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Abstract, This research focuses on two original statistical methods for analyzing large
data sets in the context of climate studies. First, we propose a new way to introduce skew-
ness to state-space models without losing the computational advantages of the Kalman
filter operations. The motivation stems from the popularity of state-space models and
statistical data assimilation techniques in geophysics, specially for forecasting purposes in
real time. The added skewness comes from the extension of the multivariate normal dis-
tribution to the general multivariate skew-normal distribution. A new specific state-space
model for which the Kalman Filtering operations are carefully described is derived.

The second part of this work is dedicated to the extension of clustering methods into
the distributions of distributions framework. This concept allows us to cluster distribu-
tions, instead of simple observations. To illustrate the applicability of such a method, we
analvze the distributions of 16200 temperature and humidity vertical profiles. Different
levels of dependencies between these distributions are modeled by copula’s functions, The
distributions of distributions are decomposed as mixtures and the algorithm to estimate
the parameters of such mixtures is presented. Besides providing realistic climatic classes,
this clustering method allows atmospheric scientists to explore large climate data sets
into a more meaningful and global framework.

1. Introduction

In geophysical studies, the dimension of data sets from most oceanic, at-
mospheric numerical models and satellites is extremely large. There exists
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a variety of recent techniques to deal with such an issue in the special
context of climate studies. For example, Bayesian methods (e.g. Wikle et
al. (2002)), data mining, imaging and statistical visualization procedures
have provided interesting and innovative ways to analyze large climatic
data sets. In addition to the computational problem, the distribution of
climatic random vectors is often supposed to be Ganssian or a mixture
of Gaussian distributions, although this assumption is not always satisfied
for a wide range of atmospheric variables. For example, the distribution of
daily precipitation amounts is by nature skewed. In this paper, we attend
to address these two problems, large size and skewness, with two different
approaches. Because the scope of these problems is very large, we will focus
our attention on two specific statistical methods used in climate studies.
In Section 2, we will present a simple way to incorporate skewness in
data assimilation techniques without losing the computational advantages
associated with the normal distribution. In Section 3, the concept of distri-
butions of distributions (Diday et al. 1985, Vrac 2002, Vrac et al. 2001) will
be used in order to improve classical clustering methods for large climatic
data sets. This application is closely linked to the algorithm of inversion of
the equation of radiative transfert (Chédin et al, 1985).

2. General Skewed Kalman Filters

Before presenting the details of our research on Kalman filters, we want
to clarify some climatic terms to the statistician who may not be famil-
iar with atmospheric sciences. In particular, we would like to recall the
meaning of numerical models and data assimilation in the context of this
work. For the former, a numerical computer model solves the governing
physical, thermodynamics and micro-physical processes at different scales
of interest and over a specific region (depending on the scientific problem
under study). It provides deterministic outputs of different atmospheric
variables (temperature, humidity, winds, etc) according to certain forcings
(inputs). It is worthwhile to note that the evaluation of such computer
simulations has generated an interdisciplinary effort between scientists and
statisticians in recent years. ''he interested reader can look at Berk’s work
on the statistical assessment of such models. Data assimilation can be seen
as a way of incorporating observations info a numerical model as it runs.
From a statistical point of view, the objective of data assimilation is to use
both sources of data, observations and model ontputs, to provide a better
statistical analysis, in particular to give better forecasts. In the context
of numerical weather prediction, updates and forecasts has be performed
routinely and in real time. This compounds with the large size of data sets
and implies that very efficient but slow methods have to be disregarded. The
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data-assimilation or update step is closely related to Kalman filter which is
the best known filtering algorithm in the context of Gaussian distributions
and linear system dynamices.

The overwhelming assumption of normality in the Kalman filter litera-
ture can be understood for many reasons. A major one is that the multi-
variate distribution is completely characterized by its first two moments. In
addition, the stability of multivariate normal distribution under summation
and conditioning offers tractability and simplicity. Therefore, the Kalman
filter operations can be performed rapidly and efficiently whenever the
normality assumption holds. However, this assumption is not satisfied for
a large number of applications. For example, some distributions used in a
state-space model can be skewed. In this work, we propose a novel extension
of the Kalman filter by working with a larger class of distributions than the
normal distribution. This class is called general multivariate skew-normal
distributions. Besides introducing skewness to the normal distribution, it
has the advantages of being closed under marginalization and conditioning.
This class has been introduced by Dominguez-Molina et al. (2001) and is
an extension of the multivariate skew-normal distribution first proposed
by Azzalini and his coworkers (1996, 1999). These distributions are partic-
ular types of generalized skew-elliptical distributions recently introduced
by Genton and Loperfido (2002), i.e. they are defined as the product of a
multivariate elliptical density with a skewing function.

2.1. THE GENERAL MULTIVARIATE SKEW-NORMAL DISTRIBUTION

The general multivariate skew-normal distribution s a family of distribu-
tions including the normal one, but with extra parameters to regulate skew-
ness. It allows for a continuous variation from normality to non-normality,
which is useful in many situations, see e.g. Azzalini and Capitanio (1999)
who emphasized statistical applications for the skew-normal distribution.
An n-dimensional random vector X is said to have a general multivariate
skew-normal distribution (Dominguez-Molina et al., (2001)), denoted by
GMSNym(p, 2, D, v, A), if it has a density function of the form:

1
. (Dp; v, A + DEDT)

bu(@; 11, 2)m(Daiin A),  zER, (1)

where p € B", v € B™, £ € B™" and A € R™*™ are both covariance
matrices, D € RB™*", ¢, (x;p, %) and @, (x; u, ¥) are the n-dimensional
normal pdf and edf with mean p and covariance matrix 3. When D = (),
the density (1) reduces to the multivariate normal one, whereas it reduces
to Azzalini and Capitanio’s (1999) density when m = 1 and v = Dpu. The
matrix parameter D is referred to as a “shape parameter”. The moment
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generating function M(t) for a GMSN distribution is given by:

P (D(p + Tt); v, A + DEDT) T, , 1.1
= t+ (" X1)}, £ i
Sn(Dpiv, A+ DEDT) P+ 5 (0]} er
(2)
The simulation of random vectors from the GMSN distribution is rather
simple. Indeed, Dominguez-Molina et al. (2001) showed that if X € B" and

Y € ™ are two random vectors with joint distribution given by:

X ; I » —p7T .
(Y) ‘{\”'i'm((y)"(_ﬂz ﬂ-I-DEDT)).' [:3)

then the conditional distribution of X given ¥ < Dy is a general multi-
variate skew-normal distribution GM SN, o (p, 2, D, v, A).

The three basic tools when implementing the Kalman filter are the
closure under linear transformation, under summation and conditioning.
In section 2.3, we will present how the general skew-normal distribution
behaves under such constraints.

M(t)

2.2. THE STATE-SPACE MODEL AND THE KALMAN FILTER

The State Space Model has been widely studied (e.g. Shepard (1994), Shumway
and Stoffer (1991), Harrison and Stevens (1971, 1976)). This model has be-
come a powerful tool for modeling and forecasting dynamical systems and it
has been used in a wide range of disciplines such as biology, economics, engi-
neerings and statistics (Guo et al. (1999), Kitagawa and Gersch (1984). The
basic idea of the state-space model is that the d-dimensional vector of obser-
vation Y; at time ¢ is generated by two equations, the observational and the
system equations. The first equation describes how the observations vary
in function of the unobserved state vector X; of length h: Y, = Fy X, + €,
where ¢ represent an added noise and F} is a d x h matrix of scalars. The
essential difference between the state-space model and the conventional
linear model is that the state vector X, is not assumed to be constant
but may change in time. The temporal dynamical structure is incorporated
via the system equation: Xy = Gy X1 + 1, where 1 represents an added
noise and Gy is an h x h matrix of scalars. There exists a long literature
about the estimation of the parameters for such models. In particular, the
Kalman filter provides an optimal way to estimate the model parameters if
the assumption of gaussianity holds. Following the definition by Meinhold
and Singpurwalla (1983). the term “Kalman filter™ used in this work refers
to a recursive procedure for inference about the state vector. To simplify
the exposition, we assume that the observation errors e; are independent
of the state errors n; and that the sampling is equally spaced. t = 1, ..., n.
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The results shown in this paper could be easily extended without such
constraints. But, the loss of clarity in the notations would make this work
more difficult to read without bringing any new important concepts.

2.3. KALMAN FILTERING AND GENERAL SKEW-NORMAL
DISTRIBUTIONS

From Equation (2), it is straightforward to see that the sum of two in-
dependent general multivariate skew-normal distributions is not necessary
a general multivariate skew-normal distribution. In order to obtain the
closure under summation needed for the Kalman Filtering, we extend the
linear state-space model to a wider state-space model for which the stability
under summation is better preserved. In order to pursue this goal, we need
the following lemma. Its proof can be found in Dominguez-Molina et al.
(2001).

Lemma 1 Suppose Y = GMSN,, ;(p, 8, D, v, A) and A is a r x n matrix,
Then, we have X = AY ~ GMSN,,, (Ap, ASAT, DA* v, A) where A* is
the left inverse of A and A~ = A~! when A is an n x n nonsingular matrix.
It Y 1s partitioned into two components, Y; and Yy, of dimensions /i and
n — h respectively and with a corresponding partition for p, ¥, D, and v.
Then the conditional distribution of Y5 given ¥) = g is:

GM SN, (pi2+E01 51 (Y1 — 1), Bo— B 811 B2, Do, v—Diyr, A). (4)

The converse is also true, i.e. if (4) is the conditional distribution of Y5 given
Yi =y and Y] ~ GMSNp (01, 811, Dy, v, A), then the joint distribution
of ¥j and Yy is GM SNy, (1. 2, D, v, A).

The proof is the same as for the multivariate Gaussian distribution.

2.4. EXTENSION OF THE LINEAR STATE-SPACE MODEL

Our strategy to derive a model with a more flexible skewness is to directly
incorporate a skewness term, say Sy, into the observation equation

Yi = FiXi+ ¢ (5)
= PU; + QiS; + ¢, with Fy = (P, Q;) and X; = (U, 817,

where the random vector Uy of length k and the d x k matrix of scalar F,
represent the linear part of the observation equation. In comparison, the
random vector S; of length [ and the d x | matrix of scalar @)y correspond
to the additional skewness. The most difficult task in this construction is
to propose a simple dynamical structure of the skewness vector 5; and
the “linear” vector U; while keeping the independence between these two
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vectors (the last condition is not theoretically necessary but it is useful
when interpreting the parameters). To reach this goal, we suppose that the
bi-variate random vector {U;r 2 VET)T is generated from a linear system:

U, = K,U_,; +T}? (6)
1"{ = _LfVE_l + ?}':

where the Gaussian noise rf ~ N (g5, X7 ) is independent of nt ~N (1t Z7)
and where K; , respectively L; represents a k x k matrix of scalars, respec-

tively a [ % [ matrix of scalars. The multivariate normal distribution of the
vector (U], V;')" is denoted by

(i)~ me (3 ) ) g

The parameters of such vectors can be sequentially derived from any initial
vector (U], V)T with a normal distribution. From (3), we define the skew-
ness part S; of the state vector X; = (UéF ! SEH)T as the following conditional
variable S, = [V,_1|V, < Ly”,]. 1t follows a general multivariate skew-
normal distribution S; ~ GM SNU'[‘Q"/‘:_I,H?__I, Ly, v, E1). Consequently
the state vector has also a general multivariate skew-normal distribution

U . .
Xl = (S:) (o GﬁjSNFﬂ-I—Lk-l—!EwhQth:yt'.&l)a with IU}E = (T_c;f:r[ ) b [8)

i N _ (00 _( 0 _ (10
ﬂf—(“ Ri._l).IDE_(U LE).'yt_(ﬂF;),andﬂt_(U E;}-)'

The price for this gain in skewness flexibility is that this state vector does
not have anymore a linear structure like the one defined by the system
equation. It /4 = 0 or Ly = 0 then the classical state-space model is
obtained.

Proposition 1 Suppose that the initial vector (Ugﬁg‘iﬂf)T of the linear
system defined by (6) follows the normal distribution defined by

() =M (38 )- (5 a7 ). ®

Then both the state vector X, = (U}, 57)" and the observation vector Y;

follow general multivariate skew-normal distributions, X; ~ GMSNy, , (44, Q4, Dy, v, Ay)
and Y, ~ GMSNgm(pe, T, By, v, Ag) for t > 1. The parameters of these
distributions satisty

P = Kef_y + iy O = =Lt + gt and py = Fyfe + e
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and
O =K K +3, f =00 L] + 5 and Ty = B, F] + £,

Ey = DiFf, Dy = Dy G and vy = (07, 4;7)7T.

The proofs of our propositions about the Skewed Kalman filter can be found
in Naveau and Genton (2002).

2.5. SEQUENTIAL ESTIMATION PROCEDURE: KALMAN FILTERING

To extend the Kalman filter to general skewed normal distributions, we
follow the work of Meinfold and Singpurwalla (1983) who derived a Bayesian
formulation to derive the different steps of the Kalman filtering. The key
notion is that given the data Y; = (¥7....,Y}:), inference about the state
vector values can be carried out through a direct application of Bayes’ the-
orem. In the Kalman literature, the conditional distribution of (X;—1[Y¢—1)
1s usually assumed to follow a Gaussian distribution at time £ — 1. In our
case, this assumption at time £ — 1 is expressed in function of the general
multivariate skew-normal distribution:

(X1 |Yio1) = GMSNy (1, oy, Doy, Avy), (10)

where  represents the location. scale, shape, and skewness parameters of
(X:—1|Y;-1). Then, we look forward in time £, but in two stages: prior to
observing Y, and after observing Y;. To implement these two steps, Lemma
1 is used to determine the conditional distribution of a general multivariate
skew-normal distribution.

Proposition 2 Suppose that the initial vector (U], V')" follows the nor-
mal distribution defined by (9), that the posterior distribution of X; follows
(10) at time # — 1 and that we have for U; and V; introduced in (5)

Ut—].|-k» ) o O, O

) ~N B I I B , 11
( | s )\ of -
where © represents the posterior mean and covariance. We define the fol-
lowing quantities: R;’ = Liﬂ.r_]Li +3F Ry = K,Qf (K, + E;‘;,,

% = QR Q] + PR PT + %, and Q, = L,(Q} , + C,P'S, ' PCy)LT

and e, = Y, — Qi[Kyb; | + piy] = P [E(S|Y-1)] = pe, where E(S|[Y; )
is the conditional expectation of S; given Y;  and (} is the conditional
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covariance Cy = cov(V;_1, S¢|Y¢-1). The parameters of the posterior distri-

butions are computed through the next cycle by the following sequential
procedure:

{Xf- [Yt) i Gﬂ{SN-‘C-l—Lk-I—I“ﬁhf‘!h f)hf'}hé‘t]: with Tﬁf = ("i?llj—é ) n

i—1
and where
x  THE O & FEIN o FEY s FF@
L ( 0 f:,._)°ﬂ“ (n Lt)”"“ (-aﬁr)’d“dﬂ‘“ (0 z+)
and with % " ]
Wi\ _ [ Kb+ + RIQTE e
T —Lefit + pf — LG PTE ey )7
and

Q ot _ R - RIQ[E;'QiR; K L+ RIQT =, ' RCLT
o+ Qf -LSCH KT + LiCPTE'QuR; R — LiCPTET; ' P.C,L] '

Although the notations are a little more complex, the Kalman filter-
ing steps for the skewed extended state-space model does not present any
particular computational difficulties.

3. Distributions of distribution with application to climatology

3.1. MOTIVATIONS AND DATA

The data set under study comes from the European Center for Meteorolog-
ical Forecasting (ECMWTF). The temporal resolution is of 6 hour (0 a.m.,
6 a.m., 12 a.m., 6 a.m.) and the data covers the period from December
1998 to December 1999. For each latitude and each longitude, the values
of different atmospheric variables (pressure values, temperature, specific
humidity, winds, ete) are available at 50 different vertical levels. These
levels are not equally spaced and vary from one location to another. This
implies that we can not choose a specific altitude (or pressure level) and
simply apply classical methods at different chosen altitudes. Despite this
difficulty, the atmospheric scientist would like to summarize the information
contained in this multi-variate 3D grid into a 2D map, i.e. on the surface
of the Earth. Being able to recognize different climatic behaviors is of par-

ticular interest. An accurate partition of these vertical profiles is essential
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to interpret satellite observations into atmospheric variables (inversion of
equations of radiative transfer, Chédin et al, 1985). From a statistical point
of view, we rephrase this scientific question as a clustering problem, clas-
sifying multi-variate vertical profile distributions into clusters with similar
physic properties inside a cluster and distinct physic characteristics between
clusters. Consequently, a fundamental difference with classical clustering
algorithms is that a classification method has be directly applied to dis-
tributions (vertical profiles) instead of observations. As an application,
16200 multi-variate vertical profile distributions have to be decomposed
as a mixture of K = T classes. This number was chosen by atmospheric
scientists and each class should correspond to a specific climatic situation.
The distributions will either be of temperatures, humidities, or both. To
illustrate the clustering procedure, we will focus on a particular date (the
15th of December 1998 at midnight). Before showing the results of this
analysis, we need to establish a basic statistical framework.

3.2, DEFINING DISTRIBUTIONS OF DISTRIBUTIONS

Suppose that the vector F = (Fy, ..., F};) represents the temperature vertical
profile distributions over the entire globe, respectively H = (Hy,..., H;)
for the humidity. To work with such sets of distributions, the concept of
distributions of distributions developed by E. Diday (2001) is needed. The
details of the clustering methodology of distribution of distributions can be
found in the work by M. Vrac (2002, 2001).

Let t be a real. A distribution function of distributions is defined by

Di(x) = P({F € Qp such that F(¢) < z}), for any real ¢,

where 5 is the set of all possible temperature distributions. From a more
practical point of view, Dy(x) could be estimated by

i Fi(t) < x|, with Fi(t ZI[X” <,

where I[A] represents the indicator function, equal to 1 is if A true and 0
otherwise, and I?}{z‘.} denotes the empirical distribution of the ith profile that
has n; observations. Although this estimation strategy has the advantage
of being simple, the clustering algorithm converges slowly due to the step-
functions. Instead, we use the " Parzen estimation method” to model the
vertical profile distributions

filz) = L iﬁ,(r——%) and Fi(t f filz
BT nghy = R : i
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where K is a kernel function and h; the window width (Silverman 1986).
Because the density di(z) = Dj(z) takes its values on [0, 1], we choose to
model it by a Beta density

- Tip: + 1) Pl

dyy (E) = (o) T () (1—a)™!, withy = (o) > 0. (12)

Hence, f}¢1aﬁ (@) =f§ fjt,;,, (u)du with 44 estimated from the sample {f:';{f)}i_ -

For the practitioner, studying the relationship between two given tem-
peratures, say t; and to, is of primary interest. To investigate such a link,
the definition of Dy with ¢ real is extended to the bi-vector t = (t1.2) by
setting

Dy(z1,22) = P({F € QF such that F(t;) < x| and F(t2) < z2}).

The extension to higher dimensions does not present any major difficulty,
but to reduce the notational complexity we restrict our exposition to the
bi-variate case for the remainder of this paper.

3.3. MIXTURE OF DISTRIBUTION OF DISTRIBUTIONS AND COPULAS

Our goal is to cluster the different vertical profile distributions into K =7
classes. To perform this task, we assume that the distribution D¢ can be
expressed as a mixture of distributions

K
Dy(z1,22) =Y meDy g1, 2)
k=1
where 3 7 = 1,0 < m; < 1 and Dy represents a bi-variate distribution. We
express the relationship between the distribution Dy ;. and its two marginals
by directly applying Sklar’s theorem (Sklar 1959, Nelsen 1998). This gives

1Y

Dt{."ﬂl 3 3'32) = Z ﬂkct,k (Dil,k(:rllsﬂigfk{mQ)} Y
k=1

where Cy . is a copula function, There exists a variety of parametric forms
to model this copula. In our applications, we use Frank’s copula (Nelsen
1998)

(Bex — V(B —1)
Begp —1

Cepl(u,v) = 1 log (1 +

= , with u, v € [0, 1],
log B ) (0,1]

Tl

where the positive parameter B¢ i # 1 is a indicator of dependence, Cy x(u, v) ~

uv for B T 1, Cep(u,v) ~ min(u,v) for Sy i | 0 and C j(u,v) ~ max(u +
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v — 1,0) for fg ) T 00. The first case, respectively the second case, corre-
sponds to the independence, respectively to the total dependence.

3.4, PARAMETERS ESTIMATION AND CLUSTERING ALGORITHM

The next step is to sequentially cluster the n = 16200 vertical profile dis-
tributions and to estimate all parameters from the previous sections. The
chosen method is an extension to distributions of the " Nuées Dynamiques”
method (Diday et al., 1974). Given a partition IT = {II;, ..., TIx } (the first
one is randomly generated), the clustering algorithm constitutes of 3 main
steps: (1) estimation of the mixture proportions {7}, (2) estimation of
other mixture parameters, (v, &, V. ,k} for the Beta laws and {3 x} for the
copula’s parameter, (3) re-allocation of all individuals w; into K new classes
with ¢ = 1,...,n. This 3 step procedure is repeated until the desired conver-
gence is reached. The first step is undertaken by setting ;. as the number of
elements in the kth class divided by the total number of individuals. Other
alternatives can be used (Celeux and Govaert, 1993). The second step is
realized by maximizing the classifier log-likelihood

Fit ) .
(ILE) =Y Y log [di e, 28):64)] . with 0= {Be, Y s Yok k=1, k.
k=1u; eIl

where w; = {i : EFi(t) < ;I:l,ﬁ'il[fz]l < @2} and dg (@), z2; 0 ) is the density
derived from Dy ¢(z,®2;6x). The last step is implemented by defining the
new classes as Il = {w : mpdy ¢ (w; 0)) = max{mdi¢(w;6) : 1 =1,..., K}}

3.5. APPLICATION TO THE TEMPERATURE PROFILES

Figure 1 shows a classification of the 16200 vertical temperature profiles into
T clusters. This result was obtained after applying the clustering procedure
for two iterations. Although not spatial dependence was introduced in the
model, the spatial coherence obtained from the clustering procedure is a
positive indicator of the quality of the algorithm. From a scientific perspec-
tive, the clusters provides realistic classes. Cluster 4 can be identified as a
"tropical class”. Two "polar™ clusters can be linked to the winter season
at the South pole (cluster 1) and to the summer season at the North pole
(cluster 7). Cluster 3 makes the transition between moderate and tropical
zones, cluster 6 between polar and moderate zones. The high reliefs are
clearly identified (Himalaya, Andes).
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Decomp ND (Frank-dist beta) 7el T(225,265) 15/12

Figure 1. Clustering of the 16200 temperature vertical profiles into 7 clusters

3.6. EXTENSION TO MULTI-DIMENSIONAL DISTRIBUTIONS

In the previous sections, we exclusively focused on the temperature profiles
but extending the procedure to multi-dimensional atmospheric vectors, e.g.
the bi-variate vector of the temperature and humidity profiles, will greatly
incrase the range of applications of this work. The coupling method is based
on the following mixture decomposition

.
Dy (x7) = 3" 7k Coo o (Dot #(31), Dy, l2) ), with x0) = (27, 287),
k=1

where the integer r represents either the temperature (r = 1) or the hu-
midity (r = 2). Then this couple of distributions can be linked by Sklar’s
theorem. There exists a copula function C such that

DM, %)) = € (D (x1V), Doy (x)) .

Although the notations become more complex, the same overall principles
of the algorithm described in Section 3.4 can be applied. A main difference

is that, in addition of setting two temperature levels {t[lj},tgl]), we also

need to fix two humidity levels {tggj, th}}. Figure 2 represents the output
of such a coupling procedure. Cluster 7, respectively cluster 1, corresponds

to the winter season at the North pole, respectively the summer season at



13 P. NAVEAU ET AL.

7 classes (cop Frank - dist beta) T(225,265), H(0.00003,0.006) 15/12/98 0H

________________ i, iy : b
k _..- : H - 1 1
: ! . =i : | | -
. : | : : ; : : . | |
1 r k1 4 5 h 7

Figure 2. Clustering in 7 classes by coupling the temperature and the humidity

the South pole. This two regions were already identified in the temperature
clustering, but additional variations are generated from humidity in Figure
2. Two tropical classes are identified, very humid (cluster 4) and humid
(clusters 3). Cluster 4 is in better agreement with existing humid zones than
the ones obtained before. The other clusters represent transition regions
from tropical classes (hot and humid) to polar classes (dry and cold).

4, Conclusions

In this first part of this work, we showed that extending the normal distri-
bution to the general multivariate skew-normal distribution for state-space
models did neither reduce the flexibility nor the traceability of the opera-
tions associated with Kalman filtering. To the contrary, the introduction of
a few skewness parameters provides a simple source of asymmetry needed
for many applications. Further research is currently conducted to illustrate
the capabilifies of such extended state-space models for real case studies.
By introducing a higher abstraction level in clustering methods, the
concept of distributions of distributions and copulas extends the applica-
bility of current procedures (Diday et al. 2001, Vrac 2002). In addition, it
allows to model different dependence levels for probabilistic data, internal
dependencies inside a distribution of distributions (see Section 3.5) and
external ones, for example between the humidity and temperature verti-
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cal profile distributions. Besides providing realistic climatic classifications,
these results emphasize the strong potential of this clustering method at
helping the understanding of other atmospheric variables and their inter-
relationships. Other algorithms have been generalized in the same way with
copulas : the theoretically extensions of the algorithms EM, SEM, SAEM,
and CEM was derived by Vrac (2002). Comparisons between these extended
methods and "elassical” algorithms of classification indicate that the proce-
dures based on the concept of distributions of distributions perform better
in the context of climatic studies (Vrac 2002). It is worthwhile to note that
the proposed method can also be applied to classical numerical observations
and functional data. Finally, multi-variate versions of the algorithm exist
and are based on multidimensional generalized Archimedian copulas (Vrac
2002). This extension to multi-variate cases constitutes a strong axis of
current research.
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