λ0µ0 (9)

λ−1
0 L0v = h0

∫
v dµ0 +Q0v . (10)
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The Extreme Value Distribution

For a fixed target point z ∈ X∞ let us consider the observable

φ(x) = − log |x − z | for x ∈ I ,

and the function

Mn(x) := max{φ(x), · · · , φ(T n−1x)}.

For u ∈ R+, we are interested in the probabilities of Mn ≤ u, where Mn is
now seen as a random variable on a suitable (yet to be chosen) probability
space (Ω,P). First of all we notice that the set of x ∈ I for which it holds
{Mn ≤ u} is equivalent to the set {φ ≤ u, . . . , φ ◦ T n−1 ≤ u}. In turn this
is the set En := (Bc ∩ T−1Bc · · · ∩ T−(n−1)Bc) where, for simplicity of
notation, we denote with Bc the complement of the open ball
B := B(z , e−u), which we call the target (set).

So far we are following points which will enter the ball B for the first time
after at least n steps, but we should also guarantee that they have not
fallen into the hole before entering the target. Therefore we should
consider the event: En ∩ Xn−1 conditioned on Xn−1, i.e., conditioned on
the event of not terminating at least for n − 1 steps. To assure that, the
natural sequence of probability measures is given by the following
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The EVD II

Definition

For any Borel set A ⊂ I and any n ≥ 1 we introduce the sequence of probability
measures:

Pn(A) :=
ν(A ∩ Xn−1)

ν(Xn−1)
.

Suppose now that, rather than taking one ball B, we consider a sequence
of balls Bn := B(z , e−un ) centered at the target point z and of radius
e−un . Therefore:

Pn(Mn ≤ un) =
1

ν(Xn−1)

∫
I

1Bc
n∩X0 (x) · · · 1Bc

n∩X0 (T n−1x)dν, (11)

and we will consider the limit for n→∞, where un is a boundary level
sequence which guarantees the existence of a non-degenerate limit.

We anticipate that such a sequence will be dictated directly by the proof
below and it must satisfy for a given τ

n Λ
(
B(z , e−un )

)
→ τ as n→∞. (12)
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The EVD III

By introducing our second perturbed operator L̃n : BV → BV acting as

L̃nv = L0(v1Bc
n
) = L(v1Bc

n
1X0 ),

it is straightforward to check that

Pn(Mn ≤ un) =
1

αn−1

∫
I

L̃n
nh0 dm. (13)

Roughly speaking, when n→∞, the operator L̃n converges to L0 in the
spectral sense as 1Bc

n
becomes less and less relevant in L0(v1Bc

n
). In particular,

the top eigenvalue of L̃n will converge to that of L0 and this will allow us to
control the asymptotic behavior of the integral on the right hand side of (13).

Assume that h− := ess infsupp(Λ) h0 > 0 i.e. the essential infimum is taken with
respect to Λ. Let

rk,n :=
Λ(Bn ∩ T−1Bc

n ∩ · · · ∩ T−kBc
n ∩ T−(k+1)Bn)

Λ(Bn)
,

where rk,n is the conditional probability with respect to Λ, that we return to Bn

exactly after k + 1 steps. Assume that

rk = lim
n→∞

rk,n exists for all k.
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The EVD IV

Assume

A1. The operators L̃n enjoy the same Lasota–Yorke inequalities (5) with
the same expansion constant χ and b in front of the weak norm.

A2. We now compare the two operators; here the weak and strong
Banach spaces will be again L1 and BV. We have:∫

|(L0 − L̃n)v | dm =

∫
|L0(v1Bn )| dm ≤ ‖v‖BV m(Bn ∩ X0). (14)

Then, for the triple norm, L − L̃n1 ≤ m(Bn ∩ X0) and therefore for n large
enough we get the following spectral properties, analogous of (9), namely:

L̃nhn = λnhn, L̃∗nµn = λnµn (15)

λ−1
n L̃ng = hn

∫
g dµn + Q̃ng , (16)

where hn ∈ BV, µn is a Borel measure and Q̃n a linear operator with
spectral radius less than one; moreover supn sp(Q̃n) < sp(Q) < 1.
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The EVD V

A3. Next, we need to show that

sup
{∫

(L0 − L̃n)v dµ0 : v ∈ BV, ‖v‖BV ≤ 1
}
× ‖L0(h01Bn )‖BV ≤ C]∆n,

(17)
where

∆n :=

∫
L0(1Bnh0) dµ0 = αΛ(Bn)

and C] is a constant. Notice that the first term on the left hand side of
(17) is the triple norm L0 − L̃nµ0 . This is bounded by αµ0(Bn). The
second factor is bounded by the Lasota–Yorke inequality with a constant
Ch0 depending on h0. Then by the first standing assumption
αCh0µ0(Bn) ≤ αCh0

h−
Λ(Bn).
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A4. We now define the following quantity for k ≥ 0 :

qk,n :=

∫
(L0 − L̃n)L̃k

n(L0 − L̃n)(h0) dµ0

∆n
. (18)

By the duality properties enjoyed by the transfer operators with respect to
our standing assumption, it is easy to show that

qk,n = αk+1rk,n. (19)

We observe that by the Poincaré Recurrence Theorem with respect to the
invariant measure Λ, as rk,n is the probability that the system returns to
Bn in exactly k + 1 steps, we have

∞∑
k=0

α−(k+1)qk,n =
∞∑
k=0

rk,n = 1.

We denote by θ the extremal index (EI), which will be therefore between 0
and 1 :

θ := 1−
∞∑
k=0

rk .
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The EVD VI

With our standing assumption, since we satisfy A1–A4, the perturbation
theorem by Keller and Liverani gives

λn = α− θ ∆n + o(∆n) = α exp
(
− θ
α

∆n + o(∆n)
)
, as n→∞, (20)

or equivalently,
λn
n = αn exp

(
− θ
α
n∆n + o(n∆n)

)
. (21)

We now substitute (21) in the right hand side of (13) and use (15) to get

Pn(Mn ≤ un) =
1

αn−1

∫
λn
nhn dm

∫
h0 dµn + λn

n

∫
Q̃n

nh0 dm

= α exp(− θ
α
n∆n + o(n∆n))

∫
hn dm

∫
h0 dµn + λn

n

∫
Q̃n

nh0 dm.

It has been proved that
∫
h0 dµn → 1 for n→∞ and shown how to

normalize hn and µn in such a way that
∫
hn dµ0 = 1. But in our case we

have instead the term
∫
hn dm. Now we observe that by the perturbative

theorem of Liverani-Keller, we have that |hn − h0|1 → 0 as n→∞.
Moreover∫

h0 dm =
1

α

∫
L0h0 dm =

1

α

∫
L(h01X0 ) dm =

1

α

∫
h01X0 dm =

1

α
ν(X0) =

1

α
,

and this term will compensate the α in the numerator in the equality
above.
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The EVD VII

Note that the choice given by (12) is equivalent to n∆n → ατ. In this case

λn
n will be simply bounded in n and

∫
|Q̃n

n(h0)| dm ≤ sp(Q)n‖h0‖BV → 0.

In conclusion we have

lim
n→∞

Pn(Mn ≤ un) = e−τθ, (22)

which is the Gumbel’s law.
Suppose that all the iterates T n, n ≥ 1 are continuous at z and also that
h0 is continuous at z when the latter is a periodic point. Then we have:

If z is not a periodic point:

Pn(Mn ≤ un)→ e−τ .

If z is a periodic point of minimal period p, then

Pn(Mn ≤ un)→ e−τθ,

where the extremal index θ is given by:

θ = 1−
1

αp |(T p)′|(z)

Note that in literature, the escape rate η for our open system is usually
defined as η = − logα thus we can see the extremal index as

θ = 1− 1

e−pη|(T p)′|(z)
.
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The dimension of the surviving set I

Whenever the map T has large images and large images with respect to
the hole H, then for all z ∈ X∞, there exists t0 > 0 such that

lim inf
n→∞

logµ0(B(z , e−un ))

log e−un
≥ t0

and the Hausdorff dimension of the surviving set HD(X∞) verifies

HD(X∞) ≥ t0.

Therefore un ≤ − log τ
t0−2δ

+ log n
t0−2δ

, which can also be written as

sup
n

{
un − log n

t0

}
≤ − log τ

t0
. (23)
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The dimension of the surviving set II

In the computational approach to extreme value theory, the boundary level
un are chosen with the help of an affine function:

un =
log τ−1

an
+ bn.

The sequences an and bn can be obtained with the help of the Generalized
Extreme Value (GEV) distribution in order to fit Gumbel’s law. The
inequality in the previous page suggests that for n large an ∼ t0 and
bn ∼ log n

t0
, therefore we could attain a lower bound for the Hausdorff

dimension of the surviving set. We can use the GEV distribution to
estimate the sequences an, bn, and we will show in future studies how to
use such estimates to approach HD(X∞).

S Vaienti QLY



Outside the surviving set

Whenever we take the point z ∈ X∞ and by a suitable choice of the
sequence un, we get a non-degenerate limit for our EVD, in particular
different from 1. Instead, if we pick the point z outside the surviving set
and no matter what the sequence un is, provided it goes to infinity, we get
a degenerate limit equal to one for the EVD.

Trivially that states that if the target point is off the surviving set, then
the trajectories will not be able to approach it arbitrary close.

First, we observe that the limit Pn(Mn ≤ un)→ 1, n→∞ holds for any
sequence un going to infinity, and for simplicity we now put un = log n.
Then we could reasonably argue that for the smallest n̂ for which

Pn̂(Mn̂ ≤ log n̂) ∼ 1,

then

dist(z ,X∞) ∼ 1

n̂
.
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