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Context

From model error to the absence of a model

IData assimilation and model error
Numerical predictions in geophysics based on data assimilation crucially depends on
both initial condition and model error [Magnusson et al., 2013]. There are methods to
mitigate model error:

additive noise (weak parametrisation) [Trémolet, 2006; Raanes et al., 2015; Sakov et al. 2018]

estimation of uncertain model parameters

physically-driven stochastic perturbations [e.g., Buizza et al., 1999], stochastic subgrid
parametrisations [e.g., Resseguier et al., 2017], inflation [e.g., Raanes et al., 2019]

IData-driven forecast of a physical system
One step further: renounce physically-based models and use massive observation

use data assimilation together with analogues [Lguensat et al., 2017]

use diffusion maps for a spectral representation of datasets [e.g., Harlim, 2018]

use neural networks (NNs), echo states networks, & deep learning [e.g., Park et al.,

1994; Pathak et al, 2017; Dueben et al., 2018]
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Context

Building a surrogate model

I Learning the dynamics of a model from its output

more explicit (possibly with NNs) representations of the dynamics using specific
regressors [e.g., Paduart et al., 2010; Brunton et al. 2016]

design NNs that mimic integration schemes [Wang and Lin, 1998; Fablet et al., 2018; Long

et al., 2018]

IOur goal

Use a data assimilation framework to infer both a surrogate model and the state
trajectory within a time window over which the reference model is only partially &
noisily observed.
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Thin algebraic surrogate model

ODE representation for the surrogate model

IOrdinary differential equations (ODEs) representation of the surrogate dynamics

dx
dt

=φA(x), φA(x) = Ar(x),

where

A is a matrix of coefficients of size Nx ×Np

r(x) is a vector of nonlinear regressors of size Np . For instance, for
one-dimensional spatial systems and up to bilinear order:

r(x) =
[
1, {xn}06n<Nx

, {xnxm}06n6m<Nx

]
.

A priori, Np =
(Nx+1

2

)
= 1

2 (Nx +1)(Nx +2) such regressors.

−→ Intractable in high-dimension! (typically Nx ≈ 106 and beyond)
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Thin algebraic surrogate model

Assumptions and symmetries

I Locality
Physical locality of the physics: all multivariate monomials in the ODEs have variables
xn that belong to a stencil, i.e. a local arrangement of grid points around a given node.

sn is the stencil around node n, the pattern being the same for all nodes.

the set of required monomials can therefore be reduced to (in 1D)

r(x) =
[
1, {xn}06n<Nx

, {xnxm}06n6m<Nx ,m∈sn
]

.

In 1D and with a stencil of size 2L+1, there are Np = 1+Nx (2+L) monomials.

A becomes sparse and can be squeezed into a dense rearrangement of A. In 1D
and with a stencil of size 2L+1, the size of the dense A is

Nx ×Na where Na =

2L+2∑
l=L+1

l =
3

2
(L+1)(L+2).

IHomogeneity
Moreover, we can additionally assume translational invariance. In that case A becomes
a vector of size Na.
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Thin algebraic surrogate model

Integration scheme and cycling

x0 xk xk+1 xK

xk,0 xk,l xk,l+1 xk,Nk
c

y0 yk yk+1 yK

Fk−1
A ◦ · · · ◦ F0

A Fk
A FK−1

A ◦ · · · ◦ Fk+1
A

f lA fA f
Nk

c −l−1
A

ICompositions of integration schemes:

xk+1 = Fk
A(xk ) where Fk

A ≡ f
Nk

c
A ≡ fA ◦ . . .◦ fA︸ ︷︷ ︸

Nk
c times

,

IChoosing a Runge-Kutta method as integration scheme:

fA(x) = x+h

NRK−1∑
i=0

βiki , ki =φA

x+h
i−1∑
j=0

αi ,jkj

 .
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Residual neural network surrogate model

Neural network models

IWe tested many simple architectures, all following the structure of Nc Runge-Kutta
schemes, with linear or nonlinear activation functions:

IThe thin algebraic representation above does not rely on ML libraries
(TensorFlow, PyTorch, etc.). It was also implemented as an NN.

IConvolutional layers were used for local, homogeneous systems.

I Locally connected convolutional layers were used for local, heterogeneous systems.
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gA(x)

x k1 = gA(x) 1
2 + x+ k1/2 gA(x+ k1/2) + fA(x)

gA gA

x fA(x) fA ◦ fA(x) FA(x) = f◦Nc

A (x)

gA:
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Model identification as a data assimilation problem

Outline

1 Context

2 Thin algebraic surrogate model

3 Residual neural network surrogate model

4 Model identification as a data assimilation problem

5 Numerical experiments

6 Conclusions

7 References

M. Bocquet Extreme events applied to climate sciences, LSCE, Saclay, November 27-29, 2019 11 / 28



Model identification as a data assimilation problem

Bayesian analysis of the joint problem

IBayesian view on state and model estimation:

p(A,Q1:K ,x0:K |y0:K ,R0:K ) =
p(y0:K |x0:K ,A,Q1:K ,R0:K )p(x0:K |A,Q1:K )p(A,Q1:K )

p(y0:K ,R0:K )
.

IData assimilation cost function assuming Gaussian errors and Markovian dynamics:

J(A,x0:K ,Q1:K ) =
1

2

K∑
k=0

{
‖yk −Hk (xk )‖2

R−1
k

+ ln |Rk |
}

+
1

2

K∑
k=1

{∥∥∥xk −Fk−1
A (xk−1)

∥∥∥2

Q−1
k

+ ln |Qk |

}
− lnp(x0,A,Q1:K ).

−→ Allows to rigorously handle partial and noisy observations.

ITypical machine learning cost function with Hk = Ik in the limit Rk −→ 0:

J(A)≈ 1

2

K∑
k=1

∥∥∥yk −Fk−1
A (yk−1)

∥∥∥2

Q−1
k

− lnp(y0,A).

Similar outcome or improved upon [Hsieh and Tang 1998; Abarbanel et al. 2018].
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

Solutions for J(A,x0:K |Q1:K ), which is not as general as J(A,x0:K ,Q1:K ):

(1) IThe optimisation of J(A,x0:K |Q1:K ) can be solved using a full variational
approach.

I In [Bocquet et al. 2019b], J(A,x0:K |Q1:K ) is optimised using a full weak-constraint
4D-Var where both x0:K and A are control variables (assuming Q1:K is known).

(2) IThe optimisation of J(A,x0:K |Q1:K ) can be solved using a coordinated descent.

IFor J(A,x0:K |Q1:K ): using a weak constraint 4D-Var for x0:K and a variational
optimisation problem for A [Bocquet et al. 2019b].

IFor J(A,x0:K |Q1:K ): using an EnKF for x0:K and a variational optimisation
problem for A [Brajard et al. 2019].
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

ICoordinated descent of [Brajard et al. 2019].
Hybrid data assimilation and machine learning techniques.

Initialisation: xa
0:K ,A

Fix A, estimation of xa
0:K using y

DA step

Fix xa
0:K , estimation of A

ML step

Iterations

Stop if converged

Training of an NN

EnKF/EnKS

IThe coordinated descent algorithm is interpreted as an Expectation-Maximisation
(EM) algorithm by [Nguyen et al. 2019].

M. Bocquet Extreme events applied to climate sciences, LSCE, Saclay, November 27-29, 2019 14 / 28



Model identification as a data assimilation problem

Bayesian analysis of the marginal problem

I Looking only for the dynamics and its model error:

p(A,Q1:K |y0:K ,R0:K ) =

∫
dx0:K p(A,Q1:K ,x0:K |y0:K ,R0:K )

IA solution is provided by the EM algorithm. Applying it for the reconstruction of a
dynamical system has been suggested in [Ghahramani and Roweis 1999], using an extended
Kalman smoother, or for the estimation of subgrid stochastic processes in [Pulido et al.

2018] using an ensemble Kalman smoother.

IHere we solve for the MAP of p(A,Q1:K |y0:K ,R0:K ) using iterations over:

(1) IExpectation/DA step: EnKS over a long period [t0,tK ]

(2) IA coordinated descent over

(i) ML/deep learning step: variational solution of A

(ii) Maximisation step: variational solution of Q1:K

[Bocquet et al. 2019a]
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Numerical experiments

Experiment plan

IThe reference model, the surrogate model and the forecasting system

δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

IMetrics of comparison:

Model: ODE coefficients norm ‖Aa −Ar‖∞.

NRMSE between the reference and the surrogate forecasts as a function of the
lead time (averaged over many initial conditions).

Lyapunov spectrum.

Power spectrum density.
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Numerical experiments

Identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of identifiable models

The Lorenz 63 model (L63, 3 variables):

dx0

dt
= σ(x1 −x0),

dx1

dt
= ρx0 −x1 −x0x2,

dx2

dt
= ρx0x1 −βx2,

−→ ‖Aa −Ar‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.

The Lorenz 96 model (L96, 40 variables)

dxn
dt

= (xn+1 −xn−2)xn−1 −xn+F ,

−→ ‖Aa −Ar‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.
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Numerical experiments

Non-identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Lorenz 96 model (40 variables). Surrogate model based on an RK2 scheme.
Analysis of the modelling depth as a function of Nc.
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Numerical experiments

Non-identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Numerical experiments

Non-identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Numerical experiments

Identifiable model and imperfect observations

IVery good reconstruction of the long-term properties of the model (L96 model).

I Fully observed L96.
I Significantly noisy observations R= I
I Long window K = 104, with ∆t = 0.05
I RK4 residual convolutional NN
I 10 EM iterations
I Takes a few mins on a GTX 1070 Ti
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Numerical experiments

Non-identifiable model and imperfect observations

IThe Lorenz 05III (two-scale) model (36 slow & 360 fast variables).

dxn
dt

=ψ+
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Numerical experiments

Non-identifiable model and imperfect observations

I Fully observed L05III.
I Significantly noisy observations R= I
I Long window K = 104, with ∆t = 0.05
I RK4 residual convolutional NN
I 10 EM iterations
I Takes a few mins on a GTX 1070 Ti
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[Bocquet et al. 2019a]
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Conclusions

Conclusions

IMain messages:

Bayesian DA view on state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.

Numerical costs of high-dimensional systems significantly reduced by locality and
homogeneity assumptions.

Full EM technique (not only coordinated descent) successful.

The method can handle very long training windows.

Successful on various 1D low-order models (L63, L96, KS, L05III) in presence of
partial observation with significant noise.

IOpen questions and technical hardships (non-exhaustive):

Non-autonomous dynamics?

Implicit integration schemes?

Online learning scheme?

More complex models?
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