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Motivations



Climate as a statistical physics problem

Climate = coarse-graining of meteorological variables (and others), usually on the
radiative forcing space and time scales.

We know only the meteorological (' microscopic) laws, but we cannot resolve them
explicitly due to computational cost.

Fundamental question : Evolution of the coarse-grained ('macroscopic) variables ?

⇒ Sub-grid modelling ⇔ Nonequilibrium statistical physics problem.
2



Particular case : turbulence modelling

A simple view of turbulence modelling [Pope, 2001] :

Causes : chaos (or complicated dynamics) + coarse-graining (finite resolution)
⇒ Unpredictability (in a deterministic sense)
⇒ Stochastic description (since Reynolds decomposition).

Consequence : enhanced mixing compared to diffusion. State of the art (not
exhaustive) :

1877 : Eddy-viscosity (Boussinesq) ;

1963 : Heuristic dependence of eddy viscosity on grid size [Smagorinsky, 1963] ;

1972 : k − ε model focuses on the mechanisms that affect the turbulent kinetic
energy [Jones and Launder, 1972] ;

1991 : Dynamic LES model [Germano et al., 1991].

Drawbacks : ad-hoc parameters not easy to calibrate in the context of climate
modelling, no real description of the coarse-graining procedure in these models (except
for LES), no description of fluctuations.
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Goals

Part 1 : Construct simple climate models with less parametrizations (or no) for the
turbulence.
⇒ Phenomenological approach to represent the enhanced turbulent mixing : the
Maximum Entropy Production hypothesis.

Part 2 : What is the evolution law for coarse-grained variables for simple systems ?
⇒ Numerical analysis and modelling approach.
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The Maximum Entropy Production
hypothesis for climate modelling



Energy Balance models and Maximum Entropy Production

Energy Balance model : [BUDYKO, 1969,
Sellers, 1969, North et al., 1981]

∂te + ∂αFα = R[T ].

e : energy ; T temperature

F : energy fluxes ;

R[T ] : forcing (radiative budget).

Closure F (e, ∂βe) ?

Maximum Entropy Production (MEP) : closure
hypothesis [Martyushev and Seleznev, 2006]

max
T (r,t)

{
σ[T ] =

T̂

t=0

ˆ

r∈V

−∂αFα
T

dr dt

}
withˆ

r∈V

∂αFα
T

dr = 0 ∀t ∈ [0 : T ]

and other constraints

⇒ Turbulence acts as a strong mixing of energy.

5



Sate of the art

MEP used in a stationary context, for the meridional heat transport
[Paltridge, , Pujol and Llebot, 2000, Herbert et al., 2011].

Figure 1 – Meridional profiles of temperature, cloud cover, and heat flux obtained by [Paltridge, ].

Also for "over-parametrized" processes (hydrological cycle) (see [Kleidon, 2009]).

• On the vertical ? ⇒ Some dynamical "constraints" matter.
• MEP for time varying problems ?
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Atmospheric convection

∂te + ∂αFα = R

Radiative budget :

R = SW + LW .

= net energy input per unit
time due to radiation.

Convective budget :

− ∂αFα = convergence of energy

due to (turbulent) fluid’s motions.

Impacted by gravity. α

SW (q,O3, α) LW (T , q,CO2)
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Atmospheric convection

∂te + ∂αFα = R

Radiative budget :

R = SW + LW .

= net energy input per unit
time due to radiation.

Convective budget :

− ∂αFα = convergence of energy

due to (turbulent) fluid’s motions.

Impacted by gravity.

gF
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Our model

Heat transport is two steps :

1. Adiabatic motion of fluid parcels with
specific energy :

e = CpT︸︷︷︸
sensible heat

+ gz︸︷︷︸
geopotential

+ Lq︸︷︷︸
latent heat

2. The fluid parcel releases its energy at
elevation z ′.

Hypothesis : perfect gas, hydrostatic is used to
compute the geopotential with the temperature
profile.

Mass mixing rate : m(z → z ′).
= mass of fluid parcels going from z to z ′ per
unit time.

e(z)

e(z ′)
Release of energy

turbulent adiabatic motion
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Our model

In stationary state :

dM(z)
dt

=
∑
z′

[
m(z ′ → z)−m(z → z ′)

]
= 0,

dE(z)
dt

=
∑
z′

[
F (z ′ → z)− F (z → z ′)

]
= 0

with F (z → z ′) = e(z)m(z → z ′).

m ≥ 0 and depends on the turbulent dynamics
⇒ usually parametrized.

We choose m (or F ) that maximize the entropy
production

σ =
∑
z

∑
z′

[F (z ′ → z)− F (z → z ′)]

T (z)
,

taking into accout

e(z) = CpT (z) + gz + Lqs(T (z))

and

m(z) ≥ 0.

⇒ MEP with a minimal description of the energy fluxes (dynamics)

We can consider different mass scheme transport (which can be represented by a
graph).
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Results

02 and q fixed according to
[A. McClatchey et al., 1972]’s measurements
for Tropics.

Radiative budget computed using the code of
[Herbert et al., 2013].

Linear graph for the mass exchange.
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Results

The MEP state depends on the energy
description (and constraints).

• No constraint on m : unphysical heat
exchange + overestimation of the vertical
heat flux.

• e = CpT : overestimation of the vertical
heat flux.

• e = CpT + gz : more realistic adiabatic
gradient for the troposphere +
stratification.

• e = CpT + gz + Lqs : enhanced vertical
energy flux.

⇒ Simple but realistic results without
parametrization for turbulence.
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Seasonal cycle

SW (t)

Ta(t)

Tg (t)

Tu(t)
Diffusion

Radiative heating

Surface fluxes

Convection

Temperatures’ ranges and lags ?
[Stine et al., 2009, Stine and Huybers, 2012]

0.0 0.2 0.4 0.6 0.8 1.0

time/year
−1.0

−0.5

0.0
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T,
SW

insolation
atmosphere
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ground

⇒ Conceptual (MEP) model approach.
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Seasonal cycle

SW (t)

Ta(t)

Tg (t)

Tu(t)
Diffusion

Radiative heating

Surface fluxes

Convection

Not everything should be represented with MEP
[Paillard and Herbert, 2013].

Fast (turbulent) processes : convection and
surface fluxes.

Slow processes : radiative heating and diffusion
in ground.
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Our model

Forcing :

T01(t) = 300 + 10 sin
(2π
τ
t
)

K ,

T02(t) = 300− 10 sin
(2π
τ
t
)

K .

r(T01 − Tu1) r(T02 − Tu2)

Tu1
F

Tu2

k(Tb1 − Tu1)
Tb1

k(Tb2 − Tu2)
Tb2

Cu

Cb

Control parameters :

Nb =
Cb
kτ

=heating time of bottom boxes by diffusion,

Nk =
Cu

kτ
=heating time of top boxes by diffusion,

Nr =
Cu

rτ
� 1 =heating time of top boxes by "radiative heating".
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Our model

Ṫu1 =
1
Nr

(T01 − Tu1) +
1
Nk

(Tb1 − Tu1)︸ ︷︷ ︸
F1

− Q,

Ṫu2 =
1
Nr

(T02 − Tu2) +
1
Nk

(Tb2 − Tu2)︸ ︷︷ ︸
F2

+ Q,

Ṫbi = −
1
Nb

(Tbi − Tui ),

r(T01 − Tu1) r(T02 − Tu2)

Tu1
F

Tu2

k(Tb1 − Tu1)
Tb1

k(Tb2 − Tu2)
Tb2

Cu

Cb

with Q = Fτ
Cu fixed by MEP :

max
{Tu1(t),Tu2(t)}

{
σ =

1ˆ

t=0

(
Ṫu1 −F1

Tu1
−

Ṫu2 −F2
Tu2

)
dt

∣∣∣∣∣ Ṫu1 + Ṫu2 −F1 −F2 = 0 ∀t

}

Resolution : derivation of the dynamical equations and Newton’s method.
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Results

Influence of Nb :
Lag of the ground with respect to
the upper boxes.

Influence of Nr :
Lag and amplitude of the top with
respect to the forcing.

Influence of Nk :
Lag and amplitude of the top with
respect to the bottom.

⇒ Simple but realistic results
without parametrization for
turbulence.

Have to be tested on more realistic
(meridional) models.
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Results

Influence of Nb :
Lag of the ground with respect to
the upper boxes.

Influence of Nr :
Lag and amplitude of the top with
respect to the forcing.

Influence of Nk :
Lag and amplitude of the top with
respect to the bottom.

⇒ Simple but realistic results
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(meridional) models.
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Conclusion

No new results, but comprehensive models with less adjustable parameters.

MEP hypothesis : convective mixing of the atmosphere is fast before the change in
radiative budget and/or diffusion (' quasi-static approximation ? Scale’ separation ?).
It is not a "fundamental law".

Convective time scale '
Earth′size
Wind ′speed

'
107 m

10 m.s−1
= 106 s ' 0.03 years.

How the convective energy mixing is done ? Dynamical "constraints" have to be

considered (mass transport + energy terms).

∂te = γMEP︸︷︷︸
"fast" processes

+ γO︸︷︷︸
"slow" processes

+ R[T ]︸︷︷︸
Radiative forcing

Radiative forcing and slow processes (diffusion) are represented explicitly by usual laws.

Fast processes (turbulence) are fixed by MEP, taking into account relevant
constraints :

max

{
σ =

T̂

t=0

ˆ

r∈V

γMEP
T

dr dt

∣∣∣∣∣ constraints

}
.
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Perspectives

Long-term goal : Construct a minimal climate model with the lesser empirical
parameters as possible.

• Seasonal cycle ;

• 3D with dynamical constraints (gravity and rotation) ;

• Water cycle.

Other interesting problems :

• Ice-albedo feedback ;

• Carbon cycle (paleoclimates) ;

• ...
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Stochastic sub-grid model for a
diffusive Lattice Gas (and extension
to turbulent flows)



Nonequilibrium statistical physics : kinetic theory vs turbulence

Nonequilibrium statistical physics : microscopic →
coarse-graining

macroscopic

Kinetic theory : particles →
coarse-graining

fluid particles.

Turbulence modelling : fluid particles →
coarse-graining

mesh resolution.

If Kinetic Theory is well established, why Turbulence Theory is not ?

1. Interaction between fluid particles ?

2. No clear separation of scales and simplifications (Boltzmann hypothesis).
⇒ No "Local Thermodynamic Equilibrium" + important fluctuations.

Can we learn about turbulence from Kinetic Theory with no separation of scale ? (see
[CHEN et al., 2004])
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Lattice-Gas

Lattice-Gas = Cristallographic lattice L + Discrete sets of velocities and particles +
Collisions and forcing rules

b channels at each node
→ discrete velocities {ci , i = 1, ..., b}

Boolean occupation n∗i (x∗, t∗)

Local collision/forcing that conserve (or
not) mass, impulsion, energy, ...

D2Q9

Discrete time microdynamics : Collision/Forcing and propagation

n∗(t∗ + 1) = E n∗(t∗) = P ◦ C n∗(t∗).

' Discrete model of Kinetic Theory of gas [Hardy et al., 1973, Frisch et al., 1987,
Grosfils et al., 1993, A Wolf-Gladrow, 2000, Rivet and Boon, 2005].
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The microscopic model : microdynamics

1 Lx

1

Ly

x∗

y∗

q

p

q
y∗ = 1

y∗ = 0

ρB/4

ρB

ρ
Rρ

L

ρT

Microdynamics : Collision and propagation

n∗(t∗ + 1) = E n∗(t∗) = P ◦ C n∗(t∗).

Microscopic observables : density and current

ρ∗(r∗, t∗) =
4∑

i=1

n∗i (r∗, t∗),

j∗α(r∗, t∗) =
4∑

i=1

ciαn∗i (r∗, t∗). 50 100 150 200 250 300
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The microscopic model : ensemble/very long-time average

1 Lx

1

Ly

x∗

y∗

q

p

q
y∗ = 1

y∗ = 0

ρB/4

ρB

ρ
Rρ

L

ρT

Ensemble average microdynamics :

ε =
c
L
→ 0, r = εr∗, t = ε2t∗,

ρ = 〈ρ∗〉, jα = 〈j∗α〉,

∂tρ+ ∂αjα = 0,

jα =
(1
4
−

4
qρ2

)
∂αρ,

〈(j∗α − jα)2〉 =
ρ

2

(
1−

ρ

4

)
≡ σ2∗(ρ).
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The microscopic model : the mesoscale ?

1 Lx

1

Ly

x∗

y∗

q

p

q
y∗ = 1

y∗ = 0

ρB/4

ρB

ρ
Rρ

L

ρT

Coarse-grained dynamics :

1� τ �∞, rτ = x∗/τ, tτ = t∗/τ,

qτ (rτ , tτ ) =
1
τ3

∑
(r∗,t∗)∈M(rτ ,tτ )

q∗(r∗, t∗),

∂tτ ρτ + ∂ατ jτα = 0,

What is the right closure for jτ ? 10 20 30 40 50 60
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The conditional probability distribution of the temporal variation of the
coarse-grained current

Hypothesis :

1. Locality in space : response of jτ depends only on jτ , ρτ and ∇τρτ
2. Lag : jτ don’t instantaneously adjust to the local forcing (gradient of density) ⇒

we model its temporal variation djτ .
3. Isotropy : djτα depends on jτα, ρτ and ∂ατ ρτ

⇒ We search the conditional probability distribution

pτ (djτα | jτα, ρτ , ∂ατ ρτ )

Reduced variable :

δτ (j, ρ, g) =
djτ − 〈djτ 〉j,ρ,g√

〈(djτ − 〈djτ 〉j,ρ,g )2〉j,ρ,g

where
〈f 〉j,ρ,g ≡

ˆ
f (v) pτ (v |j, ρ, g) dv

is the conditional mean of any function f of djτ .
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The conditional probability distribution of the temporal variation of the
coarse-grained current

PDF of δτ (j, ρ, g) for
τ = 10, 20, 30 and for all j, ρ, g
have a universal normal
behaviour.

⇒ Modelling the two first
moments :

〈djτ 〉j,ρ,g ,√
〈(djτ − 〈djτ 〉j,ρ,g )2〉j,ρ,g .

as a function of τ , j, ρ and g
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Sub-grid model : stochastic relaxation for the coarse-grained current

We assume a stochastic relaxation equation for the coarse-grained current :

djτα = −
jτα − µτ (ρτ , ∂ατ ρτ )

rτ (ρτ )︸ ︷︷ ︸
local mean relaxation

+ στ (ρτ ) ηα︸ ︷︷ ︸
small-scale variability

Interpretation : jτ relaxes to an average current µτ , at a rate rτ , with variability of
rms στ .

⇒ Simple model, but we need to approximate these quantities from the
mircodynamics.
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Sub-grid model : the average current

djτα = −
jτα − µτ (ρτ , ∂ατ ρτ )

rτ (ρτ )︸ ︷︷ ︸
local mean relaxation

+ στ (ρτ ) ηα︸ ︷︷ ︸
small-scale variability

Avergage current : scale invariant (does not
depend explicitly on τ) :

µτ (ρτ , ∂ατ ρτ ) =
(1
4
−

4
qρ2τ

)
∂ατ ρτ ,
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Sub-grid model : the relaxation rate

djτα = −
jτα − µτ (ρτ , ∂ατ ρτ )

rτ (ρτ )︸ ︷︷ ︸
local mean relaxation

+ στ (ρτ ) ηα︸ ︷︷ ︸
small-scale variability

Relaxation rate : We have proposed a model
based on equilibrium fluctuations :

rτ (ρτ ) =
1

1−
(
1−
(
1
τ

+ q
8 ρ

2
τ

))τ
Depends on the dynamical parameter q.

rτ →
τ→∞

1 corresponds to LTE.
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Sub-grid model : the fluctuations

djτα = −
jτα − µτ (ρτ , ∂ατ ρτ )

rτ (ρτ )︸ ︷︷ ︸
local mean relaxation

+ στ (ρτ ) ηα︸ ︷︷ ︸
small-scale variability

Gaussian fluctuations : Our equilibrium model
gives the noise’s rms :

στ (ρτ ) =

√
ρτ
(
1− ρτ

4

)
τ3
(
1
τ

+ q
8 ρ

2
τ

)
Depends on the dynamical parameter q.

στ →
τ→∞

0 corresponds to LTE (no

fluctuations).
Different from the microscopic fluctuations

σ∗(ρ) =
√

ρ
2

(
1− ρ

4

)
.
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Conclusion

Not always a separation of scale between micro-dynamics and macro-dynamics
(observation) : mesoscopic modelling, geophysical and industrial turbulence, ...
⇒ Lag of the current : the relaxation to the "local equilibrium" is not complete for
τ �∞.

Our model suggests that the coarse-grained current has to be considered as a
dynamical variable, and that a stochastic relaxation is pertinent.

∂tτ ρτ + ∂ατ jτα = 0,

∂tτ jτα = −
jτα − µτ (ρτ , ∂ατ , q)

rτ (ρτ , q)
+ στ (ρτ , q) ηα.

This property is implicit in the famous k − ε model, but without fluctuations and no
dependance of the empirical parameters on τ .

It would be interesting to find a refined sub-grid model using for example the
Macroscopic Fluctuation Theory [Derrida, 2011, Bertini et al., 2014].
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Perspectives



Perspectives

Data analysis : Apply this analysis to real flows : Rayleigh-Bénard convection,
Poiseuille, Couette, grid/nozzle turbulence, Van-Karman, ...
... Any DNS or well resolved experimental data to analyse.

Theoretical :

1. One coarse-grained state → large (or even infinite) microscopic states.
(Principle of Equilibrium SM)

2. One coarse grained state at a given time corresponds → large number (or even
infinite) microscopic states that usually don’t evolve to the same coarse-grained
state.

⇒ Formalize it with the Nonequilibrium Statistical Physics/Dynamical system
formalism to find the right stochastic model, with a particular care on the
coarse-graining procedure. ∼ What is µτ , rτ , and στη ?

34



Work in progress

Van-Karman flow :

2R

H

Ω

Ω

Thanks to Paul Debue, Adam Cheminet, and
others members of the SPHYNX for the well
resolved experimental velocity fields (at the
center of the cell).

Incompressible Navier-Stokes :

∂αuα = 0,

∂tuα + uβ∂βuα = −∂αp + gα + ∂2βuα.

⇒ Vorticity equation :

ωα = (∇× u)α,

∂tωα = (∇× F )α,

Fα = (u × ω)α − µ(∇× ω)α.
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Work in progress

Coarse-grained dynamics ? We
propose

ωτα = (∇τ × uτ )α,

∂tτωτα = (∇τ × Fτ )α,

Fτα = (uτ × ωτ )α − µ(∇τ × ωτ )α.

What is p(dFτα|ωτα) ?

Results for α = x , y , z and
various τ :

τ = 5
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Work in progress

Coarse-grained dynamics ? We
propose

ωτα = (∇τ × uτ )α,

∂tτωτα = (∇τ × Fτ )α,

Fτα = (uτ × ωτ )α − µ(∇τ × ωτ )α.

What is p(dFτα|ωτα) ?

Results for α = x , y , z and
various τ :

τ = 8
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Work in progress

Coarse-grained dynamics ? We
propose

ωτα = (∇τ × uτ )α,

∂tτωτα = (∇τ × Fτ )α,

Fτα = (uτ × ωτ )α − µ(∇τ × ωτ )α.

What is p(dFτα|ωτα) ?

Results for α = x , y , z and
various τ :

τ = 10
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Sub-grid model

Simplifications :

• Instantaneous mixing of particles at each discrete time step → dynamics of the
spatial average occupations Nsi (t∗), i = 1, ..., 4 ;

• Variations at each time step modelled as a combination of random variables that
take into account entry/outcome at boundaries and collisions in the bulk.

τ

τ

ρτ

ρτ

ρτ

ρτ
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• Instantaneous mixing of particles at each discrete time step → dynamics of the
spatial average occupations Nsi (t∗), i = 1, ..., 4 ;
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Example : for Ns1

Source/Sink nodes probability distribution

entry (left boundary) τ

{
P(X = −1) = 0,
P(X = 0) = 1− ρτ/4,
P(X = 1) = ρτ/4.

exit (right boundary) τ

{
P(X = −1) = Ns1,

P(X = 0) = 1− Ns1,

P(X = 1) = 0.

2 part collision τ2

{
P(X = −1) = Ns1(1− Ns2)Ns3(1− Ns4)p,
P(X = 0) = 1− P(X = −1)− P(X = 1),
P(X = 1) = (1− Ns1)Ns2(1− Ns3)Ns4p.

3 part collision τ2

{
P(X = −1) = Ns1Ns2(1− Ns3)Ns4q,
P(X = 0) = 1− P(X = −1)− P(X = 1),
P(X = 1) = (1− Ns1)Ns2Ns3Ns4q.



Sub-grid model

τ sufficiently large for using the central limit theorem and we linearise around the
mean occupation of channels ρτ/4 : Nsi (t∗) ' ρτ/4 + δNsi (t∗), i = 1, ..., 4 with
δNsi (t∗) << 1.

jsx (t∗ + 1)− jsx (t∗) = −
( 1
τ

+
q
8
ρ2τ

)
jsx +

√
1
τ2
ρτ

(
1−

ρτ

4

)( 1
τ

+
q
8
ρ2τ

)
ηx

where ηx is a normal random variable. It is a linear Langevin equation that arise in
many contexts in Physics [Gardiner, 2009]. The pdf of the coarse-grained (space and
time averaged current)

jτx (tτ ) =
1
τ

τ(tτ +1)−1∑
t∗=τ tτ

jsx (t∗),

satisfies a large deviation principle [Touchette, 2018] :

lim
τ→∞

−
1
τ

lnP(jτx = j) = I(j)

I(j) =
1
2

( 1
τ

+ q
8 ρ

2
τ )2

1
τ2
ρτ (1− ρτ

4 )( 1
τ

+ q
8 ρ

2
τ )

j2 =
τ2

2
( 1
τ

+ q
8 ρ

2
τ )

ρτ (1− ρτ
4 )

j2.



Therefore, our model states that jτx is a Gaussian random variable with mean zero
and rms

στ (ρτ , q) =

√
ρτ (1− ρτ

4 )
τ3( 1

τ
+ q

8 ρ
2
τ )
.

The evolution of 〈jsx 〉 in the mesocell can be written

〈jsx 〉(t∗ + 1) = a〈jsx 〉(t∗), a = 1−
( 1
τ

+
q
8
ρ2τ

)
.

It is easy to show that

〈jτx 〉(tτ + 1)− 〈jτx 〉(tτ ) = −(1− aτ )〈jτx 〉(tτ ), a ≡ 1−
( 1
τ

+
q
8
ρ2τ

)
This equation suggests that the relaxation time for the coarse-grained current is

rτ (ρτ , q) =
1

1− aτ
=

1
1−
(
1−
(
1
τ

+ q
8 ρ

2
τ

))τ .
Since −1− 1

τ
= a(ρτ = 4) ≤ a ≤ (ρτ = 0) = 1− 1

τ
, in normal conditions (ρτ not

too close from 4) rτ →
τ→∞

1.


	Motivations
	The Maximum Entropy Production hypothesis for climate modelling
	Introduction
	MEP for the atmospheric convection
	MEP for time varying problems
	Conclusion
	Perspectives

	Stochastic sub-grid model for a diffusive Lattice Gas (and extension to turbulent flows)
	Introduction
	The microscopic model
	Numerical analysis
	Sub-grid model
	Conclusion

	Perspectives
	Annexe

