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Abstract

This work investigates the situation in which each unit from a given set is described by some vector
of p probability distributions. Our aim is to find simultaneously a “good” partition of these units and
a probabilistic description of the clusters with a model using “copula functions” associated with each
class of this partition. Different copula models are presented. The mixture decomposition problem
is resolved in this general case. This result extends the standard mixture decomposition problem to
the case where each unit is described by a vector of distributions instead of the traditional classical
case where each unit is described by a vector of single (categorical or numerical) values. Several
generalizations of some standard algorithms are proposed. All these results are first considered in the
case of a single variable and then extended to the case of a vegteaagbles by using a top-down
binary tree approach.
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1. Introduction

In a symbolic data table, a cell can contain a distribution (Schweizer, in 1984, says that
“distributions are the numbers of the future™), or several values linked by a taxonomy
and logical rules, etc. The need to extend standard data analysis methods (exploratory
analyses, clustering, factorial analyses, discrimination methods, etc.) to symbolic data tables
is increasing with the need to obtain more accurate information from and to summarise large
data sets. For more details on symbolic data analysis see for example[BjidBgck and
Diday[1]. The idea of operating with distribution functions as data values has been applied in
clustering by Janowitz and Schweif&0]. We are interested here in extending the mixture
decomposition problem (as defined for instance in Dempster E]ato the case where
the units are described by distributions. Here, a “variableis considered to be a random
variable from a set of unit& to an infinite set of distributions ;. We consider a sample of
N units, summarised in a data tablédfows andp columns, where thah row is associated
with the unit (or “individual”) w; € Q. The set of units of this data table is denotediby
and each column is defined by a varialilee {Y1, ..., Y,}. Each celli, j) of this data
table contains a distributioH; (w;) € F;. The sample of the&v x p distributions of this
data table is called the “distribution base”.

We first consider the case of a single variablgonsidered later as one of the variables
in {Y1,...,Y,}), such thatv (w) e F, with F some infinite set of distributions. The case
of several variables will be considered in Section 6. The cell associated with a given unit
w; in the column for the variabl¥, contains a distribution denoted #y = Y (w;). We
denote byX; the random variable associated wifh such thatF;(r) = Pr(X; <t) for
t € R whereR = [—o0, +00]. The distribution base is here reduced to the sample set
§={F;li=1,..., N}ofall the distributions contained in the column associated with the
variableY in the data table.

We define the notion of “distribution of distributions”, empirically introduced by Diday
[5], and developed in a more general probabilistic context by Vrac Et&l.Let R be the
set of the possible values for all the continuous random varigles=1, ..., N. Then
its o-algebra is the boreliam-algebra, denoted by The set- can be written as

F ={F|F is a 1-dimensional distribution function diR, v)}.

We define« to be theg-algebra orf, as thes-algebra generated by the sets = {F €
F/F(t)<x},forallx € [0, 1] ands € R. Then, in our studyy is a random variable, where,
for eachw in Q, Y (w) is a one-dimensional distribution functiohw) = F,, € F:

Y:(Q ,P)— (F,.<),
wr F, €F,

with .# the g-algebra generated d by the sets of unitey from Q, andP a probability
measure ori€, .#). We can easily remark that for alle ., we haveY ~1(a) € .#. The
set{w € Q|F, (1) <x} is measurable bi:

Y Y{F e FIF)<x}) ={w € Q|F,(t)<x} € ..
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Definition 1. A “distribution function of distributions” (DFD), associated wittat a given
pointz € R, is defined by

Gi(x) =P({w € Q| Fy (1) <x}),
wherex € R. Notice thatG,(x) = 1if x>1 andG,(x) =0 if x <O0.

A DFD can also be interpreted as the distribution function of the random varjable
from @ to R such thaty,(w) = F () with Y (w) = F: we haveP([y,(w) <x]) = P({w €
Q| F, () <x}). We can compute the empirical frequency funct@nby
card({Fi € §|Fi(t)<x})
N .
Hence,G; (x) is the frequency of units whose probability of taking a value less thian

equal or less tham. For instance, if the units are pupils and the variafietheir results in
mathematics, thefho(%) is the frequency of pupils whose probability of having a mark

less than 10 in mathematics is equal or less t%lan

Et(x) =

Definition 2. A “k-joint distribution function of distributions”-JDFD) associated wit¥i
atagiven point = (t1,...,%) € R¥ is defined by

Hy (1, x0) =Pw € Q) Fy(t) <xa; ... Fy () <xe)),

wherex = (x1, ..., xp) € @k. Notice thatH,; (x) =0 if x; <0 for somd and thatH;(x) =1
if,foralli =1,...,k,x; >1.

A k-JDFD can be interpreted as the distribution of the random varigbi€y,, , . . ., ;).
Therefore, we can also writd;,, . ;, (x1, ..., xx) = P([yy <x11 0 - - N [y, <x D).
In the following, we suppose that< - - - < 1.

Proposition 1. For all t € R, G, is a distribution functionFor all t = (¢1, ..., %) € Rk,
H; is a k-dimensional joint distribution function with marginal distributio@sg, . .., G, .

Proof. This result comes from the definition of a distribution function amgdimensional
distribution function (see Didajp] and Vrac[14]).
From Proposition 1, we can define fajoint density of distributions” by

yenes

Ik(-xlv ey -xk)

Ox1...0xy ’

This function is the probability density function associated with the random vanale
(yt]_a ceey ytk)-

htl ,,,,, tk(XL ce Xg) =

2. Link with copulas

A copula (Schweizer and SkiHr2]) is a function relating the joint distribution function of
avectorokrandomvariable€X, . .., X;) and itskone-dimensional distribution functions
(i.e. the marginal distributions). The following definition is given by NelgEt].
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Definition 3 (k-Copula[11,12]). A k-dimensional copula (ok-copula) is a functiorC
from [0, 1]¥ to [0, 1] with the following properties:

(1) Foreveryu € [0, 1]%, C(u) = 0 if at least one coordinate afis 0.

(2) If all coordinates ofiare 1 except one which isx, thenC (1) = ux.

(3) Forevena=(a, ..., ax)andb=(b1, ..., by)in[0, 1]* suchthaa<b, V¢ ([a, b]) >0,
where

by
Ve([a bl = 45C() = A% Ag7y ... A0C (1)
and
b.
Aaj.C(t) =C(t1, ..., tj—1,bj, tjq1, ..., tr) = C(t1, ..., tj_1,aj,tj41, ..., )

is the first order difference @ for the jth coordinate.

For example, in two dimensioris=2), the third condition givesC (a2, b2) —C (a2, b1) —
C (a1, bp) + C(az, b1) > 0. In the following, we denot®an G as the range of the mapping
G. For a copula with the properties of Definition 3, Sklar gave the following theorem:

Theorem 1 (Sklar[13]). LetH be ak-dimensional distribution with marginal distributions
G1, ..., Gr. Then there exists a k-copula C such that for@ll, . . ., x¢) € [0, 1],

H(x1,...,x0) =C(G1(x1), ..., Gr(xp)). (1)
Moreovet if G1, ..., G are continuousthen C is uniqugotherwise C is uniquely deter-
mined onRan G1 x --- x Ran Gi. Converselyif G1, ..., Gy are distribution functions

and C is a copulathe function H defined bfl) is a k-dimensional distribution function
with marginal distributionsGy, . .., Gy.

From Proposition 1 and Sklar's Theorem 1, we obtain the following proposition:

Proposition 2. Let H,,,.. , be a k-joint distribution function of distributions. Let
Gy, ..., Gy bekdistributions functions of distributions Gf, , . . ., G, are the k marginal
distributions ofH,, ., then there exists a k-copula C such that foned (x1, ..., xz) €
[—o0, +oo]k:

Hll ..... 174 (-xls R -xk) = C(G[]_(xl)v R le (-xk)) (2)

Moreover if G, ..., Gy, are continuousthen C is uniqueotherwise C is uniquely deter-
mined onRan Gy, X - - - X Ran G,, . Converselyif G, ..., G, are distribution functions of
distributions and C is a copuldhe functionH;, ., defined by2)is a k-joint distribution
function of distributions with marginal distributiorG,,, ..., Gy,.

2.1. Parametric families of copulas

The simplest copulas, denoted b, IT andW, respectively are

M@u,v) =min(u,v), IHu,v)=uv and W(u,v)=max(u +v—1,0).
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Fig. 1. The distribution basg is reduced ta; and F».

These copulas are special cases of some parametric families of copulas such as the following:

(1) Clayton[2] proposed the copul@}(u, v) = max([u=" + v=* — 117%/%, 0) where
b € [—1, 00)\{0} with the following special case€’_1 =W, Co=11, Coo = M.

(2) Frank[7,8], has definedF, (u, v) = —1/btn(1+ (€ — (e ? — 1)/(e? — 1))
whereb € R\ {0} and with the following special caseB: .. = W, Fo=1II, Foo = M.

Many other families are given by Nelshil] and some methods for the estimation of the
parameters of parametric copulas are given by Ytd4g

Notice that the Clayton and Frank parametric families of copulas are triangular norms
(called t-norms). Indeed, copulas and t-norms are related: a copula with the associativity
condition is a t-norm, and a t-norm with the Lipschitz condition (given in two dimensions
in Lemma 1) is a copula.

Lemma 1 (Lipschitz condition. Let H be an increasin@-dimensional functiondefined
onR? with marginal distributions F and G. Then for alt1, y1) and (x2, y2) in R

[H (x2, y2) — H(x1, yDI<|F(x2) — F(x)| +1G(y2) — G(y)l.

Example. The distribution basg (seeFig. 1) consists of two distributionsy and F> and
the copuleC is defined byC (u, v) = Hy, 1, (x1, x2) with

(1) u=Gy(x1) =card({F; € 7 /Fi(t1) <x1})/N,
(2) v=_Gy(x2) = card({F; € F | Fi(t2) <x2})/N,
(3) Hiypp(x1,x2) =card({F; € 7 |Fi(t1) <x1} N {F; € §/F;(t2) <x2})/N.

The possible values dof, (x;) andE,Z(xj) are only O,%, 1. For instance, fromx =

G, (x0)=0,v=G,(x2) = 3 andH,, ,,(x1, x2) =0, it follows thatC (0, 3) =0. In the same
way, we obtainC(0,0) = C(0, 3) =C(0,1) =0, C(1,00=0, C(1, H) =3, c1, =1
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Fig. 2. The copula valuesC(u,v) are given between brackets () and associated with each
(u, v) = (Gry (x1), Grp(x2)).

For each calculation daf (1, v) (seeFig. 2), the modelC = Min is satisfied. This can be
proved more generally for any pair of similar distribution functions without crossing (i.e.
as long as1(¢) > Fo(¢) for all t).

3. Fit between a unit and a JDFD by using an approximation of the density

We define a mapping which measures the “fit” between a distributibw) = F,, and
a given 2-JDFDH,, ;, = C(G,,, Gy,), by settinga : Q x [0, 12 — RY with a(w, &) =
[Y (w)R(e)C(Gyy, Gi,)] € RT, wheres=(e1, ¢2) isathreshold. Here =F,, (1;) andR (¢) is
defined byF,, R(e) Hy, 1, = Vh, ., (@, b)), witha=(x1—é1, x1+¢1) andb=(x2—é&2, x2+¢2).
Thatis,

FyR(©)C(Gyy, Grp) = C(Gpy(x1 + 1), Grp(x2 + £2))
— C(Gy(x1+€1), Grp(x2 — €2))
— C(Gy(x1—&1), Grp(x2 + &2))
+ C(Gyy(x1 — e1), Grp(x2 — €2)). )

Notice that due to Proposition &;, andG,, are increasing, so we ha¥, (x; + &) >
Gt,’ (-xi - 8,‘).

Proposition 3. Let h be the density function of the random variapte (y;,, y;,) definedin
Sectionl. Leta(w, &) € [0, 1]. If 0e = desep, thenhy(x) = a(w, &)/0¢ is an approximation
of h(xy, x2) andhy(x) — h(x) a.s. wherde — 0.
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Proof. This can be proved easily from the fact that we can show, &) = H;, 1, (x1 +
€1, X2+ &2) — Hyy 1, (X1 + €1, X2 — 82) — Hyy 1, (X1 — €1, X2+ €2) + Hyy 1, (X1 — €1, X2 — €2).
There follows indeed:

a(w, &) =P{w € Q/x1 — e1 < Fy (1) <x1+ 615 x2 — 82 < Fyy (12) <x2 + €2)) € [0, 1].
By the definition of a density, for eactilim,_.o 2:(x) = h(x) a.s.

4. The mixture decomposition problem of distributions and two algorithms for
solving it

The distributions bas€¥ = {Fi,..., Fy} is a description of the set of units
E ={w1,...,wy} C Q. The set is considered to be a sample Mfobservations from
a random variabl® such that, forw € Q, Y(w) € F, with F an infinite set of distribu-
tions (see Section 1). THejoint distribution function of distributiongZ;, . ;, (x1, ..., xx)
associated withfy is denoted byH (x). We denoteP = (P, ..., Py) to be a partition of
& such that each clas® can be considered as a sample of observations from a random
variableY; : @ — F such thafY;(w) € F. Thek-JDFD H/ _, (x1....,x: ;) (denoted
by H;(x; o;)) associated withP; depends on a parameter. The mixture decomposition
problem of distribution functions of distributions can be resolved in the following way:

find a partitionP = (P1, ..., Py) of §§, the mixture ratiogp1, ..., p¢) and the parameters
(o1, ..., o) such that
l
H(x)=Y " piH;(x; %). 4

i=1

It can be shown (see Section 5) that the standard mixture decomposition problem with
standard (classical) data is a special case of this general problem. In order to solve this latter
problem, we reformulate it in terms of a mixture decomposition of density functions, by
setting in the case dfi:

0H (x) OH; (x; o)

h =—+—— and h;j(x,0) = ——7-—.
) Ox1...0x; (x. o) O0x1...0x;

Then, the mixture decomposition equation (4) becomes

14
h(x) =Y pihi(x; %). (5)

i=1

Notice that in the case @f= 2, the link betweein andH and the copula model is given by
h(x) = 0°C(Gyy (x1).Gry(x2))/0x10x2. Then,

_0Gu(x)  0Gy2)  O°C(Gilx). Gi(x2)
Ox1 Ox2 Ou10up '

h(x)

The parameters = (d;, b;) depend on the parameters of the chosen copula family model
(forinstance, the Frank family, see Section 2) denéteuhd on the parameters of the chosen
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distribution family model denoted . In order to approximate the density functioiix, o;)
or to calculate it, we can use the method presented in Section 3:

hi(x; o, &) 08 = a;(w; o, &)
=[Y(w)R(&)Ci(Gy, (x1; diy), Gy, (x2; diy), bi)], (6)
wherex = (x1, x2) = (Fy(t1), Fiy(12)), Fu = Y(w), o; = (d;, b;) with d; = (diy, di,),
& = (e1;, €2;) andde; = 4eq;62;. Hence, the mixture decomposition model can be resolved
in the following way:h(x) = Y°F_; pihi(x, o, &).
Given the models associated withandC, the decomposition can be obtained by maxi-
mizing a criterion based on the likelihood (see Diday §6j). With F,,=Y (w), x; =Fy, (t;),

x = (x1,...,x;)ando = (a1, .. ., o) the parameters of the densities this criterion can
be the likelihood function:

N ¢
Loy =[] D prkutxi, o),

i=1 k=1

the log-likelihood function:

N ¢
logL(x, o) = Z log (Z Drhi(x;, ak)) ,

i=1 k=1

the classifier likelihood function:

14
CLx, o =[]pi [] hitx, )
i=1

weP;

or, the classifier log-likelihood function:

14
ClogL(x, o)=Y log(pihi(x, ).

i=1 wepr;

We suggest the two following algorithms where

Input a setE of units described by distributions, a given partitidn, . . ., P¢), a para-
metric copula familyC, and optionally a parametric distribution family lai.

Output a partition and a copulé; for each class, and optionally a distribution law for
eachG; at each;.

Algorithm 1. This algorithm is defined in two steps called representation and allocation
(see Diday et al6]):

e Stepl, representationestimation of the paramete(ss, . .., «¢) which maximise the
chosen criterionl(, log L, etc).
e Step2, allocation creation of a new partitioQPy, . .., Py), whereP; is the set of units

in the partition such that

P; = {x|pih;i (x, ;) = pmhm (x, ay,), With i <m in case of equality
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When the criterion is bounded (which is the caseCaf or Clogl), it is easy to show
that this algorithm converges. There are several variants for the chojge fofr instance
pi = card(P;)/N at the last step, or at each step.

Algorithm 2. This algorithm is based on the two steps of the EM algorithm (Dempster et
al.[3]). We start from an initial solutio(lp?, oc?) atstejm=0fori =1,...,¢andthenat
stepn we have:

e E-step(Estimation: t' (x) = pl'hi(x,«!)/Y ,co Pihi(x, o) fori =1,..., ¢ and any
w € Q, which is the posterior conditional probability than an individuabelongs to
the class at thenth iteration.

e M-step(Maximisation: this step consists of estimatiragJrl (i=1,...,¢), which are
the roots of:

i Y A+l
3 sy I D g

we

with pf ™ = 1/NY co (Y (w)).

From the estimated parameters, a partition can be obtained by the maximum a posteriori
(MAP) principle but in that case, the patrtition is “biased”: the densities of the classes of the
resultant partitions are not the estimated densities given by the EM algorithm.

Example. Suppose the data table contains five uBits {w1, ..., ws} with Fy(#1) = 0.1,
F1(12)=0.4; F»(t1)=0.2, Fo(t2) =0.3; F3(t1) =0.6, F3(t2) =0.7; F4(t1) =0.7, F4(t2) =0.8;

F5(t1) = 0.8, F5(t2) = 0.9. The given copula parametric family is defined Gyu, v) =

biM + boW, whereb; € {0, 1} with b1 =0if bo =1,b1 = 1 if b, =0 (the copulagV and

M are defined in Section 2). By applying Algorithm 1, the process has converged towards
the partition:(P2, P?) = {{F1, F2}, { F3, Fa, Fs}} and the mixture decomposition

2
2 3
H(x)=" piH;(x; %)= : W (Gy,(x1), Gy (x2) + : M(GZ (x1). G&(x2)),
i=1

wherex = (x1, x2) and G;'j is defined by the empirical distribution of the cIaBlé atz;.
See Diday[5] for details.

5. The special case of the standard mixture decomposition problem
5.1. Properties of a distribution base of unit mass distributions

Our aim in this section is to imbed the standard mixture decomposition problem into the
mixture decomposition of distributions problem, in the case of a single quantitative random
variableZ : Q — R. Each value taken by an individualcan be transformed easily into a
distribution which takes the value O urifitw) (notincluded) and the value 1 otherwise. Such
a distribution is called “unit mass”. More formally, #(w; ) = z;, the distribution associated
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with w; is defined byF; (r) = P(X; <r), where the random variabl§; associated withw;
is such that its distributiodt; satisfies:F;(t) =0if r <z;, andF;(t) =1ift>z;.

Proposition 4. If the distribution basg§ contains only unit mass distributio#$ as above
if F, is the distribution associated with the random variablefZ; increase with jand if
G, is empirically modeledwve have the following results

(i) fH(xa,...,xp) = C(Gy(x1),..., G, (xp)), then Cis the M copula
(i) If xp <1,then MinGy, (x1), ..., Gy, (xp)) = Gy, (xp).
(i) If x <1,thenG;(x) = Pr(Z>t)=1— F,(1t).
(iv) Ifx, <1, thenF (t,) =1— H(x1,...,xp).

Proof. We need the following Lemma:

Lemma 2. If ¥ is a set of unit mass distributions; € [0,1[ fori=1,...,j, A; =
(Fe®|Ftj)=0andB; ={F € §| F(t;) <x;, 1<i <}, then we havel; = B; and
|[Aj| = Mini=1, .. j|Ail

Proof of the Lemma. Supposewe havE € B;. ThenF e §andF(z;) < x; by definition
of B;.As ¥ is a set of unit mass distributions ande [0, 1], we have necessarily(t;) =0.
Therefore,FF € A; and we haveB; C A;.

Suppose now" € A;. ThenF (t;) =0, which impliesF(z;) =0foralli =1, ..., j asF
is increasing (it is a distribution) ang< ;1. Thus,F € B; and therefored ; = B;. Since
by the definition ofB;, we haveB; =(")/_, A; and moreover we have proved thgt C B;,
it follows that|A ;| = Min;—1,.. ; |A;|. We haveA; C B;.

With this lemma, we can now prove Proposition 4.

Proof of Proposition 4. (i) If H(x1,...,x,)=C(Gs(x1), ..., G, (xp)), thenCis theM
copula.

This can be proved in the following way: If all; are equal to 1, since all the ele-
ments of a distribution base take a value smaller than 1 everywhere, we have by def-
inition of a distribution function of distributions;,, (x;) = 1 and also, by definition of
a k-joint distribution function of distributionsH (x1, ..., x,) = 1. Thus, in that case (i)
is true. Suppose now that somg are smaller than 1 and suppose we denote them by
X, x} such that their correspondirigienoted by, .. ., t} are increasing. Then we

haveH/ (xj, ..., x7)=H(x1,...,xp), with H(xy, ... ,xh) = C(G,i(xi), cees G,}(x;-)),
which is aj-JDFD denoted by7 (x1, ..., x}) when no doubt exists. This comes from the

fact that the set of distributions included in the distribution base which are lower than
X, ... x; (in(rg, ..., 1)) are the same as the ones which are also lowerthan ., x),

(in (t1,....tp)). We can now apply Lemma 2 by denotingy = {F € c[’5'|F(t}) =0}
and B; = {F € §|F(t)<x;,1<i<j}. As (empiricaI)Gl}(x}) =|{F € §IF@) =
O}|/I%&| andH (x7, . ..,x}): HF e §IF@)<x;, 1<i < j}/IB itfollowsthath}(x}):
|A;1/1%], and H (x1, ...,x;.) =|B;|/|&I. Since from Lemma 2 we haw; = B;, it fol-
lows thatG,} (x;.) =H(xj, ..., x}), and soG,jf_ (x}) = H(x1,...,xp). From Lemma 2,
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nj Gy (x)). Since
Mini—1,. ; Gy (x))=Min;—1 ., G (x;) (since fori such that; =1, we haveG,, (x;) =1
and fori such that; <1 we haveG , (x;) < 1), we obtairH (x1, . . . , x,))=Mini=1... , Gy, (x;)
which shows thatd (x1, ..., x)) = C(Gy (x1), - .., Gy, (x))), WhereC is theMin copula.

(i) If xp <1, thenMin(Gy(x1), ..., G, (xp)) = Gy, (x)p).

As in the proof of (i), we denotey, ..., x} (associated with increasing, ...,t}) to
be thex;’s amongxy, ..., x, which are strictly lower than 1. It follows tha:t; =X
and so from Lemma 2 thaMin(Gti(x/l), ~--an; (x})) = Gt} (x}) = Gy,(xp). We have
Min(Gy(x1), ..., Gy, (x,,)):Min(Gti(x/l), e, Gl} (x;.)) as showninthe preceding proof.
Therefore we have finallyin(G (x1), ..., G, (xp)) = G, (xp).

(i) If x <1,thenG;(x) = Pr(Z>t)=1— F,(1).

By definition F, (1) = Pr({Z(w)<t}) and the empirical functio;(x) = Pr({F; €
&l Fi (1) <x}) is exactly the proportion of unit mass distributioAswith value 1 strictly
aftert (i.e.,t’ > 1), asF;(t) =0 if t < Z(w;) and F;(r) = 1 if t < Z(w;). In other words,
this means thaG,(x) is the proportion of individualsy such thatZ(w) > ¢, and then
G/ (x)=Pr(Z>t)=1— F.(1).

(iv) If x, <1,thenF,(t,) =1— H(x1, ..., xp).

Indeed, from (i), we havéd (x1, ..., x,) = Min(Gy(x1), ..., G, (xp)); from (i), we
haveMin(G; (x1), ..., Gi,(xp)) =G, (x)); and from (iii), we have; (t,) = 1— G, (x)).

Hence, the proposition is proved]

5.2. The standard mixture decomposition is a special case

Here we need to introduce the following notatiq®y, ..., Py) is a partition into¢
classes of the s¢tvy, . .., wy} described by the distribution bage F, is the distribution
associated with a quantitative random variafedefined ong, ?" i=1...,¢isa
distribution base whose elements are the units mass distributions associated with each
value Z/ (w) with w € P; (i.e., they take the value 0 for< Z/ (w) and 1 fort > Zi (w)),

G! is a distribution function of distributions at valti@ssociated with the distribution base

.....

----------

Proof. From Proposition 2, we havél)  (x1.....x) = C' (G} (x1)..... G} (%)),
whereC! is ak-copula. Therefore,

4
Hy, oy (1, ox0) =y piCH (Gl (x), ..., Gl (xx).
i=1

We chooser, < 1 and use Proposition 4.
From (i), we obtainH,, __;, (x1,...,xx) =Y .1_4 piMi_n(Ggl(xl), o Gl ().

.....
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From (jii), we obtain:H,,, . ; (x1, ..., x) = Zle pi(l—F,(t)=1—- Zle piFz ().
From (iv), we obtairF, (iz)=1—Hy,.. ., (x1. .. ., xx) and therefore, (1) =3"t_, pi F., ().

Since the same reasoning can be made for any sequgnce, #, it follows finally
4
F,= Zizl pi b U

5.3. Links between the generalised mixture decomposition problem and the standard one

It follows from Proposition 5 that, by solving the mixture decomposition of distribu-
tion of distributions problem, we have solved the standard mixture decomposition prob-
lem. This follows from the fact that it is possible to induée (r1), ..., F, (t), from
G (x1), ..., Gik (xx) and therefore, the parameters of the chosen model of the density law
associated with eachi’. Moreover, by choosing the “best model” among a given family of
possible models (Gaussian, Gamma, Poisson, etc.) for Zaake can obtain a different
model for each law of the mixture. By “best model”, we mean the model which best fits
the F;, (11), ..., F;,(t) for eachi. It would be interesting to compare the results of both
approaches: the mixture decomposition of distributions of distributions algorithms, and the
standard mixture distribution algorithms in the standard framework. This comparison could
be done when the same model is used for each class, or more generally when each law of
the mixture follows a different family model.

6. Mixture decomposition with copula model in the case of more than one variable

We have considered the mixture decomposition problem for the case of a single variable.
In order to extend our methodology to the case of several variables, we can use multidi-
mensional copulas, for instance the “generalised” parametric family of copulas proposed
by Vrac[14]. Such copulas are complicated to write explicitly, their parameters are com-
plicated to estimate and their meaning is not easy to interpret. Therefore, we propose two
methods for several variables.

6.1. Binary tree method

This method proceeds as follows: we look for the variable which gives the best mixture
decomposition criterion value in two classes and we repeat the process for each resultant
class until the size of the classes becomes small enough (as adjudged by the appropriate
criteria). In order to select the best variable, the choice of tieimportant. Since we are
looking for a partition of the set of distributions, it is clear that a giveis not good if all
the distributiongF; of the basqy take the same value at thatvalue. Also, a particulag is
a poor choice if all the¥; (¢;) are uniformly distributed ifi0, 1]. In fact we can say thatza
is good if distinct clusters of values exist among the set of valigst;) |i =1,..., N}.

For instance, Jain and Dubfj proposed several methods in order to reveal any clustering
tendency. Here, we are dealing with the special case where we look for such a tendency
among a set of points in the interv@, 1].
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We suggest a method based on the number of triangles whose vertices are points of
[0, 1] and we take the two sides that are nearest in length and larger (respectively smaller)
than the remaining third side. These sets of triangles are deAotexspectivelyB). For
instance, leta1, az, a3) € [0, 1]° be the vertices of a triangke The lengths of the sides
of this triangle areja1 — az|, |a1 — as|, laz — as|. If the two closest are larger than the
third one, thera € A, if not a € B. Let XY be a random variable which associates
u={u1,...,uy} for N points randomly distributed in the interv, 1], with the value
XO%u) = (JA| — |B])/C3 =6(]A| — |B])/(n(n — 1)(n — 2)) which belongs td—1, 1]. By
the distribution of this random variabk®, we define the hypothesig? that there is no
clustering tendency. The great&f (u) is, the higher is the clustering tendency of the
points. We calculate the number of triangles whose vertices are poibits=0fF; (¢;) | i =
1, ..., N}forwhichthe two closest sides are larger (respectively smaller) than the remaining
side. We denote this number by(U) (respectivelyB(U)). Given the distribution of©,
the value(A(U) — B(U))/Ci’, =6(A(U) — B(U))/(n(n — 1)(n — 2)) can reject or accept
the null hypothesis at a given threshold.

Proposition 6. The expectation of the random variali€ is % and its variance i58/9C,3V.

Proof. The proof consists of realizing that we are considering only flat triangles. A flat
triangle belongs t@ or B according to the position of the medium point. A triangle has a
probability% tobe inAand% in B. We define a random variablewith Bernoulli distribution
B(p)with p:%: setT (rr)=1 with probabilityp (if the triangletr belongs ta\) and7 (tr)=0

with a probability 1— p (if the triangletr belongs tdB). With N points, we havef?f{, (with

CP =n!/(n — p)!p!) and then the random variabld| = Zicz’lT(tr,-) has a binomial

distributionB(C3, p) with expectatiorE(|A|) = C3 p and variance?(|A]) = C3 p(1- p).
Then,

Al —|B 2|A 1
and
2,000 2f1AI—IBIY _ o(21A1\ _ 4 3 .
a“(X°) =0 <—C§’v )—o <_C]%)——(C13<])2 Cyp(1 p)—gcjgv. (8)

Whenr, andr, have been found, the mappiaglefined in Section 3 can be extended in the
following way: a* : Q x [0, 11> — R*:

1
a*(w,s):/Z[Y(w)R(s)C(th,G,)]dt e R".
41

6.2. Coupling method

This method proposed by Vr§t4] and applied by Vrac et g]15], proceeds as follows.
We consider a mixture decomposition on a first variaflevith two given values: andtJ,
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and another mixture decomposition on a second varigblegith two given valuesl2 and
t22. For eachw € Q, and for eachF,, = (Fufl, F,ﬁz) € &, we can write:

4
. . .
Hy'y0h =3 p*Ch (G (xD), Ga(x3)
i=1

and
12
Y, Yo i i '
Hi2 5 (%) =) pPCY, (Gl Glp (9.
i=1

where

H:f/"/zf is a 2-JDFD at poin(rl/, l“zi) from variabley;.
12

: o Yo i ¥ i
x) = (x{, x3) = (R (1), Fu (13)).

pl.Y-/ is theith mixture ratio from variable’;.

C;/_ is the copula of the componeinfrom variableY ;.

From each unity; and each distributiof; € &, we obtainanew pa'(IH:?Z1 (x1, H;le (x2))

of values of the distributions. Then from tNeunits of the sample, anél tfhedistribhtfons in

&, we obtainN pairs. A mixture decomposition of distributions by copulas can be realised
on this new database. This method has been applied to climatological data and has given
very encouraging results (see Vi[dd] and Vrac et al[15]). Some comparisons have been
done on this kind of data: for example, the comparison between the results of our mix-
ture decomposition by copulas and the results of the EM algorithm on probabilistic data
and standard numerical data. Moreover, the extensions to copulas of other algorithms are
on the way.

7. Conclusion

Many things remain to be done, for instance, studying the case in which each class may
be modeled by a different copula family, or comparing the results obtained by the general
methods and the standard methods of mixture decomposition on standard data (as they are
a special case of distributions). Indeed, the proposed mixture decomposition method can
deal with standard data and not just on probabilistic data. Also, the copulas can be modeled
by “generalised Archimedian copulas” and #fig can be modeled at eatlvy a different
distribution family and even a mixture decomposition of distributions. We can also add
other criteria taking into account a class variable and a learning set. Notice that the same
kind of approach can be used in the case where, instead of having distributions, we have
any kind of mapping. But in that case, the interpretation will be less rich than when the
mappings are distributions.
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