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From model error to the absence of a model

>

Numerical predictions in geophysics based on data assimilation crucially depends on
both initial condition and model error [Magnusson et al., 2013]. There are methods to
mitigate model error:

@ additive noise (weak parametrisation) [Trémolet, 2006; Raanes et al., 2015; Sakov et al. 2018]
@ estimation of uncertain model parameters

@ physically-driven stochastic perturbations [e.g., Buizza et al., 1999], stochastic subgrid
parametrisations [e.g., Resseguier et al., 2017], inflation [e.g., Raanes et al., 2019]

| 4
One step further: renounce physically-based models and use massive observation

@ use data assimilation together with analogues [Lguensat et al., 2017]
@ use diffusion maps for a spectral representation of datasets [e.g., Harlim, 2018]

@ use neural networks (NNs), echo states networks, & deep learning [e.g., Park et al.,
1994; Pathak et al, 2017; Dueben et al., 2018]
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Building a surrogate model

>

@ more explicit (possibly with NNs) representations of the dynamics using specific
regressors [e.g., Paduart et al., 2010; Brunton et al. 2016]

@ design NNs that mimic integration schemes [Wang and Lin, 1998; Fablet et al., 2018; Long
et al., 2018]

>

@ Use a data assimilation framework to infer both a surrogate model and the state
trajectory within a time window over which the reference model is only partially &
noisily observed.
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Thin algebraic surrogate model
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o Thin algebraic surrogate model
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Thin algebraic surrogate model

ODE representation for the surrogate model

» Ordinary differential equations (ODEs) representation of the surrogate dynamics

dx
Fri bal(x), dalx) =Ar(x),
where

@ A is a matrix of coefficients of size Ny x N,

@ r(x) is a vector of nonlinear regressors of size N,. For instance, for
one-dimensional spatial systems and up to bilinear order:

r(x) = [11{Xn}0<,,</vx .{XnXm}ogngnKNx .

A priori, Np = (NX2+1) = 1(Ny+1)(Ny +2) such regressors.

— Intractable in high-dimension! (typically Ny =~ 10 and beyond)
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Thin algebraic surrogate model

Assumptions and symmetries

>
Physical locality of the physics: all multivariate monomials in the ODEs have variables
Xp that belong to a stencil, i.e. a local arrangement of grid points around a given node.

@ s, is the stencil around node n, the pattern being the same for all nodes.

@ the set of required monomials can therefore be reduced to (in 1D)

(%) = [ 1 Dndocnen, - Cnxmlocncman, mes,

In 1D and with a stencil of size 2L+ 1, there are N =1+ Ny(2+ L) monomials.
@ A becomes sparse and can be squeezed into a dense rearrangement of A. In 1D
and with a stencil of size 2L+ 1, the size of the dense A is

2L+2
Ny x N, where N, :léllz S(L+1(L+2).

>
Moreover, we can additionally assume translational invariance. In that case A becomes
a vector of size N,.
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Thin algebraic surrogate model

Integration scheme and cycling
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» Compositions of integration schemes:

k
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Nk times
» Choosing a Runge-Kutta method as integration scheme:
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Residual neural network surrogate model

Outline

e Residual neural network surrogate model
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Residual neural network surrogate model

Neural network models

» We tested many simple architectures, all following the structure of N, Runge-Kutta
schemes, with linear or nonlinear activation functions:

» The thin algebraic representation above does not rely on ML libraries
(TensorFlow, PyTorch, etc.). It was also implemented as an NN.

» Convolutional layers were used for local, homogeneous systems.

» Locally connected convolutional layers were used for local, heterogeneous systems.
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Model identification as a data assimilation problem
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o Model identification as a data assimilation problem
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

> on state and model estimation:
p(yo:xxo:k, A, Qr:k, Ro:k)p(x0:k 1A, Q1) p(A, Q1K)
p(A, Q1. %0:k1¥0:k Ro:x) = :
p(yo:x, Ro:x)
> assuming Gaussian errors and Markovian dynamics:

K
1
I(A X0k, Quk) =5 kZ_O{HYk - Hk(xk)||2R;1 +In |Rk|}

18 2
k—1
3r (o o]+l

_lnp(XOIArQliK)'

— Allows to rigorously handle partial and noisy observations.
» Typical with H, =1 in the limit R, — O:
18 2
A~ 5 Y |lye—FA k-0, —Inplvo. A).
k=1 k

Similar outcome or improved upon [Hsieh and Tang 1998; Abarbanel et al. 2018].
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

(1) » The optimisation of J(A,xq.x|Q1:x) can be solved using a full variational
approach.

» In [Bocquet et al. 2019b], J(A, x0.x|Q1.x) is optimised using a full weak-constraint
4D-Var where both xg.x and A are control variables (assuming Q.x is known).

(2) » The optimisation of J(A,x.x|Q1.x) can be solved using a coordinated descent.

» For J(A,x0.x|Q1.x): using a weak constraint 4D-Var for xq.x and a variational
optimisation problem for A [Bocquet et al. 2019b].

» For J(A,x0.x|Q1.x): using an EnKF for xq.x and a variational optimisation
problem for A [Brajard et al. 2019].
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

» Coordinated descent of [Brajard et al. 2019].
Hybrid data assimilation and machine learning techniques.

’ Initialisation: x§. g, A ‘

Iterations .
DA step !

’ Fix A, estimation of x{, - using y ‘$ EnKF/EnKS

E ML step ( > E

’Fix x5, i » estimation of A ‘*.’ Training of an NN
1

’ Stop if converged ‘

» The coordinated descent algorithm is interpreted as an Expectation-Maximisation
(EM) algorithm by [Nguyen et al. 2019].
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Model identification as a data assimilation problem

Bayesian analysis of the marginal problem

» Looking only for the dynamics and its model error:

p(A, Q1:xly0:x. Ro:x) = JdXO:K p(A, Q1.k.%0:k¥o:x+ Ro: k)

» A solution is provided by the EM algorithm. Applying it for the reconstruction of a
dynamical system has been suggested in [Ghahramani and Roweis 1999], using an extended
Kalman smoother, or for the estimation of subgrid stochastic processes in [Pulido et al.
2018] using an ensemble Kalman smoother.

» Here we solve for the MAP of p(A, Q1.xlyo:x,Ro:x) using iterations over:

(1) » Expectation/DA step: EnKS over a long period [ty, tk]
(2) » A coordinated descent over

@ (i) ML/deep learning step: variational solution of A

@ (ii) Maximisation step: variational solution of Q1.x
[Bocquet et al. 2019a]
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e Numerical experiments

Extreme events applied to climate sciences, LSCE, Saclay, November 27-29, 2019 16 / 28



Numerical experiments

Experiment plan

>
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@ Model: ODE coefficients norm ||A, — A -

NRMSE between the reference and the surrogate forecasts as a function of the
lead time (averaged over many initial conditions).

Lyapunov spectrum.

Power spectrum density.
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Numerical experiments

Identifiable model and perfect observations

» Inferring the dynamics from dense & noiseless observations of identifiable models

@ The Lorenz 63 model (L63, 3 variables):

‘%? = 0(x1 —Xxo),

dxy

G = P xoxe,
dxo

9 = Poxi— Bxa,

— ||Aa—A;||o, ~ 10713 close to perfect reconstruction at machine precision.
@ The Lorenz 96 model (L96, 40 variables)

dxp,

ar = (Xn41—Xn—2)Xn—1—Xxn+F,

— ||Aa—A¢|| o, ~ 10713 close to perfect reconstruction at machine precision.
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Numerical experiments

Non-identifiable model and perfect observations

» Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Lorenz 96 model (40 variables). Surrogate model based on an RK2 scheme.
Analysis of the modelling depth as a function of N,.

reference minus surrogate

125
¥ reference =

Lyapunov time units
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Non-identifiable model and perfect observations

» Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).

100

50

reference minus surrogate

f
i
-

Lyapunov time units
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Numerical experiments

Non-identifiable model and perfect observations

» Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
ou  du %y d*u

ot Yox X2 oxd

x 0w Oy w0 xdx (9yr)* (9,7)0iw

] 7 n n
0.0 — - - I - -
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Numerical experiments

Identifiable model and imperfect observations

» Very good reconstruction of the long-term properties of the model (L96 model).

» Fully observed L96.

» Significantly noisy observations R =1
» Long window K = 104, with At =0.05

» RK4 residual convolutional NN
» 10 EM iterations

» Takes a few mins on a GTX 1070 Ti

10?

10°
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0

Power spectrum density

0 2 1 6
Frequency (in Hz)
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Numerical experiments

Non-identifiable model and imperfect observations

» The Lorenz 0511l (two-scale) model (36 slow & 360 fast variables).

9
dx c
T: Zﬂ);r(x)'i‘f:—hg Z Um-+10n,
m=0
du c . _ c .
T: - E‘l’m(bu) +hEXm/1o- with 7 (%) = xo1 (Xn1 —Xn2) =X,

Lyapunov time units
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Numerical experiments

Non-identifiable model and imperfect observations

» Fully observed LOS5III.

» Significantly noisy observations R =1

» Long window K =10%, with At=0.05
» RK4 residual convolutional NN

» 10 EM iterations

» Takes a few mins on a GTX 1070 Ti

10%

——  Loronz-05111 0 ; M
NN Lyapu

Power spectrum density
s NRMSE

10

10

0 20 10 60 80 100 : Forceast lead time (Lyapunov time uni
Frequency (in Hz)

[Bocquet et al. 2019a]
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Conclusions
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Conclusions

Conclusions

@ Bayesian DA view on state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.

@ Numerical costs of high-dimensional systems significantly reduced by locality and
homogeneity assumptions.

o Full EM technique (not only coordinated descent) successful.
@ The method can handle very long training windows.

@ Successful on various 1D low-order models (L63, L96, KS, LO5III) in presence of
partial observation with significant noise.

Non-autonomous dynamics?
Implicit integration schemes?

Online learning scheme?

More complex models?
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