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Abstract

This work investigates the situation in which each unit from a given set is described by some vector
of p probability distributions. Our aim is to find simultaneously a “good” partition of these units and
a probabilistic description of the clusters with a model using “copula functions” associated with each
class of this partition. Different copula models are presented. The mixture decomposition problem
is resolved in this general case. This result extends the standard mixture decomposition problem to
the case where each unit is described by a vector of distributions instead of the traditional classical
case where each unit is described by a vector of single (categorical or numerical) values. Several
generalizations of some standard algorithms are proposed. All these results are first considered in the
case of a single variable and then extended to the case of a vector ofp variables by using a top-down
binary tree approach.
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1. Introduction

In a symbolic data table, a cell can contain a distribution (Schweizer, in 1984, says that
“distributions are the numbers of the future”!), or several values linked by a taxonomy
and logical rules, etc. The need to extend standard data analysis methods (exploratory
analyses, clustering, factorial analyses, discriminationmethods, etc.) to symbolic data tables
is increasingwith the need to obtainmore accurate information fromand to summarise large
data sets. For more details on symbolic data analysis see for example Diday[4], Bock and
Diday[1].The ideaof operatingwithdistribution functionsasdata valueshasbeenapplied in
clustering by Janowitz and Schweizer[10].We are interested here in extending the mixture
decomposition problem (as defined for instance in Dempster et al.[3]) to the case where
the units are described by distributions. Here, a “variable”Yj is considered to be a random
variable from a set of units� to an infinite set of distributionsFj . We consider a sample of
Nunits, summarised in a data table ofN rows andpcolumns, where theith row is associated
with the unit (or “individual”)wi ∈ �. The set of units of this data table is denoted byE
and each column is defined by a variableYj ∈ {Y1, . . . , Yp}. Each cell(i, j) of this data
table contains a distributionYj (wi) ∈ Fj . The sample of theN × p distributions of this
data table is called the “distribution base”.
We first consider the case of a single variableY (considered later as one of the variables

in {Y1, . . . , Yp}), such thatY (w) ∈ F, with F some infinite set of distributions. The case
of several variables will be considered in Section 6. The cell associated with a given unit
wi in the column for the variableY, contains a distribution denoted byFi = Y (wi). We
denote byXi the random variable associated withFi such thatFi(t) = Pr(Xi� t) for
t ∈ R whereR = [−∞,+∞]. The distribution base is here reduced to the sample set
F= {Fi |i = 1, . . . , N} of all the distributions contained in the column associated with the
variableY in the data table.
We define the notion of “distribution of distributions”, empirically introduced by Diday

[5], and developed in a more general probabilistic context by Vrac et al.[15]. LetR be the
set of the possible values for all the continuous random variablesXi, i = 1, . . . , N . Then
its �-algebra is the borelian�-algebra, denoted by�. The setF can be written as

F= {F |F is a 1-dimensional distribution function on(R, �)}.
We defineA to be the�-algebra onF, as the�-algebra generated by the setsAxt = {F ∈
F/F (t)�x}, for all x ∈ [0,1] andt ∈ R. Then, in our study,Y is a random variable, where,
for eachw in �, Y (w) is a one-dimensional distribution functionY (w)= Fw ∈ F:

Y : (�,M,P) −→ (F,A),

w �→ Fw ∈ F,
with M the�-algebra generated on� by the sets of unitsw from �, andP a probability
measure on(�,M). We can easily remark that for alla ∈ A, we haveY−1(a) ∈ M. The
set{w ∈ �|Fw(t)�x} is measurable byP:

Y−1({F ∈ F|F(t)�x})= {w ∈ �|Fw(t)�x} ∈ M.
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Definition 1. A “distribution function of distributions” (DFD), associated withYat a given
point t ∈ R, is defined by

Gt(x)= P({w ∈ � |Fw(t)�x}),
wherex ∈ R. Notice thatGt(x)= 1 if x�1 andGt(x)= 0 if x <0.

A DFD can also be interpreted as the distribution function of the random variableyt
from � to R such thatyt (w) = F(t) with Y (w) = F : we haveP([yt (w)�x]) = P({w ∈
� |Fw(t)�x}). We can compute the empirical frequency functionGt by

Gt(x)= card({Fi ∈ F|Fi(t)�x})
N

.

Hence,Gt(x) is the frequency of units whose probability of taking a value less thant is
equal or less thanx. For instance, if the units are pupils and the variableY is their results in
mathematics, thenG10(

1
2) is the frequency of pupils whose probability of having a mark

less than 10 in mathematics is equal or less than1
2.

Definition 2. A “ k-joint distribution function of distributions” (k-JDFD) associated withY
at a given pointt = (t1, . . . , tk) ∈ Rk is defined by

Ht1,...,tk (x1, . . . , xk)= P({w ∈ � |Fw(t1)�x1; . . . ;Fw(tk)�xk}),
wherex= (x1, . . . , xk) ∈ R

k
. Notice thatHt(x)=0 if xi <0 for somei and thatHt(x)=1

if, for all i = 1, . . . , k, xi�1.

A k-JDFD can be interpreted as the distribution of the random variable:y=(yt1, . . . , ytk ).
Therefore, we can also writeHt1,...,tk (x1, . . . , xk)= P([yt1�x1] ∩ · · · ∩ [ytk �xtk ]).
In the following, we suppose thatt1< · · ·< tk.

Proposition 1. For all t ∈ R, Gt is a distribution function. For all t = (t1, . . . , tk) ∈ Rk,
Ht is a k-dimensional joint distribution function with marginal distributionsGt1, . . . ,Gtk .

Proof. This result comes from the definition of a distribution function and an-dimensional
distribution function (see Diday[5] and Vrac[14]).
From Proposition 1, we can define a “k-joint density of distributions” by

ht1,...,tk (x1, . . . , xk)= �kHt1,...,tk (x1, . . . , xk)
�x1 . . . �xk

.

This function is the probability density function associated with the random variabley =
(yt1, . . . , ytk ).

2. Link with copulas

Acopula (Schweizer andSklar[12]) is a function relating the joint distribution function of
a vector ofk randomvariables(X1, . . . , Xk)and itskone-dimensional distribution functions
(i.e. the marginal distributions). The following definition is given by Nelsen[11].
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Definition 3 (k-Copula[11,12]). A k-dimensional copula (ork-copula) is a functionC
from [0,1]k to [0,1] with the following properties:
(1) For everyu ∈ [0,1]k, C(u)= 0 if at least one coordinate ofu is 0.
(2) If all coordinates ofu are 1 except one which isu∗, thenC(u)= u∗.
(3) For everya=(a1, . . . , ak)andb=(b1, . . . , bk) in [0,1]k such thata�b, VC([a,b])�0,

where

VC([a,b])= �baC(t)= �bkak�
bk−1
ak−1 . . .�

b1
a1
C(t)

and

�
bj
aj C(t)= C(t1, . . . , tj−1, bj , tj+1, . . . , tk)− C(t1, . . . , tj−1, aj , tj+1, . . . , tk)

is the first order difference ofC for thej th coordinate.

For example, in twodimensions(k=2), the third condition gives:C(a2, b2)−C(a2, b1)−
C(a1, b2)+C(a1, b1)�0. In the following, we denoteRanG as the range of the mapping
G. For a copula with the properties of Definition 3, Sklar gave the following theorem:

Theorem 1 (Sklar[13]). LetHbea k-dimensional distributionwithmarginal distributions
G1, . . . ,Gk. Then there exists a k-copula C such that for all(x1, . . . , xk) ∈ [0,1]n,

H(x1, . . . , xk)= C(G1(x1), . . . ,Gk(xk)). (1)

Moreover, if G1, . . . ,Gk are continuous, then C is unique; otherwise C is uniquely deter-
mined onRanG1 × · · · × RanGk. Conversely, if G1, . . . ,Gk are distribution functions
and C is a copula, the function H defined by(1) is a k-dimensional distribution function
with marginal distributionsG1, . . . ,Gk.

From Proposition 1 and Sklar’s Theorem 1, we obtain the following proposition:

Proposition 2. Let Ht1,...,tk be a k-joint distribution function of distributions. Let
Gt1, . . . ,Gtk be k distributions functions of distributions. IfGt1, . . . ,Gtk are the kmarginal
distributions ofHt1,...,tk , then there exists a k-copula C such that for allx= (x1, . . . , xk) ∈
[−∞,+∞]k:

Ht1,...,tk (x1, . . . , xk)= C(Gt1(x1), . . . ,Gtk (xk)). (2)

Moreover, if Gt1, . . . ,Gtk are continuous, then C is unique; otherwise C is uniquely deter-
mined onRanGt1×· · ·×RanGtk .Conversely, ifGt1, . . . ,Gtk are distribution functions of
distributions and C is a copula, the functionHt1,...,tk defined by(2) is a k-joint distribution
function of distributions with marginal distributionsGt1, . . . ,Gtk .

2.1. Parametric families of copulas

The simplest copulas, denoted byM,� andW , respectively are

M(u, v)=min(u, v), �(u, v)= uv and W(u, v)=max(u+ v − 1,0).
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Fig. 1. The distribution baseF is reduced toF1 andF2.

Thesecopulasare special casesof someparametric familiesof copulas suchas the following:

(1) Clayton[2] proposed the copulaCb(u, v) = max([u−b + v−b − 1]−1/b,0) where
b ∈ [−1,∞)\{0} with the following special cases:C−1 =W , C0 = �, C∞ =M.

(2) Frank[7,8], has definedFb(u, v) = −1/b &n(1+ (e−bu − 1)(e−bv − 1)/(e−b − 1))
whereb ∈ R\{0} and with the following special cases:F−∞ =W , F0 = �, F∞ =M.

Many other families are given by Nelsen[11] and some methods for the estimation of the
parameters of parametric copulas are given by Vrac[14].
Notice that the Clayton and Frank parametric families of copulas are triangular norms

(called t-norms). Indeed, copulas and t-norms are related: a copula with the associativity
condition is a t-norm, and a t-norm with the Lipschitz condition (given in two dimensions
in Lemma 1) is a copula.

Lemma 1 (Lipschitz condition). Let H be an increasing2-dimensional function, defined

onR
2
with marginal distributions F and G. Then for all(x1, y1) and(x2, y2) in R

2

|H(x2, y2)−H(x1, y1)|� |F(x2)− F(x1)| + |G(y2)−G(y1)|.

Example. The distribution baseF (seeFig. 1) consists of two distributionsF1 andF2 and
the copulaC is defined byC(u, v)=Ht1,t2(x1, x2) with

(1) u=Gt1(x1)= card({Fi ∈ F/Fi(t1)�x1})/N ,
(2) v =Gt2(x2)= card({Fi ∈ F/Fi(t2)�x2})/N ,
(3) Ht1,t2(x1, x2) = card({Fi ∈ F/Fi(t1)�x1} ∩ {Fi ∈ F/Fi(t2)�x2})/N .
The possible values ofGt1(xi) andGt2(xj ) are only 0,12, 1. For instance, fromu =

Gt1(x0)=0,v=Gt2(x2)= 1
2 andHt1,t2(x1, x2)=0, it follows thatC(0, 12)=0. In the same

way, we obtainC(0,0)=C(0, 12)=C(0,1)= 0, C(1,0)= 0, C(1, 12)= 1
2, C(1,1)= 1.
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Fig. 2. The copula valuesC(u, v) are given between brackets ( ) and associated with each
(u, v)= (Gt1(x1),Gt2(x2)).

For each calculation ofC(u, v) (seeFig. 2), the modelC ≡ Min is satisfied. This can be
proved more generally for any pair of similar distribution functions without crossing (i.e.
as long asF1(t)�F2(t) for all t).

3. Fit between a unit and a JDFD by using an approximation of the density

We define a mappingawhich measures the “fit” between a distributionY (w)= Fw and
a given 2-JDFDHt1,t2 = C(Gt1,Gt2), by settinga : � × [0,1]2 −→ R+ with a(w, �) =
[Y (w)R(�)C(Gt1,Gt2)] ∈ R+, where�=(�1, �2) is a threshold.Herexi=Fw(ti)andR(�) is
definedbyFwR(�)Ht1,t2=VHt1,t2 ([a,b]), witha=(x1−�1, x1+�1)andb=(x2−�2, x2+�2).
That is,

FwR(�)C(Gt1,Gt2)= C(Gt1(x1 + �1),Gt2(x2 + �2))
− C(Gt1(x1 + �1),Gt2(x2 − �2))
− C(Gt1(x1 − �1),Gt2(x2 + �2))
+ C(Gt1(x1 − �1),Gt2(x2 − �2)). (3)

Notice that due to Proposition 1,Gt1 andGt2 are increasing, so we haveGti (xi + �i )�
Gti (xi − �i ).

Proposition 3. Let h be the density function of the random variabley=(yt1, yt2) defined in
Section1.Leta(w, �) ∈ [0,1]. If �� = 4�1�2, thenh�(x)= a(w, �)/�� is an approximation
of h(x1, x2) andh�(x) → h(x) a.s. when�� → 0.
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Proof. This can be proved easily from the fact that we can showa(w, �) = Ht1,t2(x1 +
�1, x2 + �2)−Ht1,t2(x1+ �1, x2 − �2)−Ht1,t2(x1− �1, x2 + �2)+Ht1,t2(x1− �1, x2 − �2).
There follows indeed:
a(w, �)= P({w ∈ �/x1 − �1�Fw(t1)�x1 + �1; x2 − �2�Fw(t2)�x2 + �2}) ∈ [0,1].

By the definition of a density, for eachx, lim�→0 h�(x)= h(x) a.s.

4. The mixture decomposition problem of distributions and two algorithms for
solving it

The distributions baseF = {F1, . . . , FN } is a description of the set of units
E = {w1, . . . , wN } ⊂ �. The setF is considered to be a sample ofN observations from
a random variableY such that, forw ∈ �, Y (w) ∈ F, with F an infinite set of distribu-
tions (see Section 1). Thek-joint distribution function of distributionsHt1,...,tk (x1, . . . , xk)
associated withF is denoted byH(x). We denoteP = (P1, . . . , P&) to be a partition of
F such that each classPi can be considered as a sample of observations from a random
variableYi : � → F such thatYi (w) ∈ F. Thek-JDFDHi

t1,...,tk
(x1, . . . , xk; �i ) (denoted

by Hi(x; �i )) associated withPi depends on a parameter�i . The mixture decomposition
problem of distribution functions of distributions can be resolved in the following way:
find a partitionP = (P1, . . . , P&) of F, the mixture ratios(p1, . . . , p&) and the parameters
(�1, . . . , �&) such that

H(x)=
&∑
i=1

piHi(x; �i ). (4)

It can be shown (see Section 5) that the standard mixture decomposition problem with
standard (classical) data is a special case of this general problem. In order to solve this latter
problem, we reformulate it in terms of a mixture decomposition of density functions, by
setting in the case ofH:

h(x)= �H(x)
�x1 . . . �xk

and hi(x, �i )= �Hi(x; �i )

�x1 . . . �xk
.

Then, the mixture decomposition equation (4) becomes

h(x)=
&∑
i=1

pihi(x; �i ). (5)

Notice that in the case ofk= 2, the link betweenh andH and the copula model is given by
h(x)= �2C(Gt1(x1).Gt2(x2))/�x1�x2. Then,

h(x)= �Gt1(x1)
�x1

× �Gt2(x2)
�x2

× �2C(Gt(x1),Gt (x2))
�u1�u2

.

The parameters�i=(di, bi) depend on the parameters of the chosen copula family model
(for instance, theFrank family, seeSection 2) denotedbi andon the parameters of the chosen
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distribution family model denoteddi . In order to approximate the density functionhi(x, �i )
or to calculate it, we can use the method presented in Section 3:

hi(x; �i , �i )��i = ai(w; �i , �i )
= [Y (w)R(�i )Ci(Git1(x1; di1),Git2(x2; di2), bi)], (6)

wherex = (x1, x2) = (Fw(t1), Fw(t2)), Fw = Y (w), �i = (di, bi) with di = (di1, di2),
�i = (�1i , �2i ) and��i = 4�1i�2i . Hence, the mixture decomposition model can be resolved
in the following way:h(x)=∑&

i=1pihi(x, �i , �i ).
Given the models associated withG andC, the decomposition can be obtained by maxi-

mizing a criterion basedon the likelihood (seeDiday et al.[6]).WithFw=Y (w),xi=Fw(ti),
x = (x1, . . . , xk) and� = (�1, . . . , �&) the parameters of the densitieshi , this criterion can
be the likelihood function:

L(x, �)=
N∏
i=1

&∑
k=1

pkkk(xi, �k),

the log-likelihood function:

logL(x, �)=
N∑
i=1

log

(
&∑
k=1

pkhk(xi, �k)

)
,

the classifier likelihood function:

CL(x, �)=
&∏
i=1

pi
∏
w∈Pi

hi(x, �i )

or, the classifier log-likelihood function:

C logL(x, �)=
&∑
i=1

∑
w∈Pi

log(pihi(x, �i )).

We suggest the two following algorithms where
Input: a setE of units described by distributions, a given partition(P1, . . . , P&), a para-

metric copula familyC, and optionally a parametric distribution family lawG.
Output: a partition and a copulaCi for each class, and optionally a distribution law for

eachGi at eachti .

Algorithm 1. This algorithm is defined in two steps called representation and allocation
(see Diday et al.[6]):

• Step1, representation: estimation of the parameters(�1, . . . , �&) which maximise the
chosen criterion (L, logL, etc).

• Step2, allocation: creation of a new partition(P1, . . . , P&), wherePi is the set of units
in the partition such that

Pi = {x|pihi(x, �i )�pmhm(x, �m), with i <m in case of equality}.
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When the criterion is bounded (which is the case ofCL or C logL), it is easy to show
that this algorithm converges. There are several variants for the choice ofpi , for instance
pi = card(Pi)/N at the last step, or at each step.

Algorithm 2. This algorithm is based on the two steps of the EM algorithm (Dempster et
al. [3]). We start from an initial solution(p0i , �

0
i ) at stepn= 0 for i = 1, . . . , & and then at

stepnwe have:

• E-step(Estimation): tni (x) = pni hi(x, �
n
i )/
∑
w∈� p

n
i hi(x, �

n
i ) for i = 1, . . . , & and any

w ∈ �, which is the posterior conditional probability than an individualw belongs to
the classi at thenth iteration.

• M-step(Maximisation): this step consists of estimating�n+1
i (i = 1, . . . , &), which are

the roots of:

∑
w∈�

tni (Y (w))
� logh(Y (w), �n+1

i )

��i
= 0,

with pn+1
i = 1/N

∑
w∈� t

n
i (Y (w)).

From the estimated parameters, a partition can be obtained by the maximum a posteriori
(MAP) principle but in that case, the partition is “biased”: the densities of the classes of the
resultant partitions are not the estimated densities given by the EM algorithm.

Example. Suppose the data table contains five unitsE= {w1, . . . , w5} with F1(t1)= 0.1,
F1(t2)=0.4;F2(t1)=0.2,F2(t2)=0.3;F3(t1)=0.6,F3(t2)=0.7;F4(t1)=0.7,F4(t2)=0.8;
F5(t1) = 0.8, F5(t2) = 0.9. The given copula parametric family is defined byC(u, v) =
b1M + b2W , wherebi ∈ {0,1} with b1 = 0 if b2 = 1, b1 = 1 if b2 = 0 (the copulasW and
M are defined in Section 2). By applying Algorithm 1, the process has converged towards
the partition:(P 2

1 , P
2
2 )= {{F1, F2}, {F3, F4, F5}} and the mixture decomposition

H(x)=
2∑
i=1

piHi(x; �i )= 2

5
W(G1

t1
(x1),G

1
t2
(x2))+ 3

5
M(G2

t1
(x1),G

2
t2
(x2)),

wherex = (x1, x2) andGitj is defined by the empirical distribution of the classP 2
i at tj .

See Diday[5] for details.

5. The special case of the standard mixture decomposition problem

5.1. Properties of a distribution base of unit mass distributions

Our aim in this section is to imbed the standard mixture decomposition problem into the
mixture decomposition of distributions problem, in the case of a single quantitative random
variableZ : � −→ R. Each value taken by an individualw can be transformed easily into a
distributionwhich takes thevalue0untilZ(w) (not included)and thevalue1otherwise.Such
a distribution is called “unit mass”. More formally, ifZ(wi)=zi , the distribution associated
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with wi is defined byFi(t)= P(Xi� t), where the random variableXi associated withwi
is such that its distributionFi satisfies:Fi(t)= 0 if t < zi , andFi(t)= 1 if t�zi .

Proposition 4. If the distribution baseF contains only unit mass distributionsFi as above,
if Fz is the distribution associated with the random variable Z, if ti increase with i, and if
Gti is empirically modeled, we have the following results:

(i) If H(x1, . . . , xp)= C(Gt1(x1), . . . ,Gtp (xp)), then C is the M copula.
(ii) If xp <1, then Min(Gt1(x1), . . . ,Gtp (xp))=Gtp(xp).
(iii) If x <1, thenGt(x)= Pr(Z > t)= 1− Fz(t).
(iv) If xp <1, thenFz(tp)= 1−H(x1, . . . , xp).

Proof. We need the following Lemma:

Lemma 2. If F is a set of unit mass distributions, xi ∈ [0,1[ for i = 1, . . . , j , Aj =
{F ∈ F |F(tj ) = 0} andBj = {F ∈ F |F(ti)�xi,1� i�j}, then we haveAj = Bj and
|Aj | =Mini=1,...,j |Ai |.

Proof of the Lemma. SupposewehaveF ∈ Bj . ThenF ∈ FandF(tj )< xj bydefinition
ofBj .AsF is a set of unit mass distributions andxj ∈ [0,1[, we have necessarilyF(tj )=0.
Therefore,F ∈ Aj and we haveBj ⊆ Aj .
Suppose nowF ∈ Aj . ThenF(tj )= 0, which impliesF(ti)= 0 for all i = 1, . . . , j asF

is increasing (it is a distribution) andti� ti+1. Thus,F ∈ Bj and thereforeAj =Bj . Since

by the definition ofBj , we haveBj =⋂j
i=1Ai andmoreover we have proved thatAj ⊆ Bj ,

it follows that|Aj | =Mini=1,...,j |Ai |. We haveAj ⊆ Bj .
With this lemma, we can now prove Proposition 4.

Proof of Proposition 4. (i) If H(x1, . . . , xp)=C(Gt1(x1), . . . ,Gtp (xp)), thenC is theM
copula.
This can be proved in the following way: If allxi are equal to 1, since all the ele-

ments of a distribution base take a value smaller than 1 everywhere, we have by def-
inition of a distribution function of distributionsGti (xi) = 1 and also, by definition of
a k-joint distribution function of distributions,H(x1, . . . , xp) = 1. Thus, in that case (i)
is true. Suppose now that somexi are smaller than 1 and suppose we denote them by
x′
1, . . . , x

′
j such that their correspondingt denoted byt ′1, . . . , t ′j are increasing. Then we

haveHj(x′
1, . . . , x

′
j )=H(x1, . . . , xp), withHj(x′

1, . . . , x
′
j )= C(Gt ′1(x

′
1), . . . ,Gt ′j (x

′
j )),

which is aj-JDFD denoted byH(x′
1, . . . , x

′
j ) when no doubt exists. This comes from the

fact that the set of distributions included in the distribution base which are lower than
x′
1, . . . , x

′
j (in (t

′
1, . . . , t

′
j )) are the same as the ones which are also lower thanx1, . . . , xp

(in (t1, . . . , tp)). We can now apply Lemma 2 by denotingAj = {F ∈ F |F(t ′j ) = 0}
andBj = {F ∈ F |F(ti)�xi,1� i�j}. As (empirical)Gt ′j (x

′
j ) = |{F ∈ F|F(t ′j ) =

0}|/|F| andH(x′
1, . . . , x

′
j )= |{F ∈ F|F(t ′i )�x′

i ,1� i�j}|/|F|, it follows thatGt ′j (x′
j )=

|Aj |/|F|, andH(x′
1, . . . , x

′
j ) = |Bj |/|F|. Since from Lemma 2 we haveAj = Bj , it fol-

lows thatGt ′j (x
′
j ) = H(x′

1, . . . , x
′
j ), and soGt ′j (x

′
j ) = H(x1, . . . , xp). From Lemma 2,
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we have also|Aj | =Mini=1,...,j |Ai |, which impliesGt ′j (x′
j )=Mini=1,...,j Gt ′i (x

′
i ). Since

Mini=1,...,j Gt ′i (x
′
i )=Mini=1,...,p Gti (xi) (since fori such thatxi =1, we haveGti (xi)=1

and fori such thatxi<1wehaveGti (xi)�1),weobtainH(x1, . . . , xp)=Mini=1,...,p Gti (xi)

which shows thatH(x1, . . . , xp)= C(Gt1(x1), . . . ,Gtp (xp)), whereC is theMin copula.
(ii) If xp <1, thenMin(Gt1(x1), . . . ,Gtp (xp))=Gtp(xp).
As in the proof of (i), we denotex′

1, . . . , x
′
j (associated with increasingt ′1, . . . , t ′j ) to

be thexi ’s amongx1, . . . , xp which are strictly lower than 1. It follows thatx′
j = xp

and so from Lemma 2 thatMin(Gt ′1(x
′
1), . . . ,Gt ′j (x

′
j )) = Gt ′j (x

′
j ) = Gtp(xp). We have

Min(Gt1(x1), . . . ,Gtp (xp))=Min(Gt ′1(x′
1), . . . ,Gt ′j (x

′
j ))asshown in theprecedingproof.

Therefore we have finally:Min(Gt1(x1), . . . ,Gtp (xp))=Gtp(xp).
(iii) If x <1, thenGt(x)= Pr(Z > t)= 1− Fz(t).
By definitionFz(t) = Pr({Z(w)� t}) and the empirical functionGt(x) = Pr({Fi ∈

F|Fi(t)�x}) is exactly the proportion of unit mass distributionsFi with value 1 strictly
after t (i.e., t ′> t), asFi(t) = 0 if t <Z(wi) andFi(t) = 1 if t <Z(wi). In other words,
this means thatGt(x) is the proportion of individualsw such thatZ(w)> t , and then
Gt(x)= Pr(Z > t)= 1− Fz(t).
(iv) If xp <1, thenFz(tp)= 1−H(x1, . . . , xp).
Indeed, from (i), we haveH(x1, . . . , xp) = Min(Gt1(x1), . . . ,Gtp (xp)); from (ii), we

haveMin(Gt1(x1), . . . ,Gtp (xp))=Gtp(xp); and from (iii), we haveFz(tp)=1−Gtp(xp).
Hence, the proposition is proved.�

5.2. The standard mixture decomposition is a special case

Here we need to introduce the following notation:(P1, . . . , P&) is a partition into&
classes of the set{w1, . . . , wN } described by the distribution baseF, Fzi is the distribution
associated with a quantitative random variableZi defined on�, Fi (i = 1, . . . , &) is a
distribution base whose elements are the units mass distributions associated with each
valueZi(w) with w ∈ Pi (i.e., they take the value 0 fort�Zi(w) and 1 fort >Zi(w)),
Git is a distribution function of distributions at valuet associated with the distribution base
Fi andHi

t1,...,tk
is ak-joint distribution function of distributions associated with the same

distribution base.

Proposition 5. If Ht1,...,tk =∑&
i=1piH

i
t1,...,tk

with
∑&
i=1pi = 1, thenFz =∑&

i=1piFzi .

Proof. From Proposition 2, we haveHi
t1,...,tk

(x1, . . . , xk) = Ci(Git1(x1), . . . ,G
i
tk
(xk)),

whereCi is ak-copula. Therefore,

Ht1,...,tk (x1, . . . , xk)=
&∑
i=1

piC
i(Git1(x1), . . . ,G

i
tk
(xk)).

We choosexp <1 and use Proposition 4.
From (i), we obtain:Ht1,...,tk (x1, . . . , xk)=∑&

i=1piMin(G
i
t1
(x1), . . . ,G

i
tk
(xk)).

From (ii), we obtain:Ht1,...,tk (x1, . . . , xk)=∑&
i=1piG

i
tk
(xk).
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From (iii), we obtain:Ht1,...,tk (x1, . . . , xk)=
∑&
i=1pi(1− Fzi (tk))= 1−∑&

i=1piFzi (tk).
From (iv),weobtainFz(tk)=1−Ht1,...,tk (x1, . . . , xk)and thereforeFz(tk)=

∑&
i=1piFzi (tk).

Since the same reasoning can be made for any sequencet1, . . . , tk, it follows finally
Fz =∑&

i=1piFzi . �

5.3. Links between the generalised mixture decomposition problem and the standard one

It follows from Proposition 5 that, by solving the mixture decomposition of distribu-
tion of distributions problem, we have solved the standard mixture decomposition prob-
lem. This follows from the fact that it is possible to induceFzi (t1), . . . , Fzi (tk), from
Git1(x1), . . . ,G

i
tk
(xk) and therefore, the parameters of the chosen model of the density law

associated with eachZi . Moreover, by choosing the “best model” among a given family of
possible models (Gaussian, Gamma, Poisson, etc.) for eachZi , we can obtain a different
model for each law of the mixture. By “best model”, we mean the model which best fits
theFzi (t1), . . . , Fzi (tk) for eachi. It would be interesting to compare the results of both
approaches: the mixture decomposition of distributions of distributions algorithms, and the
standardmixture distribution algorithms in the standard framework. This comparison could
be done when the same model is used for each class, or more generally when each law of
the mixture follows a different family model.

6. Mixture decomposition with copula model in the case of more than one variable

We have considered the mixture decomposition problem for the case of a single variable.
In order to extend our methodology to the case of several variables, we can use multidi-
mensional copulas, for instance the “generalised” parametric family of copulas proposed
by Vrac [14]. Such copulas are complicated to write explicitly, their parameters are com-
plicated to estimate and their meaning is not easy to interpret. Therefore, we propose two
methods for several variables.

6.1. Binary tree method

This method proceeds as follows: we look for the variable which gives the best mixture
decomposition criterion value in two classes and we repeat the process for each resultant
class until the size of the classes becomes small enough (as adjudged by the appropriate
criteria). In order to select the best variable, the choice of thetj is important. Since we are
looking for a partition of the set of distributions, it is clear that a giventj is not good if all
the distributionsFi of the baseF take the same value at thattj value. Also, a particularti is
a poor choice if all theFi(tj ) are uniformly distributed in[0,1]. In fact we can say that atj
is good if distinct clusters of values exist among the set of values:{Fi(tj ) | i = 1, . . . , N}.
For instance, Jain and Dubes[9] proposed several methods in order to reveal any clustering
tendency. Here, we are dealing with the special case where we look for such a tendency
among a set of points in the interval[0,1].
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We suggest a method based on the number of triangles whose vertices are points of
[0,1] and we take the two sides that are nearest in length and larger (respectively smaller)
than the remaining third side. These sets of triangles are denotedA (respectivelyB). For
instance, let(a1, a2, a3) ∈ [0,1]3 be the vertices of a trianglea. The lengths of the sides
of this triangle are:|a1 − a2|, |a1 − a3|, |a2 − a3|. If the two closest are larger than the
third one, thena ∈ A, if not a ∈ B. Let X0 be a random variable which associates
u = {u1, . . . , uN } for N points randomly distributed in the interval[0,1], with the value
X0(u)= (|A| − |B|)/C3

N = 6(|A| − |B|)/(n(n− 1)(n− 2)) which belongs to[−1,1]. By
the distribution of this random variableX0, we define the hypothesisH 0 that there is no
clustering tendency. The greaterX0(u) is, the higher is the clustering tendency of theN
points. We calculate the number of triangles whose vertices are points ofU = {Fi(tj ) | i =
1, . . . , N} forwhich the twoclosest sidesare larger (respectively smaller) than the remaining
side. We denote this number byA(U) (respectivelyB(U)). Given the distribution ofX0,
the value(A(U)−B(U))/C3

N = 6(A(U)−B(U))/(n(n− 1)(n− 2)) can reject or accept
the null hypothesis at a given threshold.

Proposition 6. The expectation of the random variableX0 is 1
3 and its variance is8/9C

3
N .

Proof. The proof consists of realizing that we are considering only flat triangles. A flat
triangle belongs toA or B according to the position of the medium point. A triangle has a
probability 23 to be inAand

1
3 inB.We define a randomvariableTwith Bernoulli distribution

B(p)withp= 2
3: setT (tr)=1with probabilityp(if the triangletr belongs toA) andT (tr)=0

with a probability 1− p (if the triangletr belongs toB). With N points, we haveC3
N (with

C
p
n = n!/(n − p)!p!) and then the random variable|A| = ∑C3

N

i=1 T (tri) has a binomial
distributionB(C3

N, p)with expectationE(|A|)=C3
Np and variance�

2(|A|)=C3
Np(1−p).

Then,

E(X0)= E

(
|A| − |B|
C3
N

)
= E

(
2|A|
C3
N

)
− 1= 1

3
(7)

and

�2(X0)= �2
(

|A| − |B|
C3
N

)
= �2

(
2|A|
C3
N

)
= 4

(C3
N)

2 C
3
Np(1− p)= 8

9C3
N

. (8)

Whent1 andt2 have been found, the mappinga defined in Section 3 can be extended in the
following way:a∗ : � × [0,1]2 −→ R+:

a∗(w, �)=
∫ t2

t1

[Y (w)R(�)C(Gt1,Gt )]dt ∈ R+.

6.2. Coupling method

This method proposed by Vrac[14] and applied by Vrac et al.[15], proceeds as follows.
We consider a mixture decomposition on a first variableY1 with two given valuest11 andt

1
2,
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and another mixture decomposition on a second variableY2 with two given valuest21 and

t22. For eachw ∈ �, and for eachFw = (F
Y1
w , F

Y2
w ) ∈ F, we can write:

H
Y1

t11 ,t
1
2
(x1)=

&∑
i=1

p
Y1
i C

i
Y1
(Gi

t11
(x11),G

i

t12
(x12))

and

H
Y2

t21 ,t
2
2
(x2)=

&∑
i=1

p
Y2
i C

i
Y2
(Gi

t21
(x21),G

i

t22
(x22)),

where

• H
Yj

t
j
1 ,t

j
2

is a 2-JDFD at point(tj1 , t
j
2 ) from variableYj .

• xj = (x
j
1, x

j
2)= (F

Yj
w (t

j
1 ), F

Yj
w (t

j
2 )).

• p
Yj
i is theith mixture ratio from variableYj .

• CiYj
is the copula of the componenti from variableYj .

Fromeachunitwi andeachdistributionFi ∈ F,weobtainanewpair(HY1

t11 ,t
1
2
(x1),H

Y2

t21 ,t
2
2
(x2))

of values of the distributions. Then from theNunits of the sample, and theNdistributions in
F, we obtainN pairs. A mixture decomposition of distributions by copulas can be realised
on this new database. This method has been applied to climatological data and has given
very encouraging results (seeVrac[14] andVrac et al.[15]). Some comparisons have been
done on this kind of data: for example, the comparison between the results of our mix-
ture decomposition by copulas and the results of the EM algorithm on probabilistic data
and standard numerical data. Moreover, the extensions to copulas of other algorithms are
on the way.

7. Conclusion

Many things remain to be done, for instance, studying the case in which each class may
be modeled by a different copula family, or comparing the results obtained by the general
methods and the standard methods of mixture decomposition on standard data (as they are
a special case of distributions). Indeed, the proposed mixture decomposition method can
deal with standard data and not just on probabilistic data. Also, the copulas can be modeled
by “generalised Archimedian copulas” and theGt can be modeled at eacht by a different
distribution family and even a mixture decomposition of distributions. We can also add
other criteria taking into account a class variable and a learning set. Notice that the same
kind of approach can be used in the case where, instead of having distributions, we have
any kind of mapping. But in that case, the interpretation will be less rich than when the
mappings are distributions.
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