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[1] Statistical downscaling methods (SDMs) are often
used to increase the resolution of future climate projections
from coupled atmosphere-ocean general circulation models
(GCMs). However, SDMs are not able to capture small-
scale dynamical changes unresolved by GCMs. For this
reason, we propose a two-step generalized validation
process to evaluate the performance of any statistical
downscaling method relative to regional climate model
(RCM) simulations driven by the same GCM fields. First,
we compare historical station-based observations with
simulations obtained from a statistical model fitted to and
driven by reanalysis fields, and then driven by historical
GCM fields. Then, the SDM is required to produce future
projections consistent with RCM simulations used as
pseudo-observations under future emissions scenarios.
Using the climate extension of the fifth generation Penn-
State/NCAR Mesoscale Model (CMMS5) driven by NCAR/
DOE Parallel Climate Model (PCM) simulations, we apply
this method to identify the strengths/weaknesses of a
nonhomogeneous stochastic weather typing method.
Citation: Vrac, M., M. L. Stein, K. Hayhoe, and X.-Z. Liang
(2007), A general method for validating statistical downscaling
methods under future climate change, Geophys. Res. Lett., 34,
L18701, doi:10.1029/2007GL030295.

1. Introduction

[2] To assess the likely magnitude of climate change over
the coming century and its resulting impacts, we rely on
simulations from GCMs, driven by plausible scenarios of
future emissions from human activities. Computational
constraints currently limit most century-scale GCMs simu-
lations to spatial resolutions on the order of a degree or
more. However, the spatial scale of the information used to
investigate the impacts of changing climate on a range of
human and natural systems (including water resources,
energy, infrastructure, agriculture, ecosystems) can affect
the magnitude and even the sign of the potential impacts
[e.g., Hayhoe et al., 2004, 2006]. Hence, high-resolution
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climate projections at scales appropriate to the impacts
being examined are essential to accurately determine the
potential impacts of future climate change.

[3] To obtain high-resolution projections, both dynamical
RCM-based and statistical downscaling methods are com-
monly used. Using GCM fields as boundary conditions,
RCMs dynamically simulate regional climate processes at
scales on the order of 5 to 50 km [e.g., Liang et al., 2006].
However, RCMs are equally if not more computationally
intensive than GCMs, and furthermore often require rarely-
available 6hr GCM fields as input. Hence, RCMs can only
be applied to limited regions and time periods. In contrast,
SDMs provide relatively fast and (generally) less computa-
tionally-intensive simulations of local climate, and can be
derived based on monthly and/or daily GCM output fields.
Due to their flexibility and lower computational cost,
statistically-downscaled projections are often used as alter-
natives to regional modeling in many impact assessments
[e.g., Wood et al., 2004; Hayhoe et al., 2004, 2006].
However, statistical methods are inherently limited in that
they assume present-day relationships between large-scale
patterns and local-scale climate will continue to be valid
under future climate change [e.g., Wilby et al., 1998], an
assumption that cannot be directly tested at present.

[4] Due to these inherent limitations, we propose here a
generalized validation process to test whether any SDM can
be appropriately applied to produce higher-resolution projec-
tions of a given climate variable from future GCM simula-
tions. This validation test is explicitly designed to assess the
potential weaknesses of statistical downscaling.

[s] First, we evaluate the ability of the SDM to reproduce
observed climatology when driven by reanalysis fields and
by historical GCM simulations. This step is based on a
number of studies that have already assessed the ability of
SDMs to reproduce historical observations when fitted to
reanalysis fields and driven by reanalyses [e.g., Huth, 1999;
Robertson et al., 2004; Vrac et al., 2007] or historical GCM
fields [e.g., Wilby and Wigley, 2000; Charles et al., 2004].

[6] Second, we test the validity of assuming static dy-
namical relationships at the regional and local scale by
requiring the SDM to produce future projections consistent
with RCM simulations used as pseudo-observations driven
by the same GCM under a range of future emissions
scenarios. Similar comparisons have also been undertaken
by several studies that have compared the behavior of
SDMs under future climate change to GCM output directly
[e.g., Frias et al., 2006] or RCM fields [e.g., Wood et al.,
2004; Busuioc et al., 2006; Haylock et al., 2006].

[7] In the sections that follow, we first describe the
proposed validation process and data requirements. We then
apply this validation process to a specific SDM, our example
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being a nonhomogeneous stochastic weather typing
(NSWT) approach that has demonstrated efficiency and
the ability to generate local precipitation features [Vrac et
al., 2007]. Finally, we conclude by discussing the implica-
tions of the validation process itself for assessing regional
climate projections, as well as what it revealed about the
NSWT method.

2. A Two-Step Validation Method for Statistical
Downscaling

[8] The validation process that we propose consists of the
following two steps:

[¢] (1) SDM performance is assessed in terms of its
ability to reproduce the climatological present character-
istics of the variables of interest at a given location when
driven by reanalysis or historical GCM fields:

[10] (a) Fit the SDM to historical (e.g., 1990—1999)
large-scale upper-air atmospheric reanalysis fields and sur-
face weather station observations (obs).

[11] (b) Drive this fitted SDM method with temporally-
independent reanalysis fields to generate a simulated time
series for the same local surface variables as were used from
the obs records to fit the SDM in step (a).

[12] (c) Compare the statistical properties of the obtained
time series with those of local obs. Good agreement implies
that the SDM can reconstruct the climatology of observed
local variables when driven by large-scale observations.

[13] (d) Drive the SDM fitted to obs (in step (a)) with
historical GCM fields to generate new local time series.

[14] (e) Compare them with the observed local-scale time
series. Good agreement implies that GCM fields can ade-
quately simulate local variables when used to drive an SDM
fitted to obs (step a), and hence may continue to do so in the
future.

[15] (2) The ability of the SDM to capture future spatial
and/or temporal local-scale changes is assessed. RCM out-
puts are employed as pseudo-observations or proxies of
future conditions. Both RCM and SDM methods must be
driven by the same GCM simulations.

[16] (a) Fit the SDM to historical GCM simulation fields
and surface variables derived from individual RCM grid-
cell outputs for the same time period.

[17] (b) Drive it with future GCM simulations from mul-
tiple emissions scenarios to generate statistically-downscaled
time series for each RCM grid-cell.

[18] (c) Compare the SDM-generated future time series
with the future RCM-based time series of surface variables.
Satisfactory agreement implies confidence that the SDM is
able to capture a similar climate change signal to that
simulated by the RCM, despite its assumption of static
dynamical relationships.

[19] In order to compare RCM- and obs-fitted SDMs,
Charles et al. [1999] recommended comparing respective
parameterizations. We omit this step from our generalized
validation methodology as being overly-specific to the
SDM being validated. Moreover, a good agreement between
the parameterizations does not necessarily imply that GCM
simulations will be able to accurately drive an SDM fitted to
observations if, for example, the GCM outputs are signif-
icantly different from the reanalysis data. For this reason,
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we instead propose that the first step compare observed time
series with simulated ones obtained through an obs-fitted
SDM driven by historical GCM outputs.

3. Data Requirements and Application to
NSWT-Based Precipitation Downscaling

[20] The generalized validation method presented here
requires four primary sources of observational data and
model output. First, we require continuous daily upper-air
and surface GCM output fields for the historical and future
time periods of interest. We also require reanalysis output
fields for the same variables, covering the same historical
period as the GCM simulations. Third, regional model
simulations driven by these same GCM output fields
are needed, covering at minimum one 10-year historical
period (here, 1990—1999) and one 10-year future time
period (here, 2090—-2099) for multiple future climate sce-
narios (here, the SRES A1FT higher and B1 lower emissions
scenarios). Lastly, we require a continuous time series of
daily observations of the surface climate field of interest for
the same historical time period as the RCM simulations.
The longer the time periods available for calibration and
validation, the more robust the statistical relationships that
can be derived, covering a wider range of climate conditions
and reflecting both average climate as well as some degree
of change; hence, 10 years should be viewed as a minimum
requirement.

[21] We here attempt to downscale daily precipitation at
37 weather stations in Illinois. Daily observations for these
locations are provided by the National Weather Service
Co-op Observer Program. For RCM simulations, we rely on
the CMMS5 model, a climate extension of MMS5 v3.3 [Liang
et al., 2004; J. Dudhia et al., PSU/NCAR mesoscale
modeling system tutorial class notes and users guide:
MMS5 modeling system version 3, available at http://
www.mmm.ucar.edu/mm5/, 2000]. RCM simulations for
the 1990s and 2090s (under the SRES AIFI and B1
scenarios) are driven by 6hr temperature, humidity, wind
and other upper-air fields generated by the NCAR-DOE
Parallel Climate Model (PCM, [Washington et al., 2000]),
which is a low-sensitivity GCM with a spatial resolution of
T42 or approximately 2.8° x 2.8°. NCEP/NCAR daily
reanalyses fields, originally at 2.5° x 2.5° spatial resolution,
were regridded to the 2.8° x 2.8° resolution of the PCM
model. RCM time series were available only from April 1st
to August 31st for each year, hence for consistency we
confine all analyses to those months.

[22] Based on these data, we apply the validation method
to evaluate the ability of a NSWT method based on a
nonhomogeneous Markov model (NMM) that represents
the transitions between regional daily precipitation states, as
described by Vrac et al. [2007], to model local-scale
precipitation occurrences and intensities. Applying the
two-step validation process described in Section 2 to the
NSWT model, we first fit the NSWT to observed precipi-
tation at the 37 weather stations and to the regridded 2.8° x
2.8° 1990—-1999 NCEP reanalyses. A hierarchical ascend-
ing clustering method is applied to the observed precipita-
tion [Vrac et al., 2007], yielding four primary Apr—Aug
precipitation patterns, or states (see Figure Sla of the
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auxiliary material).! State 2 corresponds to the smallest
intensities of rainfall, while state 3 is associated with
moderate precipitation over the whole Illinois region (with
a slight South—North gradient). States 1 and 4 display
almost mirror-image structures, with moderate intensities
in northern (southern) Illinois and strong precipitation in the
southern (northern) part of the state, respectively.

[23] The NSWT method is then conditionally fitted to
reanalysis fields and the precipitation time series of each of
the 37 locations given these patterns. Based on Vrac et al.
[2007], we select three large-scale atmospheric variables -
geopotential height, specific humidity and dew point tem-
perature depression, all at 850 mb. This level was chosen as in
the summer months, convective overturning dominates the
Midwest due to interactions between the upper (200mb) and
lower (>850 mb) jets, inducing baroclinicity and maximizing
convective activity.

3.1. Validation Step 1: SDM Performances on
Present Climate

[24] The first historical validation steps (step 1(b—c))
have already been performed for this NSWT method by
Vrac et al. [2007]. The results indicate that the NSWT is
able to reproduce key temporal characteristics of local
precipitation times series over IL when driven by NCEP
reanalyses. We next use 1990—1999 PCM output fields to
drive the NSWT method to produce downscaled precipita-
tion time series at the 37 locations for the same time period
as the NCEP reanalysis (step 1(d)). The local distribution
probabilities of rainfall intensity resulting from the historical
PCM-driven SDM as well as the PCM-driven RCM simu-
lations are compared with observed precipitation probabil-
ities in two different ways.

[25] First, the 10th, 25th, 50th, 75th, 90th, and 99th
percentiles (representing the range from low through mod-
erate to “extreme” precipitation events) from the PCM-
driven NSWT simulated precipitation are plotted for all
37 stations against observations in Figure la.

[26] This comparison highlights the superior ability of the
RCM to translate PCM upper-air fields into local precipita-
tion estimates, with some scatter likely due to the compar-
ison being made between RCM gridcells and station
observations, as well as model limitations. For lower
precipitation intensities (i.e., 10th to 50th percentiles), the
SDM method shows a tendency to over-estimate the per-
centiles; in other words, it appears to perpetuate the known
tendency of GCMs to ““drizzle”, producing too much
precipitation at the lower end of the spectrum. For higher
precipitation amounts, although more distributed around the
y = x line (i.e. observed percentile) than the smaller
percentiles, the SDM percentiles for the 37 stations show
a little under-estimation with slightly larger standard errors
than the RCM-simulated percentiles.

[27] Focusing on individual station plots, the “quantile-
quantile plots” or QQplots (Figures S2a—S2c of the auxiliary
material) similarly reveal a consistent but slight overesti-
mation of the GCM-driven SDM quantiles caused by an
underestimation of the local “no rain” probabilities that is
clear at low rainfall values (i.e. near 0), when too many wet

'Auxiliary materials are available in the HTML. doi:10.1029/
2007GL030595.
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Figure 1. (a) 10th (circle), 25th (triangle), 50th (cross),
75th (x), 90th (diamond), and 99th percentiles (inverted
triangle) from the 1990—1999 PCM-driven NSWT (red)
and RCM (black) simulated precipitation plotted for all
37 stations against observations. (b) Same percentiles as in
Figure 1a but for 2090—-2099 A1l (red) and B1 (black) RCM
vs. NSWT simulations. Units are cm per day.

days (i.e. not enough dry days) are simulated by the NSWT
method driven by PCM. This indicates that PCM fields are
not able to drive the probabilities of local rain accurately, as
compared to historical observations. Hence, the associated
model-based wet and dry spell probabilities (Figure S3 of
the auxiliary material) are in relatively poor agreement with
observed, and this GCM-driven SDM method should not be
applied to estimating likely distributions of wet/dry days
only. However, except near 0, most of the GCM-driven obs-
fitted SDM vs. obs QQplots are parallel to the y = x line,
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meaning that the distributions of the positive values of the
local rainfall intensities are correctly simulated for precip-
itation values >0. This implies that the GCM-driven SDM
method can produce realistic daily precipitation values for
wet days.

3.2. Validation Step 2: SDM Assessments Under
Climate Change

[28] For the second validation step, the NSWT SDM is
fitted to 1990—1999 PCM and RCM outputs. Although the
optimal number of precipitation patterns obtained through
fitting to historical RCM simulations is four as in the
previous analysis, these patterns (Figure S1b of the auxiliary
material) are noticeably different from those based on
observations. The mean intensity of each pattern is slightly
different, and the S-to-N gradient of rainfall intensity
present in obs-based pattern 3 is now a N-to-S gradient.
The boxplots of precipitation intensities for these two types
of patterns (Figure S4 of the auxiliary material) show that,
despite similar general structures (proving the relative
quality of CMMS5-simulated precipitation), differences do
exist in the rainfall intensity distribution inside each pattern.
However, this does not mean that our SDM, when driven by
GCM outputs, will be unable to capture an RCM-simulated
climate change signal. To test this point, NSWT is then
driven by 2090-2099 PCM simulations to statistically
generate time series of precipitation at the 37 (RCM)
locations for the SRES AI1FI (higher) and B1 (lower)
emission scenarios. This time, the precipitation percentiles
for the SDM method for the two scenarios are plotted
against the RCM-based percentiles for the same future time
period (Figure 1b). We see that the SDM method is able to
capture the RCM-simulated change in precipitation percen-
tiles, particularly for amounts up to the 50th percentile
(implying that there is a slight increase in smaller summer
rainfall events simulated by the RCM that the SDM method
is also able to reproduce). However, there is also a system-
atic bias towards “extreme” (i.e., 90th percentile or higher)
precipitation percentiles using the SDM method as com-
pared with the RCM: the RCM simulates higher percentiles
for the heaviest precipitation events, while the SDM method
systematically under-estimates the magnitude of these
“extreme” events. One of the reasons could be the rela-
tively short training period, since over ten years, the 99th
percentile of rainfall intensity is not encountered often.

[20] The associated complete QQplots (Figures S2d—S2i
of the auxiliary material) show that, for most stations, the
simulated precipitation time series do display distributions
close to the RCM-based ones up to the 90th quantile.
However, again a slight tendency of the NSWT to under-
estimate model-based quantiles for the future scenarios as
compared with RCM simulations is revealed, particularly at
the higher quantiles. Moreover, in general, the QQplots are
in better agreement for the B1 scenario than for A1FI, where
the B1 scenario corresponds to smaller climate forcing than
ATFIL This suggests that, besides the short training period
(10 years), some of the bias, particularly for higher precip-
itation amounts, may be due to climate-driven changes in
smaller-scale dynamical processes that are not captured by
an SDM method.

[30] The same is true for the wet and dry spell probabil-
ities (Figure S5 of the auxiliary material) which are closer to
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the RCM-based spell probabilities for B1 than for A1FI. In
particular, a tendency for the SDM to underestimate the
probability of longer spells is discernible for some stations,
mainly under the A1FI scenario. However, overall these
results show a good agreement between pseudo-observations
(i.e. RCM outputs) and simulations. Hence, Figure 1 and the
extensive QQplots analysis (auxiliary material) demonstrate
that the NSWT approach is able to capture temporal
characteristics of a future climate change signal as simulated
by this RCM, particularly for precipitation amounts below
the 90th percentile.

4. Conclusions

[31] The two-step validation method presented here
encompasses and standardizes many tests performed in the
statistical downscaling literature to assess confidence in the
ability of any statistical downscaling approach to generate
future climate projections relative to both historical obser-
vations and future RCM-based simulations.

[32] The first step in this method assesses SDM perfor-
mance over a historical period when driven first by rean-
alyses and then by GCM fields. The general issue of
agreement between GCM and a historical observations-
fitted statistical model relates directly to any downscaling
method so should be viewed as essential whenever GCM
outputs are used to downscale future climate variables. This
step represents an improvement over studies which rely on
statistically-based projections of regional climate changes
but do not evaluate the present-day ability of the statistical
method to simulate observed climate statistics when driven
by historical GCM fields.

[33] The second step tests whether the SDM is capable of
producing future projections consistent with RCM simula-
tions used as “pseudo-observations” driven by the same
GCM under a range of future emissions scenarios. This step
essentially validates whether the SDM can translate a
climate change signal simulated by the GCM into the same
regional features as the RCM, hence providing a tool that
could provide comparable or complementary information to
RCM simulations over a given region, but at a much lower
computational cost. It is important to note that the SDM is
being judged here relative to future RCM simulations only
and not relative to “real” future observations. Neverthe-
less, we consider it unlikely that the SDM would work
well when fitted to the data when it does not work well
when fitted to RCM outputs since the GCM and the RCM
are more closely linked than the GCM and the actual
climatology.

[34] As an example, we have applied this method to
evaluate the ability of a NWST approach to downscale
daily precipitation distributions for 37 stations in the state of
linois. For this method, the first validation step confirms
that this SDM can reproduce historical precipitation when
driven by NCEP reanalysis, and distributions of positive
rainfall intensities (although not wet/dry day distributions)
when driven by historical PCM simulations. The GCM-
driven SDM method does tend to have larger precipitation
quantiles than observations at lower quantiles, perpetuating
the tendency of the GCM to produce too frequent low-rain
days.
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[35] Step 2 shows that the NSWT method is capable of
capturing the climate change signal as simulated by RCM
output, particularly for quantiles below the 90th percentile
level, i.e., lower to moderate precipitation amounts. Better
agreement between SDM- and RCM-based precipitation
projections under a smaller climate forcing (represented
here by the SRES B1 scenario) as compared with larger
forcing (represented by the AI1FI scenario) suggests that
projected changes in summer precipitation over this region
may be influenced by some of the smaller-scale dynamical
processes not captured at the scale of GCM fields. Based on
these results, we therefore recommend that the NSWT
method driven by PCM simulations be used for lower
climate forcing only and/or for median quantiles.

[36] Furthermore, to maximize the utility of evaluations
we propose, the validation should take advantage of RCM
simulations based on multiple GCMs of differing sensitivity
or, as in this work, based on GCM simulations driven by
higher and lower future emissions scenarios. Differing
degrees of future climate change may affect not only
temperature but also precipitation and extremes [e.g.,
Tebaldi et al., 2006].
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