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Abstract. In statistics, extreme events are classically de-
fined as maxima over a block length (e.g. annual maxima
of daily precipitation) or as exceedances above a given large
threshold. These definitions allow the hydrologist and the
flood planner to apply the univariate Extreme Value Theory
(EVT) to their time series of interest. But these strategies
have two main drawbacks. Firstly, working with maxima or
exceedances implies that a lot of observations (those below
the chosen threshold or the maximum) are completely disre-
garded. Secondly, this univariate modeling does not take into
account the spatial dependence. Nearby weather stations are
considered independent, although their recordings can show
otherwise.

To start addressing these two issues, we propose a new
statistical bivariate model that takes advantages of the re-
cent advances in multivariate EVT. Our model can be viewed
as an extension of the non-homogeneous univariate mixture.
The two strong points of this latter model are its capacity at
modeling the entire range of precipitation (and not only the
largest values) and the absence of an arbitrarily fixed large
threshold to define exceedances. Here, we adapt this mixture
and broaden it to the joint modeling of bivariate precipita-
tion recordings. The performance and flexibility of this new
model are illustrated on simulated and real precipitation data.

1 Introduction

There exists a wide range of distribution families to statisti-
cally model rainfall intensities. For example, Katz (1977),
Vrac et al. (2007), and Wilks (2006) argued that most of the
precipitation variability can be approximated by Gamma dis-
tributions. However, it is also well known (e.g.Katz et al.,
2002) that the tail of the Gamma distribution can be too light
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to capture heavy rainfall intensities. This leads to the un-
derestimation of return levels and others quantities linked to
high percentiles of precipitation amounts. Consequently, the
societal and economical impacts associated with heavy rains
(e.g., floods) can be miscalculated. To solve this issue, an
increasingly popular approach in hydrology (e.g.Katz et al.,
2002) is to disregard small precipitation values and to focus
only on the largest rainfall amounts. The advantage of this
strategy is that an elegant mathematical framework calledEx-
treme Value theory(EVT) developed in 1928 byFisher and
Tippett(1928) and regularly updated during the last decades
(e.g.Resnick, 2007; De Haan and Ferreira, 2006) dictates the
distribution of heavy precipitation. More specifically, EVT
states that rainfall exceedances, i.e. amounts of rain greater
than a given thresholdu, can be approximated by a General-
ized Pareto Distribution (GPD) if the threshold and the num-
ber of observations are large enough.

Past studies (e.g.Katz et al., 2002; Naveau et al., 2005;
Cooley et al., 2007) have illustrated how univariate EVT can
be applied to climate and hydrology sciences. Recently, there
have been a few attempts at not only modeling extremes but
the full range of the observations. For example,Frigessi et
al. (2002) proposed a univariate mixture model with three
components. The first one represents the bulk of the distribu-
tion and the second one focuses on the upper tail (i.e. ex-
tremes). The third one corresponds to a weight function
that makes the connection between the first two parts of the
Frigessi model.Vrac and Naveau(2007) applied this univari-
ate model to downscale precipitation over the region of Illi-
nois. Other univariate mixture models that take into account
the EVT exist. Carreau and Bengio(2006) investigated a
model that combines a non-parametric approach (neural net-
works) with EVT densities. The research developed therein
can be viewed as an extension of these past approaches. We
keep the idea of working with a mixture model that can char-
acterize the full range of rainfall observations but we move
from a univariate framework to a bivariate space. Such an
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Fig. 1. The top panel shows the scatterplot between daily precip-
itation data in mm/day recorded at two French stations named St
Alban and Perreux which are fairly far away from each other (about
300 km). In contrast, the bottom panel displays the same type of
scatterplot but between two nearby stations, Perreux and Riorges
(about 10 km).

extension can be trivial for some distributions. This is not the
case here because the EVT is different in the 2-D case. While
univariate EVT imposes a parametric form for the margins,
bivariate EVT forces the dependence structure among ex-
tremes to be non-parametric and choices have to be made
to deal with this problem (e.g. see Chapter 8 ofColes, 2001).
In addition, modeling the transition from the bulk of the dis-
tribution to the extreme values represents an additional chal-
lenging task.

The paper is organized as follows. In Sect.2 we give a
brief overview of the precipitation measurements that will be
used to illustrate and validate our approach. We also recall

a few basic concepts used in bivariate EVT. Section3 is di-
vided into two parts. Firstly, we treat the univariate case by
recalling the basic principles of the Frigessi mixture model
Frigessi et al.(2002) and by applying it to univariate precip-
itation recordings. Secondly, we propose a bivariate model
that combines the advantages of the Frigessi univariate mix-
ture model and the principles of bivariate EVT. Section4 fo-
cuses on applications. Our approach is tested on simulated
data and applied to precipitation measurements. Finally, we
summarize our results and discuss some future research di-
rections in Sect.5.

2 Precipitation data

To exemplify the methodologies proposed in this paper,
we will analyze rainfall measurements coming from three
weather stations located near the cities of St Alban, Perreux
and Riorges that belong to the French Mediterranean region.
In this section we present the basics statistical properties of
these observations. The daily time series cover the time pe-
riod from 1 January 1994 to 31 December 2004.

The top panel of Fig.1 shows the scatterplot between daily
precipitation data in mm/day recorded at two stations named
St Alban and Perreux which are fairly far away from each
other (about 300 km). In contrast, the bottom panel of Fig.1
displays the same type of scatterplot but between two nearby
stations, Perreux and Riorges (about 10 km). As expected,
this figure indicates that nearby stations can provide strongly
dependent recordings. In this example, this dependence still
exists for large rainfall amounts. Consequently, the analysis
of extremes should be improved if this dependence is taken
into account. We have not yet tried to define the term “bi-
variate extreme event”. To clarify this expression, we need
to introduce a few notations. LetR1 andR2 be two positive,
continuous and heavy tailed random variables that represent
the rainfall recordings at two stations, say station 1 and 2.
Here “heavy tailed” means that the upper tail distribution of
R1 andR2 can be considered of the form of a power law,
i.e. proportional tox−1/ξ for someξ>0 asx gets large. This
assumption is reasonable for our precipitation measurements
because very strong rainfall occur frequently in the Mediter-
ranean region due to local thunderstorms. Concerning the
definition of a bivariate extreme event, does it mean that both
R1 andR2 should be large at the same time or is it enough
that only one of the two variables is very large? We opt for
the latter case and we introduce the radius|R|=R1+R2 to
say that a bivariate extreme event occurs whenever the radius
|R| is large. At this stage, we also need to better quantify the
type of dependence among extremes that we have observed
in the bottom panel of Fig.1. This is a difficult task and a lot
of schemes have been proposed to capture the relationship
among extremes (e.g.Resnick, 2007; De Haan and Ferreira,
2006; Beirlant et al., 2004). Having already defined the ra-
dius |R|, we recall the well-known bivariate EVT Pickands’
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coordinates, a radius and a pseudo “angle”ω (e.g. see Chap-
ter 8 ofColes, 2001) defined by

ω =
R2

|R|
, with |R| = R1 + R2. (1)

The effect of transforming the vector(R1, R2) into (|R|, ω)

defined by Eq. (1) will be illustrated in Sect.4 on simulated
and real precipitation data. Because the angle takes its val-
ues between zero and one, one classical model is the Beta
probability density function

bβ(ω) =
0(β1 + β2)

0(β1)0(β2)
ωβ1−1 (1 − ω)β2−1, (2)

with ω∈[0, 1] and where0(.) is the Gamma function andβi

are positive reals. The Beta density offers a wide range of
density shape while keeping the number of parameters under
control. It also has the advantage to have well-known prop-
erties.

From a theoretical point of view, it is interesting to see that
the joint probability of the angle and the radius (ω, |R|) given
that|R|>x for some largex can be written as

P(|R| > rx andω ∈ [a, b])

P(|R| > x)
=

P(|R| > rx)

P(|R| > x)
P(ω ∈ [a, b])

if 0<a<b<1 and|R| is independent ofω. In addition, if the
radius is assumed to be regularly varying with index−1/ξ ,
i.e.,

lim
x→∞

P(|R| > rx)

P(|R| > x)
= c r−1/ξ , for some constantc > 0,

then it follows

lim
x→∞

P(|R| > rx andω ∈ [a, b])

P(|R| > x)
= c r−1/ξ P(ω ∈ [a, b]).

Hence, defining pseudo-coordinates is closely linked to the
concept ofregular variationand the latter has been increas-
ingly popular in multivariate EVT during the last decades,
specially in time series analyses for heavy-tailed models (e.g.
Resnick, 2007; De Haan and Ferreira, 2006; Beirlant et al.,
2004).

3 Our statistical models

3.1 The univariate case

According to basic univariate EVT (e.g.Coles, 2001; Em-
brechts et al., 1997), the probability that large rainfall
amount, say the random variableR, is larger than the real
r given thatR is already larger than a fixed high threshold
u can be approximated by a Generalized Pareto Distribution
(GPD) tail defined as

P(R > r|R > u) =

(
1 + ξ

r − u

σ

)−1/ξ

+

, (3)

wherea+= max(a, 0) andσ>0 represents the scale param-
eter. The shape parameterξ describes the GPD tail behav-
ior. If ξ is negative, the upper tail is bounded. Ifξ is zero,
this corresponds to the case of an exponential distribution
(all moments are finite). Ifξ is positive, the upper tail is still
unbounded but higher moments eventually become infinite.
These three cases are termed “bounded”, “light-tailed”, and
“heavy-tailed”, respectively. The flexibility of the GPD to
describe three different types of tail behavior makes it a uni-
versal tool for modeling exceedances. In our case, we assume
that our rainfall data are heavy-tailed, i.e.ξ is assumed to be
positive. We also note that the GPD belongs to the family of
regularly varying function introduced at the end of Sect.2

A possible drawback of EVT is that the GPD only models
data exceeding a given high threshold, and one can wonder
how to model the remaining data (i.e. lower than the thresh-
old) or equivalently how to deal with the entire range of data.
To answer these questions,Frigessi et al.(2002) proposed the
following mixture model

fθ (r) = cθ

[
(1 − pµ,τ (r)) gγ (r) + pµ,τ (r) hσ,ξ (r)

]
, (4)

wherecθ is a normalizing constant,θ=(µ, τ, γ , σ, ξ) encap-
sulates the vector of unknown parameters,gγ corresponds to
a light-tailed density with parametersγ , the functionhσ,ξ

represents a heavy tailed Generalized Pareto (GP) density
with thresholdu=0. One of the most interesting aspect of
Eq. (4) is the weight functionpµ,τ (.) defined by

pµ,τ (r) =
1

2
+

1

π
arctan

(
r − µ

τ

)
. (5)

Because this weight function is non-decreasing, takes val-
ues in[0, 1] and tends to 1 asr goes to∞, it can play the
role of an unsupervised threshold selection algorithm. This
transition can be interpreted as the contribution of the GPD
to the overall fit. For our case study, heavy rains are repre-
sented by the heavy tailed GPD densityhσ,ξ (r), while low
and medium precipitation are modeled by the light distribu-
tion gγ . Concerning the weight functionpµ,τ (r), our past
work (Vrac and Naveau, 2007) suggested thatτ is almost
equal to zero for rainfall data. This is also the case for our
Mediterranean precipitation. Hence,τ is fixed to zero in the
rest of this article. In other words, the weight function is set
to the limit of Eq. (5) asτ tends to 0, i.e.

pµ,0(r) =

{
1 , if µ ≤ r,

0 , otherwise.

This special case has the advantage of reducing the number
of parameters, although, for other applications, the more gen-
eral form ofpµ,τ (r) defined by Eq. (5) may be more appro-
priate. Compared to classical EVT where the thresholdu is
considered fixed, the parameterµ is not predetermined and
has to be estimated.

www.nonlin-processes-geophys.net/14/789/2007/ Nonlin. Processes Geophys., 14, 789–797, 2007
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Fig. 2. Top panel: Histogram of the positive precipitation measure-
ments from Perreux. Dashed and solid lines correspond to a Gamma
fit and a mixture (Eq.4) fit, respectively. Bottom panel: QQplots of
the positive Perreux precipitation data (in mm/day) with the two fit-
ted distributions. The x-axis corresponds to the expected quantiles
and the y-axis represents the observed quantiles. The crosses and
the circles correspond to the estimated Gamma and mixture quan-
tiles, respectively.

While Frigessi et al. (2002) chose to parametrize the light
densitygγ as a Weibull density in their fire loss application,
we opt to representgγ by a Gamma density for our precipi-
tation data. This choice appears to be in compliance with the
past hydrological literature on precipitation modeling (e.g.
Katz, 1977; Vrac et al., 2007; Wilks, 2006). The Gamma

density is defined as

gγ (r) =
γ

γ1
2

0(γ1)
rγ1−1 exp(−rγ2), for r > 0. (6)

The mixture model between a light Gamma density and a
heavy-tailed GPD has already been applied to downscale
rainfall data over the state of Illinois (USA) (Vrac and
Naveau, 2007). In this past study, weather stations were
considered independent in space while the parameters of the
mixture model were conditioned to large scale climatic in-
formation. In this respect, the present work represents a dif-
ferent direction because the pairwise spatial dependence will
be directly addressed in the coming sections.

To establish the superiority of the mixture model (Eq.4)
for our data over a simple Gamma density, the histogram (top
panel) and the quantile-quantile plot (QQplot) (low panel) of
the positive rainfall amounts recorded at the Perreux weather
station are shown in Fig.2. In the top panel of Fig.2,
the dashed and solid lines correspond to a Gamma fit and
a mixture fit, respectively. This indicates that the mixture
model defined by Eq. (4) provides a reasonably good fit
of the core of the rainfall distribution. Concerning the ex-
tremes, the bottom panel of Fig.2 displays a QQ plot whose
x-axis corresponds to the expected quantiles and the y-axis
represents the observed quantiles. The crosses and the cir-
cles correspond to the estimated Gamma and mixture quan-
tile fits, respectively. From these QQplots, it is clear that
the Gamma density can not reproduce adequately the be-
havior of extreme precipitation for the station of Perreux.
Similar figures were obtained for our two other stations. A
possible danger of the mixture model is the risk of over-
parameterization because six parameters have to be estimated
to fit Eq. (4). To check this point the Akaike Information
Criterion (AIC,Akaike, 1974) and the Bayesian Information
Criterion (BIC,Schwarz, 1978) have been calculated. These
two classical statistical criteria for model selection are de-
fined asAIC=−2L(θ)+2p andBIC=−2L(θ)+p log(n),
whereL(θ) is the log-likelihood of the model to be tested,p

is the number of parameters, andn is the sample size. Based
on the precipitation data from the Perreux station, the AIC
values for the Gamma model (Eq.6) alone and the mixture
model (Eq.4) are 4415 and 3254 respectively, and the BIC
values are 4426 and 3285 in the same order. Hence, we can
conclude that the mixture model (Eq.6) improves sufficiently
the likelihood with respect to the Gamma distribution alone
to be selected as the “best” model among the two models,
despite its larger number of parameters.

3.2 Our bivariate extension

Following the tactics developed in the previous section, it
seems reasonable to assume that the core of the bivariate
precipitation random vector(R1, R2) can be modeled by
a bivariate Gamma random vectors. As suggested by bi-
variate EVT, the extreme bivariate tails behavior could be
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modeled in the Pickand’s coordinate system(|R|, ω) defined
by Eq. (1). The difficulty in modeling the entire bivariate
precipitation range comes from this difference between the
cartesian coordinates(R1, R2) necessary to model the distri-
bution core by a bivariate Gamma density and the Pickand’s
coordinate system(|R|, ω) needed to take advantage of bi-
variate EVT. Keeping Frigessi’s approach in mind, we as-
sume that a weight function can provide an elegant transition
from the core of the distribution to the upper tails. As in the
univariate case, this allows us to bypass the threshold selec-
tion problem which is even more difficult to apprehend in
the bivariate case. To keep the number of parameters under
control, we force the weight function to be univariate and to
only vary in function of the radius|R|. This condition allows
us to define the probability density distribution of the vector
(R1, R2) as the following mixture

fθ (r1, r2) = cθ

[
( 1 − pµ,0(|r |)) gγ (r1, r2) +

pµ,0(|r |) hσ,ξ (|r |) bβ(ω)
]

(7)

where |r |=r1+r2, ω=r2/|r |, cθ is a normalizing constant,
hσ,ξ (.) corresponds to the univariate GP density with param-
eters(σ, ξ) and thresholdu=0, the univariate functionbβ(.)

represents a Beta probability density function with parame-
tersβ andgγ (., .) is a bivariate Gamma probability density
function. There exists a wide variety of bivariate Gamma dis-
tribution, see the book byKotz et al.(2000) for a review. In
this study, we opt for the Cheriyan and Ramabhadran fam-
ily (see Kotz et al., 2000) because of its large correlation
range and its simplicity in terms of simulation and estima-
tion. Each component of a bivariate Cheriyan and Ramab-
hadran vector is distributed following a Gamma distribution,
and the components depend on each other by means of an
auxiliary Gamma distributed variable. The joint distribution
gγ (r1, r2) is defined as

∫ min(r1,r2)

0

e−zzγ0−1

0(γ0)

2∏
i=1

[
e−(ri−z)(ri − z)γi−1

0(γi)

]
dz, (8)

whereγ=(γ0, γ1, γ2).
With our general mixture described by Eq. (7) whose el-

ements are defined by the Eqs. (2), (3), (5) and (8), we can
now investigate the practicability of such a model on simu-
lated and real data.

4 Simulations, estimation and applications

4.1 Simulating bivariate samples from density (Eq.7)

Our simulation algorithm can be viewed as an extension of
the 1-D scheme suggested by Frigessi et al. (2002). It can be
summarized by the following steps.

1. DrawU uniformely on[0, 1].

2. If U<1/2, then sampler=(r1, r2) from gγ defined by
Eq. (8); returnr with probability 1−pµ,0(|r |) and stop;
or, with probabilitypµ,0(|r |), return to 1.

3. If U≥1/2, then sample|r | from a GP densityhσ,ξ and
ω from bβ defined by Eq. (2); return r1=|r |×ω and
r2=|r |−|r |×ω with probability pµ,0(|r |) and stop; or,
with probability 1−pµ,0(|r |), return to 1.

In step 2 of this simulation scheme, a couple(r1, r2) has
to be sampled from Eq. (8). By definition of the bivariate
Cheriyan and Ramabhadran Gamma distribution, one can
simulate(r1, r2) by first generating three independent uni-
variate standard Gamma random variables(Y0, Y1, Y2) with
parametersγ0, γ1, and γ2, respectively. Then, the sums
ri=y0+yi (i=1, 2) give the appropriate dependence between
r1 andr2 (see Kotz et al., 2000).

We would like to explore two types of dependence (weak
and strong) for two parts of the distribution (its core and
its extremes). This provides four possible combinations.
Hence, four samples of 1000 realizations are generated ac-
cording to density (Eq.7). These simulations have five com-
mon parameters (γ1=γ2=0.3, µ=2, ξ=0.8 andσ=0.9) and
different γ0, β1 and β2 parameters. To inject a weak de-
pendence (correlation<0.1) in the bivariate Gamma part of
Eq. (7), we setγ0=10−3. In contrast, a strong dependence
(correlation>0.9) in the bivariate Gamma is obtained by fix-
ing γ0=3. Concerning the extremes and the GPD, we also
have two cases:β1=β2=0.05 andβ1=β2=5. The latter pro-
vide a strong dependence in the upper tail, while the former
produces a weak one. The next step is to determine if we
can adequately estimate the parameters of these four combi-
nations that represent a wide variety of dependencies.

4.2 The estimation procedure

Our bivariate model defined by Eq. (7) contains eight pa-
rametersθ=(γ0, γ1, γ2, µ, β1, β2, ξ, δ). A direct estimation
of these parameters by a maximum likelihood approach can
be tricky and computationally expensive. One of the main
hurdles is the estimation of the parameterµ in the weight
functionpµ,0. To circumvent this difficulty, we develop an
iterative estimation algorithm in whichµ is updated at the
end of each estimation cycle. To initialize our procedure, a
first guest forµ is needed and it is set to a rather low value.
This first estimate ofµ is calledµ̂first and is set to, say, the
75th percentile of the radius|r |=r1+r2 from the sample un-
der study. Then, we implement the following procedure.

(a) For all pairs(r1, r2) such that the radius|r | is smaller
thanµ̂first, we estimate the parametersγ of the Cheriyan
and Ramabhadran’s bivariate Gamma distributiongγ ,
by maximizing a bivariate Gamma likelihood.

(b) For all |r | larger thanµ̂first, we estimate the GP density
hσ,ξ parameters and the Beta densitybβ to theω=r2/|r |
values by maximizing their respective likelihoods.

www.nonlin-processes-geophys.net/14/789/2007/ Nonlin. Processes Geophys., 14, 789–797, 2007
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Fig. 3. Simulated data: histograms and its fitted Beta densities
(solid lines) of theω=r2/(r1+r2) values conditionally on|r|>µ̂. A
U-shape histogram of this random variable indicates a strong inde-
pendence between extreme rainfalls. On the opposite, a histogram
centered around 0.5 shows a strong dependence. The left panels cor-
respond to the two simulations with a weak dependence in the upper
tail of the bivariate random variable defined by Eq. (7), i.e.β1 and
β2 were set to 0.05 in Eq. (2). The right panels represent the two
simulations with strong dependence, i.e.β1 andβ2 were set to 5 in
Eq. (2). The difference between the upper and lower panels resides
in the pairwise dependence within the Gamma part of Eq. (7), weak
for panels (a) and (b) and strong for panels (c) and (d), i.e.γ0 was
either set to 10−3 or to 3 in Eq. (8), respectively.

(c) Based on the parameter estimates from steps (a) and
(b), we estimate a new value forµ, sayµ̂updated, by fit-
ting the full density (Eq.7) to the whole sample through
maximum likelihood estimation. All parameters butµ

are fixed.

(d) Go back to step (a) aŝµupdated becomesµ̂first until
µ̂updatedandµ̂first are close enough.

The stopping criterion that defines the term “close
enough” in step (d) translates into the condition
(µ̂updated−µ̂first)/µ̂first<0.02. In this procedure, the fi-
nal results can depend on the initialµfirst value. To
overcome this potential weakness, several initialµfirst
values are tested (the 70th, 75th, 80th, 85th, 90th, and 95th
percentiles of the observed radius values), providing several
results (usually equivalent) and the parameters associated
with the highest log-likelihood are retained.

To assess the quality of our estimation procedure, we ap-
ply it to the four samples introduced at the end of Sect.4.1. In
Fig. 3, we look at the histograms of theω values condition-
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Fig. 4. Simulated data: The scale and shape parameterσ andξ (set
to the values 0.9 and 0.8, respectively) have been estimated from 50
realizations of length 1000 from our mixture model with a strong
dependence in its core and tail. The so-called “1D Frigessi 1” and
“1D Frigessi 2” case corresponds to the boxplots obtained whenR1
andR2 are wrongly assumed to be independent and a classical uni-
variate approach is applied on each rainfall compoment. The box-
plot “2D Frigessi” displays the estimation result when the correct
model is assumed.

ally on |r|>µ̂ and the solid lines correspond to the fitted Beta
distributions. According to bivariate EVT (e.g. see Chapter 8
of Coles, 2001), a U-shape histogram of this random variable
indicates a strong independence between extreme rainfalls.
Conversely, a histogram centered around 0.5 shows a strong
dependence. In Fig.3, the left panels correspond to the two
simulations with a weak dependence in the upper tail of the
bivariate random variable defined by Eq. (7), i.e. β1 andβ2
were set to 0.05 in Eq. (2). The right panels represent the two
simulations with strong dependence, i.e.β1 andβ2 were set
to 5 in Eq. (2). The difference between the upper and lower
panels resides in the pairwise dependence within the Gamma
part of Eq. (7), weak for panels (a) and (b) and strong for
panels (c) and (d), i.e.γ0 was either set to 10−3 or to 3 in
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Fig. 5. Simulated data: QQplots of the radius variable|r| condition-
ally on |r|>µ. The x-axis corresponds to the true quantiles while
the y-axis represents the estimated quantiles. See the caption of
Fig. 3 to understand the meaning of the four different panels.

Eq. (8), respectively. As expected, the dependence among
low and medium values generated by the Gamma density
does not play a strong role in the upper tail. This explains
the small difference in the histogram shapes between the up-
per and lower panels. The dissimilarity between the left and
right panels is due to the strong disparity in the extreme be-
havior dependencies captured by the coefficientsβ1 andβ2.
Figure4compares the estimation result forσ=0.9 andξ=0.8
from 50 realizations of length 1000 from our mixture model
with a strong dependence in its core and tail. The so-called
“1D Frigessi 1” and “1D Frigessi 2” case corresponds to the
boxplots obtained whenR1 andR2 are wrongly assumed to
be independent. The boxplot “2D Frigessi” displays the esti-
mation result when the correct model is assumed. In this lat-
ter case, the true values ofσ andξ are correctly estimated and
the uncertainty spreads are reasonable. In contrast, wrongly
assuming independence ofR1 andR2 clearly underestimates
the true value ofσ andξ and increases the boxplots width.
This shows that applying a classical univariate approach and
ignoring the dependence can mislead the practitioner.

Overall, Figs.3 and4 indicate three things: (1) our model
is able to generate different types of dependencies in the up-
per tail, (2) the low and medium values do not influence the
overall shape dependence in the extremes, and (3) our esti-
mation procedure seems to work adequately.

Concerning the intensity of the extremes produced by our
model and obtained by our estimation algorithm, we can ob-
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Fig. 6. Observed rainfalls: Histograms of theω values condition-
ally on |r|>µ̂ for the two weather stations pairs: Panel (a) the “St-
Alban-Perreux” couple and Panel (b) the “Perreux-Riorges” pair.
The solid lines correspond to the fitted Beta distributions.

serve Fig.5 that displays four QQplots from our four sam-
ples. The x-axis corresponds to the true quantiles while the
y-axis represents the estimated quantiles. These graphs in-
dicate that very large extreme values can be adequately re-
produced, e.g. see Panel (c). Still, the performance varies
from samples to samples. For example, the largest value in
Panel (a) is underestimated. Overall, the four fitted QQplots
seem to capture most of the extreme behaviors. In order to
confirm this result and to provide GPD goodness-of-fit tests,
Andersen-Darling A2 and Craḿer-von Mises W2 statistics
were computed (e.g. Choulakian and Stephens, 2001). Both
statistics show that the GPD fits can be considered as accept-
able for a confidence level of 99% (i.e. with p-values<0.01).

Although this simulation study is limited to only four
cases, the discrepancy among the four studied situations
seems to indicate that our estimation procedure can cover a
wide range of dependence cases, and therefore it can now be
applied to real precipitation data.

4.3 Precipitation measurements

In Sect.2, we described rainfall measurements from three
weather stations located in the French Mediterranean region.
Here, we apply our bivariate modeling strategy proposed in
Sect.3.2to the two pairs of station presented on Sect.2and in
Fig. 1. The estimation process detailed on Sect.4.2is imple-
mented and a set of parameters for the model (7) is estimated
for our two pairs of weather stations:θ0=0.02; θ1=0.04;
θ2=0.06; µ=1.5; τ=0; β1=0.99; β2=1.27; ξ=0.14; σ=6
for the “St-Alban-Perreux” couple of stations, andθ0=0.025;
θ1=0.09; θ2=0.09; µ=2; τ=0; β1=4.6; β2=4.2; ξ=0.2;
σ=4 for the “Perreux-Riorges” couple. Based on these two
sets of estimated parameters, the equivalent of Figs.3 and
5 (histograms and Beta fit of the angle values, QQplots of
the observed and fitted radius values, respectively) are shown
in Figs. 6 and 7. For the former graph, the curve cen-
tered around 0.5 in panel (b) confirms the strong dependence
among extremes recorded at the most nearby stations. This
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Fig. 7. Observed rainfalls: QQplots of the observed|r| quantiles
conditionally on|r|>µ̂ vs. estimated GPD quantiles for each pair:
(a) corresponds to the couple “St-Alban-Perreux”, (b) to “Perreux-
Riorges”.

dependence has already been observed in the bottom panel
of Fig. 1. Panel (a) of Fig.6 is more difficult to interpret.
The histogram, as well as the Beta fit, seems to indicate a
mild dependence, much weaker than in panel (b), but this is
not the U-shape that characterizes the independence, e.g. the
left panels of Fig.3. Concerning large precipitation intensi-
ties, the QQplots in Fig.7 indicate a good agreement between
the estimated and observed quantiles for the two pairs of
stations. The GPD goodness-of-fit tests performed through
Andersen-Darling A2 and Craḿer-von Mises W2 statistics
(see Choulakian and Stephens, 2001), show that, as for sim-
ulated data, the GPD fits are considered as acceptable for a
confidence level of 99% (i.e. with p-values<0.01), confirm-
ing the QQplots.

5 Conclusions and perspectives

We have presented a new statistical distribution that can
model the entire range (i.e. low, medium and extreme val-
ues) of bivariate precipitation measurements. This model
consists in a mixture between a bivariate Gamma distribu-
tion – representing the precipitation density core (i.e. the non
extreme part) – and a product of GP and Beta densities in a
Pickland’s coordinates system – characterizing heavy rainfall
density. The mixture is weighted through a function varying
with the extremes strength within each pairwise rainfall data.
A simulation scheme and an estimation procedure have been
proposed and tested. Four simulated samples have been gen-
erated and studied. The dependence structure as well as the
parameter values have been correctly retrieved for each sim-
ulated sample. Our estimation procedure has been applied
to real precipitation measurements from three weather sta-
tions located in the South of France. Our statistical model-
ing confirms that nearby stations provide dependent record-
ings, not only for mean precipitation values but also among
heavy rainfalls. This suggests that past studies that have com-
pletely ignored the spatial dependence between weather sta-

tions may have led to imprecise statistical outputs, specially
in terms of extreme value analysis. More research is needed
to extend our pairwise rainfall model into a fully multivari-
ate framework. Besides the estimation problem beyond the
2-D case, the difficulty resides in proposing a parsimonious
model that can be based on multivariate EVT and also offer
enough flexibility to represent the dependencies within small
precipitation, heavy rainfalls and between both.

Acknowledgements.This work was supported by the european
E2-C2 grant, the National Science Foundation (grant: NSF-GMC
(ATM-0327936)), by The Weather and Climate Impact Assessment
Science Initiative at the National Center for Atmospheric Research
(NCAR) and the ANR-AssimilEx project. The authors would also
like to credit the contributors of the R project.

Edited by: B. D. Malamud
Reviewed by: two anonymous referees

References

Akaike, H.: A new look at the statistical model identification, IEEE
Transactions on Automatic Control, 19, 716–723, 1974.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J.: Statistics of
Extremes: Theory and Applications, Wiley Series in Probability
and Statistics, 2004.

Carreau, J. and Bengio, Y.: A hybrid Pareto model for asymmet-
ric fat-tail data, Technical report 1283, Dept. IRO, Université de
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