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ABSTRACT5

One of the main objectives of statistical climatology is to extract relevant information hidden6

in complex spatial-temporal climatological datasets. To identify spatial patterns, most well-7

known statistical techniques are based on the concept of intra and inter clusters variances8

(like the k-means algorithm or EOF’s). As analyzing quantitatively extremes like heavy9

rainfall has become more and more prevalent for climatologists and hydrologists during10

those last decades, finding spatial patterns with methods based on deviations from the mean,11

i.e. variances, may not be the most appropriate strategy in this context of studying such12

extremes. For practitioners, simple and fast clustering tools tailored for extremes have been13

lacking. A possible avenue to bridging this methodological gap resides in taking advantage14

of multivariate extreme value theory, a well-developed research field in probability, and to15

adapt it to the context of spatial clustering. In this paper, we propose and study a novel16

algorithm based on this plan. We compare and discuss our approach with respect to the17

classical k-means algorithm throughout the analysis of weekly maxima of hourly precipitation18

recorded in France (Fall season, 92 stations, 1993-2011).19
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1. Introduction20

Clustering algorithms are routinely run to summarize and visualize important spatial21

and/or temporal patterns in climate sciences. For example, Stefanon et al. (2012) proposed22

a method for defining and classifying heatwave events in the Euro-Mediterranean region.23

Another example corresponds to the use of the k-means algorithm (e.g., Hastie et al. 2009)24

to provide the different phases of the North Atlantic Oscillation (NAO) (e.g., Cassou et al.25

2004). The k-means method is based on the choice of a metric, classically related to a26

Euclidean (L2) norm, i.e. deviations from the mean behavior like intra and inter variances.27

In a nutshell, the k-means principle is to find clusters such that the variance within each28

cluster is minimized. This makes sense for applications that aim at identifying patterns29

with respect to mean behaviors. In particular, it is ideally suited when the variable of30

interest follows a mixture of normal distributions because Gaussian random vectors are fully31

characterized by their mean vectors and their covariances matrix (e.g., von Storch and Zwiers32

2002). Coming back to the NAO example, it seems reasonable to implicitly assume that33

winter monthly sea level pressure means (the k-means inputs in Cassou et al. (2004)) can be34

represented by a mixture of normal distributions. The Central Limit Theorem (e.g., see page35

35 of von Storch and Zwiers 2002) insures the normality of such means within each weather36

regime. But other atmospheric variables like hourly precipitation amounts may strongly37

differ from being Gaussian or even a Gaussian mixture. Precipitation intensities take only38

non-negative values, their probability densities are skewed and their extremes may be heavy39

tailed (e.g, Katz et al. 2002). In such instances, it is still possible to implement the k-mean40

algorithm, but one can wonder if the clusters are interpretable when means and variances41

become ambiguous summaries for skewed and heavy-tailed probability densities. Does this42

imply that clustering algorithms like the k-means should be discarded? If so, what could43

be a statistically sound alternative? Answering those types of questions within the context44

of analyzing maxima is important (e.g., Plaut et al. 2001). Putting into light new spatial45

or temporal patterns for maxima may help the understanding of climate extremes, provide46
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useful statistical tools for impact studies and also avoid some erroneous interpretations of47

extreme events analysis derived from inappropriate clustering techniques.48

The statistical analysis of maxima is based on the well-developed Extreme Value Theory49

(EVT) (e.g., see Resnick 2007; de Haan and Ferreira 2006; Beirlant et al. 2004; Coles 2001).50

This theory indicates that the Generalized Extreme Value distribution (GEV) represents the51

ideal candidate for modeling the marginal distribution of block-maxima (as opposed to the52

peaks-over-threshold approach). This probabilistic framework has been applied in climate53

studies (e.g., see Kharin et al. 2007). In a spatial context, multivariate EVT also provides54

a theoretical blueprint to represent dependencies among maxima recorded at different loca-55

tions. Coles et al. (1999) gives an overview of such dependence measures. For example, it is56

possible to adapt the variogram, a well-known distance used in geostatistics (e.g., Wacker-57

nagel 2003), to EVT. This special variogram called a F-madogram, see Section 2 for details,58

was proposed by Cooley et al. (2006) and Naveau et al. (2009) who studied a non-parametric59

approach for estimating pairwise dependence among maxima. It was applied to precipitation60

maxima measured in Belgium (Vannitsem and Naveau 2007). Those past studies indicate61

that it is possible to “measure” the distance between two time series of maxima recorded62

at two different locations and that this measure, the F-madogram, is in compliance with63

EVT and differs from classical measures of variability like the variance used in the k-means64

algorithm.65

The aim of the present work is to develop a clustering algorithm for maxima based on66

the F-madogram. A natural strategy could be to simply replace the L2-norm (the variance)67

in the k-means algorithm by the F-madogram distance. But in the k-means algorithm,68

new centroids at each time step are obtained by averaging of observations within each clus-69

ter. Averages of normally distributed observations remain Gaussian, but averages of GEV70

distributed maxima do not stay GEV distributed. This poses a problem in terms of inter-71

pretability within the EVT framework and leads us to work with the Partitioning Around72

Medoids (PAM) clustering algorithm proposed by Kaufman and Rousseeuw (1990). Similar73
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to k-means, PAM is a partitioning algorithm that divides datasets into groups and aims74

at minimizing an overall distance. Whereas the k-means algorithm represents each cluster75

center by its mean, the PAM algorithm looks for representative objects (called medoids).76

This implies that maxima remain maxima and no smoothing (averaging) is performed within77

PAM.78

Our paper is organized as follows. Section 2 recalls some theoretical background about79

bivariate EVT and makes the necessary links between EVT and the PAM clustering algo-80

rithm. Rainfall maxima over the French region are spatially clustered in Section 3. Section81

4 leads to a discussion.82

2. Algorithm description83

In terms of notations, the random variable Mi generically represents weekly maxima of84

hourly precipitation located at weather station i. Dividing a region into coherent spatial85

patterns is a classical endeavor in climatology. To be able to cluster points, we need to86

assess the strength of the spatial dependence between the maximum Mi and the maximum87

Mj, i.e. how to model their pairwise distribution. Following the mathematical framework of88

multivariate EVT (e.g., see Resnick 2007; de Haan and Ferreira 2006; Beirlant et al. 2004;89

Coles 2001; Fougères 2004), it is reasonable to assume that the bivariate vector (Mi,Mj)
T

90

follows a bivariate EVT distribution91

P(Mi ≤ u;Mj ≤ v) = exp

[
−Vij

(
−1

lnFi(u)
,
−1

lnFj(v)

)]
, (1)

where Fi(u) = P(Mi ≤ u) represents the marginal distribution of Mi and the extremal92

dependence function Vij(., .) is defined as93

Vij(x, y) = 2

∫ 1

0

max

(
w

x
,
1− w
y

)
dHij(w)

whereHij(.) corresponds to any distribution function on [0, 1] such that its expectation equals94

to 0.5. This class of distributions arises as the natural non-degenerated limit of rescaled i.i.d.95
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componentwise maxima of random vectors (de Haan and Ferreira 2006; Resnick 2007). At96

this stage, such a definition may appear rather obscure and some light can be shed on97

(1) by looking at the special case where u = v. Because of the definition of Vij, we have98

Vij(x, x) = Vij(1, 1)/x and it follows from (1) (e.g., Naveau et al. 2009) that99

P(Mi ≤ u;Mj ≤ u) = [P(Mi ≤ u) P(Mj ≤ u)]Vij(1,1)/2 . (2)

The scalar Vij(1, 1), called the “extremal coefficient”, gives partial but paramount informa-100

tion about the degree of dependence between Mi and Mj (e.g., see Schlather 2002; Schlather101

and Tawn 2003). If those two variables are independent, then Equation (2) implies that102

Vij(1, 1) = 2. If they are equal, then we have Vij(1, 1) = 1. Hence, the extremal coeffi-103

cient can go from one (complete dependence) to two (full independence), and therefore it104

can capture relevant information about the dependence strength. Another way to interpret105

the extremal coefficient is to make the connection with a specific variogram of order one.106

A variogram of order p is defined as the moment of order p of the difference between Mi107

and Mj, E|Mi −Mj|p (e.g., see Wackernagel 2003). Cooley et al. (2006) showed that the108

“F-madogram” defined as109

dij =
1

2
E|Fi(Mi)− Fj(Mj)| (3)

can be expressed in terms of the extremal coefficient110

dij =
1

2

Vij(1, 1)− 1

Vij(1, 1) + 1
. (4)

If the two weather stations i and j are close to each other and local conditions at both111

places are basically identical, the precipitation maxima Mi and Mj should be similar and112

dij should be close to zero. Equation (4) tells us that the extremal coefficient should be113

near one. Conversely, if the two locations i and j are far away from each other and can be114

considered as independent, then the extremal coefficient is close to two and Equation (4)115

implies that the madogram should be equal to 1/6. Besides being an interpretable distance,116

another advantage of the madogram resides in the fact that its value can be easily inferred117
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in a non-parametric fashion. The distance dij in (3) corresponds to an expectation and can118

be inferred as a sample mean. Given a sample of maxima (M
(t)
i ,M

(t)
j )T recorded at two119

locations i and j and at T different time units, then the definition of the madogram dij,120

provides a natural non-parametric estimator121

d̂ij =
1

2T

T∑
t=1

|F̂i(M (t)
i )− F̂j(M (t)

j )| (5)

where T is the bivariate sample length and F̂i is the empirical distribution function122

F̂i(u) =
1

T

T∑
t=1

1{M(t)
i ≤u}

,

where 1{M(t)
i ≤u}

represents the indicator function of the event {M (t)
i ≤ u}. By plugging d̂ij in123

Equation (4), an estimator of the extremal coefficient Vij(1, 1) is automatically deduced. For124

the theoretical properties of those estimators, we refer to Cooley et al. (2006) and Naveau125

et al. (2009).126

The definition of the madogram dij also emphasizes an essential point concerning the127

interpretation of our results. Applying to the random variable Mi its own distribution128

Fi(u) = P(Mi ≤ u) in Equation (3) makes the variable Fi(Mi) uniformly distributed. The129

same is true for Fj(Mj). This implies that the madogram (or equivalently the extremal130

coefficient) does not depend on the marginal laws and, consequently, it cannot provide131

information about how much rain can fall at a specific site. It is a dimensionless concept132

and it only describes the dependence strength. The term copula is often used in the statistical133

literature to describe this decoupling between margins and the dependence function. This134

decoupling between the marginals and the dependence strength will be beneficial when we135

will have to interpret the map of our clustered maxima. To infer the madogram values, we136

just need to plug in the empirical versions of Fj and Fi and compute an average, see Equation137

(3) and Appendix A. This means that we don’t need to fit a GEV at each weather station.138

This saves computational time and allows weaker modeling assumptions than imposing GEV139

marginals. Naveau et al. (2009) showed that the dependence V (., .) can be estimated from the140
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empirical madogram estimator as the sample size and the block size increase (see Proposition141

4 of Naveau et al. (2009)). So, it was not assumed that maxima were GEV distributed, but142

they only belong to the domain of attraction of max-stable distribution.143

Having at our disposal the distance dij that is tailored from maxima motivated by (1),144

we have to choose a clustering algorithm. As already stated in the introduction, the k-means145

algorithm creates cluster centers by averaging points within a cluster. Such averaging oper-146

ation destroys the max-stable property encapsulated in (1), since average of more than one147

maximum is no longer a maximum. As an attractive alternative, the Partitioning Around148

Medoids (PAM) algorithm proposed by Kaufman and Rousseeuw (1990) is known to pre-149

serve the observations at hand, a weekly maximum remains a weekly maximum. The PAM150

algorithm divides a dataset of N objects into K clusters. Three pre-processing steps are151

needed before implementing PAM. First, the distance matrix {dij} defined by (3) has to be152

computed. Second, the number of clusters K has to be chosen and third, to initialize the153

PAM algorithm, an initial set of K medoids has to be randomly selected, i.e. a group of K154

randomly chosen stations. Then, the PAM algorithm can be run as follows.155

(A) Form K clusters by assigning every point to its closest medoid.156

(B) For each cluster, find the new medoid for which the total intra-cluster distance based on157

dij is minimized.158

(C) If at least one medoid has changed, then go back to (A), otherwise end the algorithm.159

In summary, PAM proceeds by moving around K medoids while trying to make the total160

intra-cluster distance as small as possible. As mentioned previously, the “centers” of the161

cluster, the so-called medoids, still represent valid weekly precipitation maxima at each step162

of the algorithm. Consequently, the distance dij can always be interpreted via (4) at any163

stage within the PAM algorithm.164

To choose a relevant number K of clusters and to assess if a weather station is well165

classified, Rousseeuw (1986) developed the so-called “silhouette coefficient” that compares166
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cluster tightness (small dik within the cluster k) with cluster dissociation (see δi,−k defined167

below). After running the PAM algorithm with a given K, each location i is associated with168

a medoid k. The silhouette coefficient for the weather station i is defined as follows169

si(K) = 1− (dik /δi,−k) ,

where dik represents the intra-cluster distance between medoid k and station i and δi,−k170

corresponds to the smallest distance between station i and all the other medoids but k.171

For the PAM algorithm procedure, si(K) necessarily belongs to the interval [−1, 1]. If172

si(K) ≈ 1, it means that the intra-cluster distance is much smaller than the inter-cluster173

distances. Consequently, the maximum Mi can be considered as well classified. In contrast,174

if si is near zero, the clustering is viewed as non-informative, meaning that Mi could have175

been in an other cluster as well with the same relevancy. To summarize the quality of a176

partionning into K clusters, one can derive the average silhouette coefficient177

s(K) =
1

N

N∑
i=1

si(K), (6)

or other statistics from the set {s1(K), . . . , sN(K))}. Such summaries will be used in our178

application. To implement our approach, a package for the open-source statistical R software179

is available the homepage of the second author.180

3. Applications to French precipitation maxima181

Here we focus on weekly maxima of hourly precipitation at 92 French stations during the182

the Fall season (SON) from 1993 to 2011. They were provided by the French meteorological183

service, Météo-France. The stations were chosen in function of their quality and to have184

a fairly homogeneous coverage of France. To avoid dealing with zero’s and in order to be185

consistent with EVT, very small values of precipitation (rainfall amounts below 3mm) were186

discarded (qqplots and other diagnostics, available upon request, were used to not reject187
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the hypothesis of GEV distributed marginals). Before applying our PAM approach to those188

data, we have applied the classical k-means algorithm to those rainfall maxima.189

Panel A of Figure 1 displays the outputs into five clusters. The difference between the left190

and right maps in Panel A is due to the nature of the k-means inputs, raw maxima (left) and191

their logarithm (right). This discrepancy between the two maps indicates that the choice192

of the marginal laws has a strong effect on the clustering outputs. For example, rainfall193

recorded in Brittany along the Atlantic coast is very different (in a distributional sense)194

from precipitation measured in Corsica, an island in the Mediterranean Sea. This emphasizes195

that it is unreasonable to “compare apples and oranges”, i.e. to perform clustering on times196

series with different marginal laws. Quantitatively, this can be assessed by fitting a GEV197

probability distribution function defined by G(x) = exp{−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
+
} where the real198

µ is the location parameter, σ the positive scale parameter and ξ ∈ R the shape parameter.199

Panel B of Figure 1 displays the scale and shape GEV parameters inferred for each200

location (by probability weighted moments, (e.g., see Dielbolt et al. 2008)), respectively the201

left and right maps. Panel B indicates well-known climatological results. Fall heavy rainfall202

intensities are located near the Mediterranean coast while the center and northern part of203

France have milder extreme precipitation intensities.204

Comparing the left of panel A with panels B suggests that the south east region with205

heavy rainfall, i.e. with large GEV parameters, influences the k-means algorithm. This206

makes sense because having large scale and shape parameters corresponds to strong vari-207

ability and the variance is the key clustering criterion for the k-means algorithm. But this208

also means that this clustering attempts to answer two different questions that may not be209

linked. The question regarding the intensity of rainfall at a given weather station (a univari-210

ate concept based on the marginal distribution) is mixed with the inquiry inquiry about the211

strength is the spatial relationship between two neighboring weather stations (a bivariate212

distributional concept). This is an undesirable trait that renders the interpretation of those213

clusters extremely complex.214
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As previously mentioned, our proposed PAM approach based on the F-madogram is215

marginal free and implemented via a non-parametric approach. This second point implies216

that we do not need to fit a GEV distribution at each weather station. This reduces compu-217

tational time and removes a source of uncertainty (it is always difficult to infer accurately a218

shape GEV parameter and its associated confidence intervals).219

To visualize the differences between the classical k-means approach and our proposed220

method based on the PAM algorithm, Figure 2 compares the clustering outputs for both221

methods, maps on the left for our PAM approach and on the right for the k-means algorithm222

applied on log-precipitation maxima (to reduce the margins problem). Each panel, A, B and223

C, corresponds to a different number of clusters K = 2, 5 and 7. Each medoid has a diamond224

shape with a black contour. Each station is linked to its medoid by a grey line if its silhouette225

coefficient is significant. Otherwise it simply appears as a circle (instead of a diamond).226

To determine the 90% confidence level for a fixed K, our PAM algorithm was rerun after227

randomly sampling our rainfall data in order to break any spatial dependence. This scheme228

was repeated 20 times and the 95% quantile from this sample of 20 average silhouette coef-229

ficients. At this stage, it is important to emphasize that the k-means and PAM algorithms230

run without any geographical information, but only rainfall records. So, finding coherent231

spatial structures from only rainfall measurements was not automatic. From Figure 2, it232

appears that the PAM and k-means approaches provide strikingly different clusters. This233

may be one of the most important messages of this work. Choosing a clustering method and234

a specific metric can have an enormous impact on clustering patterns and lead to potentially235

different or even conflicting climatological interpretations. For example, PAM with K = 2236

(Panel A) divides France into a north-south fashion along the Loire valley line, while the237

k-mean roughly reproduces the main characteristic of the GEV parameter, see Panel B of238

Figure 1. This feature is linked to rainfall intensities but not necessarily to spatial precip-239

itation dependencies. For K = 5 (Panel B), PAM isolates the west region above Bordeaux240

(blue color) from the central region (around Paris), while the k-means emphasizes Corsica241
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and two Mediterranean cities (blue color), again stressing rainfall intensities. As the number242

of clusters increases (K=7 in Panel C), sharper regional features appear and are geograph-243

ically coherent. For K = 7, k-means starts to break down a little bit by creating clusters244

without any spatial structure, see the isolated four light orange points in Brittany.245

In the south of France, extreme rainfall events in the Fall are usually caused by southern246

winds, forcing warm and moist air to interact with mountainous areas of Pyrénées, Cévennes247

and Alps, resulting in severe thunderstorms. A systematic inventory of those situations248

over 1958-1994 period was studied by Jacq (1994). Those events may be very local in249

some cases, but often affect one third to one half of the mediterranean coastal area. Large250

scale extreme events, occurring on both Corsica and Var (around Toulon) or in the Alpes251

Maritimes (around Nice) regions are very likely to affect the Rhône valley, the Alps and252

even further west to Montpellier. The ”Corsica-Nice-Toulon” cluster does not seem to be253

very justified climatologically. The Millau, Mende and Carcassonne series should belong to254

the Mediterranean cluster rather than to the ”South West Cluster” (Agen Medoid), which255

is the case in PAM with K=7. In the north of France, heavy rainfall is often produced by256

mid-latitude perturbations. Depending on their tracks, some affect Brittany, while others257

only influence the north of France and Paris. The very large northern cluster produced by258

k-means (K=2, K=5) is not consistent with our understanding of synoptic variability, while259

PAM clusters can be interpreted easily. Isolating central and eastern clusters (PAM, K=7)260

is coherent with climatic and topographic features.261

To complete this example, it is natural to wonder what would the most appropriate num-262

ber of clusters. Each boxplot in Figure 3 summarizes the silhouette coefficients distribution263

for a given K varying from 2 to 16. Applying Equation (6), the average silhouette coefficient264

is represented by the solid black line. The dotted line with grey diamonds corresponds to265

the upper 95% level obtained after randomly reshuffling our precipitation data. This breaks266

down the spatial structure (figures available upon request) and silhouette coefficients below267

such thresholds are considered as non-significant, see small circles in Figure 2. Figure268
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3 does not bring a clear winner here as the largest average silhouette coefficients are very269

close around 0.12 (for K=2) and 0.11 (for K=5). In regards with the maps displayed in270

Figure 2, the spatial patterns for K=5 or even K=7 indicates that the clusters are coherent271

with geographical features. To keep the maps interpretable and avoid overparametrization,272

choosing around K = 5 represents a good compromise. Although significant, the silhouette273

coefficients in this example are not very large and this may be explained by the variable274

under study. Extreme precipitation events certainly have short range spatial dependences.275

A finer spatial resolution should give stronger localized structures but such precipitation276

data at the hourly scale and of high quality are difficult to find at the scale of a country.277

4. Discussion278

By combining two statistical methods, the PAM algorithm with the F-madogram, a279

simple clustering algorithm for maxima was proposed and studied. Besides being in compli-280

ance with EVT, it offers a different perspective for those who are interested in identifying281

spatial or temporal patterns in statistical climatology. As an illustration, a partitioning of282

the French region with respect to Fall precipitation maxima was obtained. This clustering283

strongly differs from a variance based approach like the k-means algorithm This opens new284

challenges concerning the analysis of heavy rainfall over France and elsewhere. At the hy-285

drological basin scale, our approach could complement the well-known Regional Frequency286

Analysis (RFA, see e.g. Gaume et al. (2010)) performed in hydrology to find homogenous287

regions with respect to extreme events. Despite its name, RFA does not take into account288

any dependence among maxima. It is a method solely based on marginal probability densi-289

ties. In contrast, our approach is fully decoupled from the margins and so, it could ideally290

supplement RFA by making regions based on the dependence strength among maxima.291

Taking different block sizes (say a month instead of a week) with different precipitation292

types (say daily instead of hourly) may provide different clustering patterns. This could293
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lead to news avenues to explore clustering maps, especially with respect to more traditional294

approaches.295

Another possible direction could be to apply our method within a context of dimension296

reduction. Currently, very few statistical EVT approaches exist to deal with this issue.297

Finally, our approach is computationally fast and could be applied to large datasets like298

global climate models outputs. For example, it could be used to compare spatial clustering299

of yearly maxima (or minima) of daily temperatures.300
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List of Figures362

1 Weekly maxima of hourly precipitation (Fall season, 92 stations over France,363

1993-2011). PANEL A: The clustering into five classes is obtained with the k-364

means algorithm applied to the raw maxima (left map) and to their logarithm365

(right map). This indicates that transforming marginal laws has a strong366

effect on the clustering. PANEL B: The left and right panels display the367

estimated scale σ and the shape parameter ξ after fitting a GEV distribution368

at each location, respectively. This means that the marginal law behavior369

varies spatially with heavier extremes in the south of France than in the north. 20370

2 The left and right maps display the clustering outputs from our PAM algo-371

rithm and the Kmeans algorithm, respectively. On the left maps, the medoids372

are represented by black diamonds and small circles correspond to locations373

with non-significative silhouette coefficients. The number of clusters K equals374

2, 5 and 7 for panels A, B and C, respectively. 21375

3 The solid black line represents the average silhouette coefficient defined by376

(6Algorithm descriptionequation.2.6) in function of the number of clusters.377

The boxplot summarizes the distribution of silhouette coefficients. The dotted378

line with grey diamonds corresponds to the upper 95% level obtained after379

randomly reshuffling our precipitation data (i.e. breaking down the spatial380

structure). 22381
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Fig. 1. Weekly maxima of hourly precipitation (Fall season, 92 stations over France, 1993-
2011). PANEL A: The clustering into five classes is obtained with the k-means algorithm
applied to the raw maxima (left map) and to their logarithm (right map). This indicates
that transforming marginal laws has a strong effect on the clustering. PANEL B: The left
and right panels display the estimated scale σ and the shape parameter ξ after fitting a GEV
distribution at each location, respectively. This means that the marginal law behavior varies
spatially with heavier extremes in the south of France than in the north.
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Fig. 2. The left and right maps display the clustering outputs from our PAM algorithm
and the Kmeans algorithm, respectively. On the left maps, the medoids are represented by
black diamonds and small circles correspond to locations with non-significative silhouette
coefficients. The number of clusters K equals 2, 5 and 7 for panels A, B and C, respectively.
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Fig. 3. The solid black line represents the average silhouette coefficient defined by (6) in
function of the number of clusters. The boxplot summarizes the distribution of silhouette
coefficients. The dotted line with grey diamonds corresponds to the upper 95% level obtained
after randomly reshuffling our precipitation data (i.e. breaking down the spatial structure).
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