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Abstract. Non-irrigated agriculture on the Iberian Peninsula is regularly4

affected by dry periods that can cause important losses. To describe monthly5

precipitation deficits below 30.5 mm (about 1 mm/day) in the Spanish Duero6

basin, we compare the classical Standard Precipitation Index (SPI) with a7

fragility index developed by the multivariate extreme value theory commu-8

nity. This multivariate extreme value model allows to capture relevant in-9

formation concerning the dependence structure among extreme precipitation10

deficits. Maps of those extremal dependence summaries and of loadings of11

principal components of the SPI provide quantitative information for water12

management. In addition, jointly analyzing data from several stations im-13

proves the inference of uncertainty.14

Spatial patterns of extremal dependence emerged with respect to orographic15

features. Most severe dry spells occur in the south-east of the Duero basin.16

In central plain of the Duero basin, a predominantly agricultural area, a strong17

fragility index for severity of dry spells is particularly found in eastern re-18

gions. Results of the MEVT and SPI analysis point in the same direction.19

Beyond this, the MEVT assessment gives a quantitative measure of the de-20

pendence between stations and regions. Estimates of return periods for ex-21

treme dry spell severity are discussed. Deficits below 42.7 mm are also an-22

alyzed.23
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1. Introduction

Dry periods are common in central Spain. They mostly affect the agricultural and24

tourism sectors. Crop yields on the Iberian Peninsula have been severely reduced during25

dry years [Vicente-Serrano, 2006]. In the case of extreme droughts, the water supply26

of the whole region is under question, as happened in the mid 1990s for the region of27

Madrid. In this paper, rainfall deficits of monthly precipitation totals are analysed for28

the Duero basin located in central Spain. High rainfall deficits indicate dry periods and29

thus potentially adverse conditions for agriculture. The watershed has a surface area of30

97.290 km2 and extends 78.954 km2. It is the most extensive watershed of the Iberian31

Peninsula. The topography of the basin is depicted in Fig. 1 A. Spatially, mean annual32

precipitation decreases from North to South. The mountain range which surrounds a33

topographic depression in the middle of the basin has the largest precipitation intensity.34

The central zone is very dry, contains most of the aquifer formations and is an important35

area of agricultural production. Most of the population lives in the central plain, and36

so water consumption happens mostly here. The volume of average annual precipitation37

in the complete Duero basin is around 50000 hm3, of which the majority evaporates or38

is directly used by the vegetation. Precipitation shows a marked seasonality and occurs39

mainly from October to December. This period generates soil water reserves and runoff.40

The dry period coincides with warm temperatures in summer [Morán-Tejeda et al., 2011b].41

Summer drought conditions affect 90% of the surface of the Duero river basin [Moratiel42

et al., 2011]. Rivers in this basin are highly regulated. Meteorological and hydrological43

droughts are often well correlated [Lorenzo-Lacruz et al., 2010] and river runoff will not44
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be directly included in the analysis. During the summer months, precipitation is mostly45

associated with storms and convective systems that occur with high spatial irregularity.46

In winter, larger and more systemic events impact precipitation. Various studies show47

a relationship between high values of the North Atlantic Oscillation (NAO) index and48

the decrease in winter precipitation in the western part of the Iberian Peninsula [cf., e.g.49

McCabe et al., 2001; Ceballos et al., 2004; Caramelo and Manso Orgaz, 2007].50

The most vulnerable sectors to water stress in the Duero basin are the tourism and the51

agricultural sector. The most common agricultural products in the Duero basin are forage52

grains, vegetables, maize and sorghum. Other important products are olive trees, wine53

and biofuel. In 2003, still over 50% of the Duero basin area has been used as cropland54

[Morán-Tejeda et al., 2011a]. Barley and wheat areas in the Duero basin build more than55

a third of the crop surface of Spain [Moratiel et al., 2011]. Though dry, the basin has56

enough water to allow mostly for unirrigated agriculture. Official statistics indicate that57

only about 10% of the area is irrigated.58

Dry periods have many facets, such as spatial extension, severity and duration. There-59

fore diverse definitions of a dry period exist, depending on the scope of a study. Intense60

research on droughts in the last decades lead to a portfolio of drought concepts and61

drought classifications. Here droughts are commonly seen as deviation from normal con-62

ditions [see, e.g. Mishra and Singh, 2010]. Precipitation is commonly used to indicate63

meteorological droughts, river runoff deficits represent hydrological droughts and a lack64

of soil moisture is related to agricultural droughts. An overview is given in Hisdal and65

Tallaksen [2000], Heim Jr. [2002], or Keyantash and Dracup [2002]. Another important66

branch investigates the characteristics of dry spells. Commonly a dry spell is seen as a67
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period of abnormally dry weather (normally reserved for less extensive, and therefore less68

severe, conditions than for droughts). Dry spell definitions are usually derived from the69

definition of a dry day. In general a common threshold level is used to define a dry day70

and thus a dry spell, e.g. 0.1mm/day or 5mm/day. The level depends on the application71

at hand [cf. Mathugama and Peiris, 2011; Lana et al., 2008; Ceballos et al., 2004]. In72

this study, monthly precipitation deficits are analyzed with the Standard Precipitation73

Index (SPI) and with a multivariate extreme value analysis [see, e.g., Coles, 2001; Beirlant74

et al., 2004; Resnick, 2007] of cumulative precipitation below 30.5mm. Dependence maps75

for extreme precipitation deficits represent one important visual output of this paper.76

This complements common frequency maps, which document the frequency of occurrence77

of past dry periods.78

The number of application of multivariate extreme value theory (MEVT) to geophysical79

sciences has been steadily growing during this late decade. To name a few, Blanchet et al.80

[2009] studied snow cover over Switzerland, Ribatet et al. [2012] and Cooley et al. [2007]81

estimated precipitation return levels and de Haan and de Ronde [1998] investigated sea82

level and wind extremes. Besides those references, there exists a large body of work con-83

cerning the modeling and the inference of extremes. In this work, we focus our attention84

on the so-called fragility index (FI), an indicator of extremal dependence that has been85

studied by Geluk et al. [2007] and Tichy and Falk [2009] for financial application. This86

indicator basically counts the expected number of extremes given that another extreme87

event has already occurred. Section 3.2 provides a precise definition of this probabilistic88

tool.89
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The SPI (see Eq. (1) for details) is a common drought assessment indicator with good90

performances under various conditions [see., e.g. Heim Jr., 2002; Keyantash and Dracup,91

2002]. By applying a principal component analysis (PCA) to the SPI data, regions with92

similar variability can be identified and according spatial maps provided [cf., e.g. Raziei93

et al., 2009].94

This article is organized as follows. In Sec. 2, monthly precipitation deficits are defined95

and the Duero basin region characteristics are described. The MEVT analysis method is96

described in Sec. 3 and applied to the Duero basin in Sec. 4. For the same basin, the SPI97

approach is applied and then discussed in Sec. 5. Conclusions are given in Sec. 6.98

2. Indication of dry periods: The SPI and cumulative precipitation deficits

The SPI was developed by McKee et al. [1993] and indicates standardized precipitation

anomalies. To calculate it, precipitation is commonly fitted by a Gamma distribution

whose parameters are estimated at each station and for each month [cf., e.g., Keyantash

and Dracup, 2002; Vidal and Wade, 2009; Hayes et al., 1999]. To account for dry events,

the cumulative distribution function (cdf), say H(x), is represented by a mixture model

H(x) = q + (1− q)G(x), (1)

where G(x) denotes the Gamma cdf and q corresponds to the probability of a dry event.99

To standardize and compare series at different weather stations, H(x) is transformed100

into a standard Gaussian cdf. The SPI values are quantiles of this standard normal101

distribution [Wanders et al., 2010]. In other words, the SPI of the precipitation amount102

x corresponds to Φ−1(H(x)) where Φ−1(.) corresponds to the inverse of the Gaussian cdf.103

D R A F T April 10, 2013, 2:47pm D R A F T



KALLACHE ET AL.: PRECIPITATION DEFICIT ASSESSMENT WITH MEVT X - 7

Although there exists no universal drought indicators, Keyantash and Dracup [2002]104

tested the robustness of 18 different drought indices by means of statistical methods, and105

concluded that the SPI represents the best climatic index for drought identification and for106

quantification of the severity, duration and spatial extent of droughts. Compared to other107

indicators, the SPI success can be explained by its capacity to cope with sparse data. SPI108

does neither consider soil moisture nor temperatures. Indicators that include soil moisture109

depends crucially on adequate soil maps with reliable soil textures and associated hydraulic110

properties [Wanders et al., 2010]. Yet such data are often not available. Improvement of111

drought indices may also be achieved by the consideration of management and storage112

effects. Basin managers rather rely on precipitation and runoff variables to determine the113

onset of droughts [Garrote et al., 2007]. Many complex indices which take storage and114

management into account, are not easily be interpolated across regions and cannot be115

validated over wide geographical areas.116

There exist diverse definitions of droughts [Mishra and Singh, 2010], one of the most117

common ones being to view droughts as deviations from normal circumstances [cf., e.g. ,118

WMO]. For a humid location, the indication of a drought does therefore not necessarily119

imply the need for irrigation measures for agricultural plants. Dry spells are defined120

as a set of consecutive days with daily rainfall amounts below a fixed level [Lana et al.,121

2008]. For extreme events, we focus here on cumulative precipitation deficits below a given122

precipitation level [Engeland et al., 2004]. This approach was originally called “method123

of crossing theory” [Rice, 1945]. It was extended by Cramér and Leadbetter [1967] and124

applied in hydrology by, e.g., Yevjevich [1967]. To be able to infer to irrigation needs,125

here fixed levels will be used, e.g. 1mm per day [Ceballos et al., 2004]. The undershooted126
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percentile may thus vary from site to site. In order to apply this approach, we need to127

describe precisely our definition of cumulative precipitation deficits. In particular, we128

need to chose a level.129

Common dry spells levels lie between 0.1 mm/day up to 30 mm/day [Ceballos et al.,130

2004; Lana et al., 2008] and precipitation below 1 mm/day is directly evaporated off. In131

this paper, we mainly focus on the level of 30.5 mm/month (i.e. 1 mm/day) to define our132

cumulation deficit1. Our level choice makes sense for the rather dry basin of the Duero133

river with average precipitation amounts of 1.72 mm/day, about 53 mm/month.134

Let pt be the precipitation amount for month t. Our cumulative precipitation deficit

event Di is then defined as the sum of monthly deficits (i.e. when pt < 30.5) as

Di =
endi
∑

t=starti

(30.5− pt), (2)

where starti and endi correspond to the starting and ending month of the ith deficit event135

during the period of interest, respectively. The cumulative precipitation deficit of an136

event, that is a dry spell, indicates its severity. Fig. 2 illustrates this computation. In137

Fig. 3, three SPIs (SPI, SPI3 and SPI6) and the cumulative precipitation deficit are com-138

pared for the station “La Parilla” during the time period 1970-1972. The SPIs are derived139

from monthly precipitation (SPI1), running means of three months (SPI3) or six months140

(SPI6) of precipitation and are depicted with lines. The horizontal straight lines indicate141

the standard SPI drought classification from moderate to extreme droughts [Wanders142

et al., 2010]. Black triangles and diamonds mark cumulative precipitation deficits (they143

have been standardized to zero mean and unit variance). For the cumulative precipitation144

deficit, no running mean over several months is taken. Avoiding this smoothing proce-145

dure preserves very low deficits as illustrated in Fig. 3. On the other hand, cumulative146
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precipitation deficits result in one single event per dry spell. As precipitation deficits are147

cumulated for consecutive months, they can get large when a dry period persists. For this148

example, a dry event lasted about six months in autumn/winter 1971 and lead to a high149

cumulative precipitation deficit. The SPI averages over a fixed number of months. Here,150

in contrast, the dry period may be cut into several values of moderate amount, depending151

on the window length chosen for averaging.152

Concerning the seasons of interest, we study two time periods, the irrigation period from153

May to October and the entire year. In the Duero basin the cultivation of winter crops is154

less than 5% [MARM, 2008]. Precipitation in the Duero basin peaks roughly in autumn155

and winter and decreases in spring to its lowest amounts in summer [Morán-Tejeda et al.,156

2011b]. The water reservoir filling time is thus estimated to be between October and May.157

Due to precipitation decrease and increase in evapotranspiration, the water demand for158

crops, wine and fruits manifests in May to October [Moneo Láım, 2008]. The irrigation159

season in Spain is as well in this time period [cf. Gil et al., 2011].160

An overview of the dry spell characteristics is given in Tab. 1. The average dry spell161

lengths are between two and three months. The number of dry spell occurrences is about162

the same for irrigation period and the whole year. Dry spells occur frequently in winter,163

but they are more severe during the irrigation period.164

Our time series come from the MOPREDAS database [González-Hidalgo et al., 2010],165

which include measurements from 1945 to 2005. Those records have been homogenized,166

gaps have been filled, and outliers have been discarded. To do so, reference series have been167

calculated from neighboring sites. Details on the procedures are outlined in [González-168

Hidalgo et al., 2010]. 491 stations are available for the whole Duero basin (cf. Fig. 1169
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A), and 175 stations from the crop lands in the center of the basin (see Fig. 1 B).170

Concerning the temporal clustering of dry spells that can affect the statistical analysis,171

shifting algorithms have been used to deal with this issue. For details see App. B.172

To conclude this section, we note that a strong correlation between dry spell severity173

and dry spell duration is found in this dataset. This leads us to only focus on dry spell174

severity. Still, commonly frequency or duration of dry spells have been assessed in the175

past [see, e.g. Mathugama and Peiris, 2011].176

3. Modeling multivariate extremes

3.1. Defining extreme precipitation deficits

In the previous section, the level of 30.5 mm/month was used to define cumulative177

precipitation deficits, see Eq. (2). In this work, we would like to study extreme deficits.178

This means that another threshold is needed to select a subset of those already low pre-179

cipitation quantities. In other words, extremes correspond here to very low precipitation180

amounts that have been thresholded twice, firstly to define precipitation deficits and sec-181

ondly to introduce extreme cumulative precipitation deficits. As a compromise between182

sample sizes and modeling considerations, the threshold for defining extreme deficits is183

set to be equal to the 50th percentile of whole year precipitation deficits and for the irri-184

gation period all deficit events have been used2. To explore the suitability with respect185

to the expected EVT Generalized Pareto Distribution (GPD) [see, e.g. Coles, 2001], an186

Anderson-Darling test [cf. Choulakian and Stephens, 2001] has been applied to those ex-187

treme deficits. 1% of the series did not suit the GPD at a significance level of 0.05, which188

is less than the expected 5%. So, the GPD hypothesis is reinforced. To complement189

this test, quantile-quantile plots for the GPD [see Coles, 2001] have been inspected for a190
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few stations randomly chosen. Those graphs seem adequate (results are not shown, but191

available upon request). As one may expect for precipitation deficits, they have an up-192

per endpoint, most of the estimated GPD shape parameters are negative. This endpoint193

corresponds to the theoretical event of no precipitation during the whole time period.194

A prerequisite of applying the multivariate extreme value model is that extremes at195

each site are independent and identically distributed in time [cf. Coles, 2001]. No signifi-196

cant temporal trends have been found for the region and time period analyzed [Ceballos197

et al., 2004]. To assess temporal clustering among extreme deficits, the so-called extremal198

index that measures the reciprocal of the limiting mean cluster size of extremes has been199

estimated by using the method of Ferro and Segers [2003]. For our excesses, no signifi-200

cant clusters were found. Consequently, we regard those extreme deficits as temporally201

independent and identically distributed.202

Without loss of generality, all precipitation deficits are changed into unit Fréchet ran-203

dom variables by applying a probability integral transform [cf. Ramos and Ledford, 2009;204

Cooley et al., 2010]. We recall that the unit Fréchet distribution P (X ≤ x) = exp(−1/x)205

for x > 0 is max-stable. In the sequel, X = (X1, . . . , Xd)T will correspond to a multivari-206

ate random vector with unit Fréchet marginals (other choices for marginals are possible).207

This framework simplifies the MEVT dependence model and its inference because the208

marginal behavior can be decoupled from the issue of dependence among extremes [see,209

e.g. Ledford and Tawn, 1997].210

3.2. The fragility index FI inference

The concept of measuring dependences among extremes lays at the core of the FI. While

it is trivial to define independence, it is arduous to describe and infer various degrees
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of dependence or near independence in MEVT. One particular delicate point resides in

the subtle case of asymptotically independence. To illustrate this point, suppose that

the vector X has only two components and that we are interested in the conditional

probability, P (X1 > q|X2 > q), of observing a large of X1 given X2 is also large3,

lim
q→∞

P (X1 > q|X2 > q) = χ. (3)

If χ > 0, then X1 and X2 are said to be asymptotically dependent. If χ = 0, then we211

are in the case of asymptotic independence [Sibuya, 1960]. Another way to interpret χ212

is to introduce the limiting expected number of extremes given that one extreme event213

has occurred already. This number is denoted by N and has been studied by Geluk et al.214

[2007] and Tichy and Falk [2009]. For the bivariate case, N = 2/(2 − χ) varies between215

one and two.216

The asymptotically independent case (χ = 0 orN = 1) is complex because the definition

χ does not capture anything about the rate of convergence towards zero. For example,

if the original vector comes from a standardized bivariate Gaussian random vector with

a strong correlation coefficient (say 0.99), it is possible to show that χ = 0. But this

convergence is extremely slow and can only be inferred from samples of enormous sizes.

In other words, it would be of interest to measure some second order information for the

case of asymptotic independence. A few alternatives have been proposed in this context.

For example, the coefficient

χ̄ = lim
q→∞

2 logP (X1 > q)

logP (X1 > q,X2 > q)
− 1, (4)

relates the probability of having a joint extreme event to the probability of having any217

extreme event (joint or not) [see Coles et al., 1999].218
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Lately, various models which jointly treat asymptotic dependence and independence

have been proposed and studied [e.g., Coles and Pauli, 2002]. Here, we will pay a special

attention to the work of Ledford and Ramos who extensively studied a very general

framework to model the joint tail (survival function) defined by

P (X1 > x1, X2 > x2) =
L(x1, x2)

(x1x2)1/(2η)
, (5)

where L represents a bivariate slowly varying function [Ramos and Ledford, 2009; Resnick,

2007]. A fundamental feature of (5) is the so-called tail dependence coefficient η ∈ (0, 1]

that encapsulates the strength of asymptotic independence. To see this, one can write

that

η =
1

2
lim
q→∞

logP (X1 > q) + logP (X2 > q)

logP (X1 > q,X2 > q)
.

and deduces from (4) that χ̄ = 2η − 1 [Ramos, 2003]. Definition (5) also allows for219

the modeling of the dependence case (η = 1) and complete independence (η = 0.5),220

and consequently offers a large flexibility. One important parametric example for our221

precipitation deficit assessment corresponds to the η-asymmetric logistic model studied222

by Ramos and Ledford [2011] (see Appendix A for its definition within a multivariate223

context).224

Coming back to N , the limiting expected number of extremes given that one extreme

event has occurred already, its definition of N can also be widened to deal with the

asymptotically independent case. This leads to the so-called fragility index FI [Geluk

et al., 2007; Tichy and Falk, 2009]

FI =

{

N, if η = 1,
η, if η < 1.

(6)
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For example, the FI can explicitly be computed for the asymmetric logistic model with

parameters α and $ [Ramos and Ledford, 2009]

N = lim
q→∞

q−1($+ 1/$)

q−1{$−1/α + $1/α}α
=

($+ 1/$)

{$−1/α + $1/α}α
, (7)

cf. Apps. A and C for inference and the extension to d > 2.225

3.3. Inference from simulations with the asymmetric logistic model

The relation of N and the model parameters has been assessed by means of simula-226

tion studies with artificial bivariate data (results not shown) and for the asymptotically227

dependent case (η = 1). Here the simulation studies indicate a previsible influence of228

the other parameter estimates on N : In case $ = 1, the whole spectrum of asymptotic229

dependence is possible, that is N lies in (1, 2]. The more asymmetric the data is (that230

is the further away $ is from 1), the less dependent the data can be. This is expected,231

strongly asymmetric data have few or no extremes on the diagonal. Moreover it showed232

that large differences in the thresholds of the (standardized unit Fréchet) data resulted in233

low dependence of the data. This result is independent from the underlying distribution234

of the data and underlines the importance of the threshold choice.235

The distinction between asymptotically dependent and asymptotically independent data236

can be done by means of a modified likelihood ratio test where the complete model is237

compared to a sub-model with η restricted to 1. To test for symmetry, the standard238

likelihood-ratio test can be used, that is the complete model is compared to sub-models239

with $i fixed to 1 for all possible combinations of $i [Ramos and Ledford, 2009]. In240

simulation studies with artificial data of the same length as the application data, a high241

capability of the likelihood-ratio test to discriminate between symmetric and asymmetric242
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data has been found (results not shown). We thus applied the test for symmetry and243

chose the sub-model with $i fixed to 1, when appropriate. The modified likelihood-ratio244

test revealed also a high power to detect asymptotically independent data. However, in245

case the data was actually asymptotically dependent, the modified likelihood ratio test246

accepted too often falsely the hypothesis of asymptotically independent data, that is η247

fixed to 1. Thus, in the following, the FI has been set to N , in case η is compatible with248

being 1 (i.e. 1 lies within the 68% confidence band of η), otherwise FI = η.249

As an example for the estimation of η and N , χ and χ̄ are depicted in Fig. 4 for stations250

Aguas de Cabreiroa and Barxa (A and B) and Aguas de Cabreiroa and Cantimpalos (C251

and D). The estimates shown in black have been calculated from N and η. For comparison252

reasons, empirical estimates χ and χ̄, as described in Coles et al. [1999], are added in grey.253

Aguas de Cabreiroa and Barxa are most likely asymptotically dependent (χ is compatible254

with being larger than 0 and χ̄ is compatible with being 1). The according estimate of N255

is with 1.48 (0.093) high, and the according estimated η is with 0.967 (0.14) compatible256

with being one (the numbers in brackets denote the standard errors). Aguas de Cabreiroa257

and Cantimpalos are most probable asymptotically independent. The estimate for η is258

0.7 (0.12). For the submodel with fixed η = 1, N is estimated as 1.13 (0.17), which is also259

compatible with being one. In both cases the empirical estimates of χ and χ̄ converge260

towards the estimates calculated from η and N , as the threshold (x axis) gets larger. It is261

difficult to set the FI of different sets of stations into relation. When looking for example262

at the dependence between all three stations, three bivariate dependence measures and263

one dependence measure (indicating the dependence between all three stations in their264
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joint tail) can be calculated. However, the latter cannot be used to infer the three bivariate265

dependence measures.266

4. Severity of extreme dry spells in the Duero basin (MEVT model)

Average precipitation and dry spell severity in the Duero basin are depicted in Fig. 5.267

The highest precipitation intensity is given in the surrounding mountain range (A). The268

most severe dry spells (on average over the whole time period) occur in the south-east of269

the basin center, in the crop lands of the Bajo Duero region (B). This result is independent270

of the dry spell level and the season assessed. Accordingly the (severe) dry spells with271

level 30.5 mm/month occur more frequently in the topographic depression in the basin272

center (C). For comparison, a level of 42.7 mm/month has also been tested. The dry273

spells defined with this level happen more frequently in the mountain regions at the edges274

of the basin (D).275

4.1. Bivariate dependence

For the evaluation of the dependence between any two stations in the Duero basin,276

the threshold for defining extreme deficits is set to the 50th percentile of whole year277

precipitation deficits. For comparison purpose, in the following, the evaluation are also278

performed separately on the irrigation period (May to October) where another threshold279

has been set up to include 100% of the precipitation deficits. Moreover, for those two time280

periods (whole year and irrigation period, with different thresholds), analyses are brought281

on two levels (30.5 and 42.7 mm/month) to define cumulative precipitation deficits.282

The FI values retrieved from fitting the bivariate extreme value model to any of the283

combinations of two stations in the Duero basin crop lands (cf. Fig 1, B), are visualized in284
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Fig. 6. The grey dots denote the FI values. The gap between 0.8-1 is due to the shortness285

of the series, which does not allow for a sharp distinction between asymptotically depen-286

dent and independent data (0.2 is on average the standard deviation of the η estimates).287

It shows, that the FIs measuring bivariate dependence decrease with distance in space.288

For the quite severe 30.5 mm/month level, the polynomial fit of order 3 (black line) re-289

veals a decrease of the speed of decay for very distant stations. For this level, 70% of the290

stations are asymptotically independent, wich is reduced to 60% for the 42.7 mm/month291

level: These less extreme and longer dry spells are more often asymptotically dependent.292

For both levels, The asymptotically independent data shows a lower dependence-distance293

slope than asymptotically dependent data. The distance-dependence relation is frequently294

exploited in geostatistics to simplify the description of dependence. However, here the FI295

shows a large variability over all distances.296

To exemplify the spatial pattern of dependence of extreme dry spells in the Duero basin,297

maps of the dependence with station Castronuño are shown in Fig. 7 (the red dot indicates298

the location of Castronuño). The FI values have been interpolated with inverse distance299

weighting. Castronuño lies in the middle of the Bajo Duero crop land region, which is300

affected by the severest dry spells. For this station, strong dependence (FI > 1.25) is301

spatially less extended for the irrigation period than for the whole year. However, in all302

cases nearly the whole basin shows an FI > 0.625: The stations are not independent303

from Castronuño. The dependence of the more severe dry spells (Fig. 7 A and B) is more304

concentrated in the Western part of the Duero basin then for the dry spells at the 42.7305

mm/month level.306
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When looking at maps of other stations (results not shown), spatial patterns in the307

dependence structure get apparent as well: The FI decays with distance. Furthermore,308

some stations are clearly connected to the surrounding mountain area and others to the309

central plain, which shows the influence of topology. However, the spatial patterns are310

too diverse to deduce the dependence of the dry spell severity from elevation and spatial311

distance only. When looking at severity extremes of the whole year, larger areas are312

connected through strong dependence (FI > 1.25) than in the irrigation period. This313

hints to a more diverse behavior of extremely severe dry spells in the irrigation period,314

and to a reduced influence of large-scale patterns (the NAO, for example).315

4.2. Dependence between crop regions

Here spatial patterns of dry spell severity will be explored in the center of the basin316

(see Fig. 1 B), where agriculture is the dominant land use practice. In the following317

these regions are thus called crop regions. Watershed borders are used to separate the318

crop regions. In this way, the water courses and hydrological systems of the regions are319

separated. The series of dry spell severity of each region have been joined to a single time320

series. This series thus represents a dry spell happening anywhere in one of the regions.321

Dependence between the regions is assessed by analyzing these series. Here the threshold322

excess rates have been set to 20%.323

Results for strong bivariate dependence between the regions are shown in Fig. 8. Re-324

gions exhibiting asymptotic dependence with an FI > 1.5 are depicted in the same color.325

A connection of the eastern regions gets apparent for the 30.5 mm/month level (Fig. 8326

A). The crop land zone of Riaza-Duraton-Alto-Duero is asymptotically dependent with327

both neighboring sites, but the three regions together are not asymptotically dependent.328
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Therefore Riaza-Duraton-Alto-Duero is hatched in two colors. For this dry spell defini-329

tion level, results for the whole year and the irrigation period are the same. In Fig. 8330

B, results for the 42.7 mm/month level and the irrigation period are depicted. Here the331

southern regions exhibit strong bivariate dependence, and even all three southern regions332

together are asymptotically dependent with an FI > 1.5. The Northern part is divided333

in two dependent zones. The same dependence structure shows for the whole year. How-334

ever, here no trivariate asymptotic dependence with an FI > 1.5 occurs. All in all the335

regions are more connected when looking at the longer and less severe dry spells at the336

42.7 mm/month level.337

In addition, the joint occurrence of dry spells in all six regions has been examined for338

the irrigation period and dry spells defined with the 42.7 mm/month level. Dry periods339

with 1mm or less precipitation per day and station, which last longer than one month340

and which cover large areas, might cause severe damage to the agricultural sector. In341

extreme value analysis, the return period T = 1/p of such an extreme event is commonly342

calculated as the reciprocal value of the probability p that such an event occurs [Coles,343

2001]. Here different approaches can be used to estimate p and thus the length of the344

return period. In a first attempt, the characteristics of a structure variable X , which345

is defined as sum of the dry spell severity time series of the 6 regions, is examined. A346

GPD is suited to the extremes of this variable, which exceed the threshold q, which is the347

sum of the 30.5mm/month thresholds of the single stations [cf. de Haan and de Ronde,348

1998]. The probability of an extreme event is thus p = P (X > q). The according shape349

parameter estimate is with -0.33 (0.06) negative. For this model, the return period for350

such a dry spell of on average less precipitation than 1mm per day and station for the351
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whole region of crop lands (cf. Fig 1 B)) is estimated to be 1.88 irrigation seasons, that352

is about 2 years. However, here stations with a lot of precipitation can balance stations353

with little precipitation. This result can be further refined by using the multivariate354

extreme value model to describe the joint extremes of the 6 regions. The FI of the 6355

regions is below 0.5, which indicates negative tail dependence. Nevertheless, there exist356

20 joint extreme events, which allows for the examination of the joint tail. For this model357

p = P (X1 > q1, . . . , X6 > q6) is given, and the return period of a joint extreme event,358

where in every region precipitation falls on average per station below 30.5 mm/month,359

is 3.24 irrigation seasons. This return period is longer than the 1.88 irrigation seasons,360

because here precipitation in the different regions cannot counterbalance.361

The MEVT model for the 6 regions also serves to estimate return periods of joint362

extreme events in subsets of these regions. The three southern crop land regions Bajo363

Duero, Cega-Eresma-Adaja and Riaza-Duraton-Alto-Duero are highly dependent. They364

have an FI larger than 1.5 for dry spells in the irrigation period and at the 42.7 mm/month365

level (cf. Fig. 8 B). As expected, the return periods for dry spells below 30.5 mm/month366

in solely these three regions are, with 3.12 irrigation periods, shorter than for extremely367

severe dry spells in less dependent regions. The regions Bajo Duero, Esla-Valderaduey368

and Pisuerga-Arlanza, for example, have a small FI in the trivariate analysis. They369

are not asymptotically dependent. A simultaneous dry period in these three regions is370

expected every 3.19 irrigation periods. When suiting a trivariate extreme value model371

to the three southern regions only, that is when having no constraint for the other three372

regions, the return period for precipitation deficits larger than 30.5 mm/month in these373

regions reduce to 2.37 irrigation periods. The different results may be used to tackle374
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different water management problems. The use of the multivariate extreme value model375

serves in any case to refine the spatial analysis of extremal dependence.376

5. Droughts in the Duero basin analysed with the SPI

By construction, the SPI inference procedure does not take into account of any spa-377

tial dependence. To identify spatial regions with similar variability patterns, a principal378

component analysis (PCA) can be applied to the calculated SPI fields [see, e.g., Bonac-379

corso et al., 2003]. As a benchmark for our MEVT approach, we implemented this PCA380

technique on three month running mean deficits (SPI3) in the central plane of the Duero381

basin, see Fig. 1 B. To reduce high loadings with several PCs, which hampered the deter-382

mination of a spatial patterns, a Varimax rotation to the loadings [von Storch and Zwiers,383

1999] was added with the rule by North et al. [1982] to determine the number of principal384

components.385

The first PC, which explains more than 70% of the variance of the data (cf. Tab. 2), is386

similarly related to all stations and does thus not result in a spatial pattern (see Fig. 9387

A). This reflects findings of Vicente-Serrano [2006], who analyse the SPI12 from stations388

of the whole Iberian Peninsula. They find similar variability for the whole center of the389

peninsula. The second and third PC result in a North-West to South-East and in a390

North-East to South-West gradient, respectively (see Fig. 9 B and C). Some parts of391

the crop lands, such as Esla-Valdereduey in the North, for example, cannot be clearly392

assigned, they show positive loadings for PC2 and PC3. We applied thus an orthogonal393

varimax rotation to the most important PCs to get clearer spatial patterns [Bonaccorso394

et al., 2003]. North’s rule, see North et al. [1982]), suggests to retain up to three PCs.395

When interpreting the scree diagram or concentrating on the PCs which explain more396
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than 80% of the variance, only two PCs are kept. As the number of retained PCs change397

the spatial patterns obtained from the varimax rotation, we interpret results from both398

rotations. When rotating two PCs, a North-West to South-East gradient gets apparent.399

The first PC hints to a similar variability of droughts within the Esla-Valdereduey zone.400

The direction of the PC does not matter for the determination of regions with similar401

variance. We thus regard stations with high negative loadings also as connected. The402

second rotated PC indicates a connection of sub-basins Riaza-Duraton-Alto-Duero and403

Cega-Eresma-Adaja in the South-East (see Figs. 9 D and E). When rotating three404

PCs, the first PC hints again to a strong connectivity within the Esla-Valdereduey basin.405

The second PC now indicates a common variability in the Southern basins, especially406

Bajo-Duero and Cega-Eresma-Adaja (cf.Fig. 9 G), whereas the third PC connects407

the North-East, namely Pisuerga-Arlanza and Riaza-Duraton-Alto-Duero. It is thus not408

clearly identifiable if the sub-basin Riaza-Duration-Alto-Duero is rather connected to its409

North or to its South-West, which confirms the findings of the MEVT analysis (cf. Fig. 8410

A). By construction the rotated PCs explain similar amounts of variance, that is about411

40% when two PCs are rotated, and 28% for three PCs (see Tab. 2).412

Comparable results have been obtained when analyzing the SPI derived from monthly413

precipitation, and from running means of 6 months of precipitation (results not shown).414

The spatial study by means of SPI and PCA illustrates the dependence structure of415

droughts in the Duero basin. However, the decision on the number of PCs to retain and416

the classification of the loading values into distinct spatial regions leaves some ambivalence.417

With regard to content the results support the findings of the MEVT study in the previous418

section.419
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6. Conclusions

Precipitation deficits in the Duero basin and their spatial dependence have been as-420

sessed. Dry periods are a frequent phenomenon in the Duero basin.421

A multivariate extreme value model is applied, which captures the dependence structure422

of extreme severity of dry spells (asymptotically dependent as well as asymptotically423

independent extremes). Here cumulative precipitation deficits below 42.7 mm/month and424

30.5 mm/month have been assessed. In the Duero basin such dry spells occur between425

1 to 3 times a year, and they have a length between 2-3 months on average. These dry426

spells emerge during the whole year, but they are more intense in the irrigation period.427

The most severe dry spells (on average over the whole time period) occur in the Bajo428

Duero, which is situated in the south-east of the Duero Basin.429

The MEVT allows for the assessment of bivariate dependence. The estimated depen-430

dence between extreme severity of dry spells at each two stations have been visualized in431

dependence maps, where the dependence of dry spells at a single station with dry spells432

at all other stations in the region is depicted. It is found that up to 30% of the bivari-433

ate dependence measures indicate asymptotic dependence. Thus dry spells in this basin434

are very connected. The dependence between dry spells at the 42.7 mm/month level in435

general spatially more extensive. It got apparent that topography and spatial distance436

influence the extremal dependence between dry spells. However, no simple law, which437

describes the influence of topography and spatial distance, could be deduced. This also438

showed in a dependence-distance study: As expected the extremal dependence decreases439

with distance. However, its large variability hampered an approach to deduce a simple440
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correlation function. Thus the presented dependence maps are a valuable complement of441

risk maps, where solely the probability of dry spell occurrence is depicted.442

Moreover, the stochastic model has been employed to describe the dependence between443

six regions in the center of the Duero basin where most of the agricultural activities take444

place. Bivariate to trivariate dependence between these regions is found. In the irrigation445

period, the shorter and more severe dry spells (defined at the 30.5 mm/month level)446

exhibit strong asymptotic dependence (FI > 1.5) in the eastern regions, whereas less447

severe dry spells at the 42.7 mm/month level are more connected in the South.448

These findings are supplemented with a drought assessment of the crop zones by means449

of the common SPI. It shows that sub-regions with similar variability can be identified.450

Esla-Valdereduey in the North-East contains highly connected stations. Furthermore the451

sub-basins in the South, and the sub-basins in the North-West are connected. Riaza-452

Duraton-Alto-Duero is either connected with its North or with its South-East.453

In summary, the SPI analysis results are well in line with the MEVT findings. They454

also indicate regions of similar variability in the South and in the North-East, and bipolar455

characteristics of Riaza-Duraton-Alto-Duero. With respect to the methodology, several456

similarities and differences between the SPI and MEVT approach arise. The SPI is calcu-457

lated from running means of precipitation. Droughts of the respective window length, e.g.458

one, three, or six months, are thus in focus. Averaging reduces the severity of droughts,459

which are shorter than the window length, and longer droughts are split into several460

events. The comparison of SPI1, SPI3 and SPIs with a wider window width might be461

necessary to get a complete overview over drought characteristics in a region. Cumulative462

precipitation deficits can also be defined with different precipitation levels. These levels463
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are of the same kind as the classification levels, which classify the SPI into moderate,464

severe and extreme droughts. However, the assignment of one event to each dry spell,465

whatever length it has, allows for a joint assessment by means of MEVT.466

Beyond this, the dependence between stations or regions can be quantified with the467

MEVT framework by means of the fragility index. According confidence bands are pro-468

vided, which allows for uncertainty assessment. The MEVT model allows moreover to469

the inference of yet not observed, extreme events. This includes the estimation of return470

periods for extreme dry spell severity in a region. The return period for a large-area dry471

spell in the crop lands of the Duero basin, with precipitation being on average below472

30.5mm/month in all six sub-regions, is about three years.473

The spatial patterns of dry spells are usually complex. It is common for one area to suffer474

dry conditions, whilst neighboring areas experience normal or even humid conditions. The475

presented analyses assess dependence at station and sub-basin level, thus more of the476

spatial heterogeneity of dry periods is captured. However, the presented MEVT approach477

analyses joint extremes, thus the number of analyzable entities is restricted. The extension478

to the assessment of joint dependence between all stations is envisaged in further work.479

One way to achieve this goal would be the use of a spatial inhomogeneous dependence480

measure.481

Non-irrigated agriculture is a common practice in the Duero basin. However, average482

yearly precipitation amounts in this region are close to levels, which might cause yield483

losses. The anticipated future decrease of precipitation [Vicente-Serrano et al., 2011] hints484

to an aggravation of dry periods in the Duero basin. In addition, temperature is expected485

to increase and runoff supply to decrease (due to revegetation processes in the mountain486
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areas, which surround the Duero basin). An increasing water demand of the population487

in the center of the Duero basin is anticipated as well. Thus a greater social and economic488

vulnerability to dry spells is to expect [Vicente-Serrano, 2006]. The presented approach489

may be used for short-term water management planning to face this situation. Up to now,490

dry periods in the Duero basin have been analysed rather with respect to their temporal491

evolution [see e.g. MARM, 2007]. However, the temporal drivers for dry periods are not492

well determined. A probabilistic view and the provision of maps of dry spell probability493

and dependence provide thus valuable additional information for water management.494

Appendix A: η-asymmetric logistic model and the FI

There are infinitely many ways to define a dependence measure H(ω) for multivariate

extremes. we use the η-asymmetric logistic model and define such a measure as presented

in Ramos and Ledford [2011]. In the following, this measure will be denoted Hη(·). The

according measure density for multivariate data with dimension d is

hη(ω) =

∏d−1
i=1 (iη − α)

ηdαd−1N#

{

d
∑

i=1

(ωi

$i

)−1/α}α/η−d
×

(

d
∏

i=1

ωi

)−1/α−1
(A1)

with parameters α ∈ (0, 1], $1, . . . , $d−1 > 0 and η ∈ (0, 1]. Nx1...xd# =495

∑

b∈B(−1)|b|+1(
∑

i∈b($i/xi)1/α)α/η holds, and N# is N1...1#. Here B represents the set of496

all non-empty subsets of 1, . . . , d and |b| is the number of elements in the set b. The497

constraints
∑

ωi = 1 and
∏

$i = 1 hold. They determine ωd = 1− ω1 − . . .− ω(d−1) and498

$1 = 1/($2 × . . . × $d). The parameters influence the characteristics of the multivariate499

extreme value distribution: The limit function of L, g∗(ω), is concave in ω when α < 2η,500

and it is convex in ω when α > 2η. When α = 2η, then g∗(ω) is flat and thus ray inde-501
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pendent. $i is a measure of symmetry between two variables, e.g. X1 and X2. For $i = 1,502

these variables are symmetric.503

N = lim
c→1

E(κc|κc ≥ 1),

= 1 + lim
c→1

P{F1(X1) > c, F2(X2) > c}

1− P{F1(X1) ≤ c, F2(X2) ≤ c}

= lim
c→1

P{F1(X1) > c}+ P{F2(X2) > c}

1− P{F1(X1) ≤ c, F2(X2) ≤ c}
(A2)

holds, with κc being the number of joint occurring extreme events, i.e. counting the504

number of events of the type {X1 > c,X2 > c}. Informally N can be described as 1 (the505

extreme which has already occurred) + P (a joint extreme event occurs)/P (any extreme506

event occurs).507

For the asymmetric logistic dependence function, we can write

N = lim
q→∞

(1− F (q1)) + (1− F (q2))

1− F (q1, q2)

= lim
q→∞

log{F (q1)}+ log{F (q2)}

log{F (q1, q2)}

= lim
q→∞

−N−1
#,η=1$

−1/ηq−1/η
1 −N−1

#,η=1$
1/ηq−1/η

2

−N−1
#,η=1{(q1$)

−1/α + (q2/$)−1/α}α/η

= lim
q→∞

($q1)−1 + (q2/$)−1

{(q1$)−1/α + (q2/$)−1/α}α
. (A3)

It is also possible to derive N for a multivariate asymmetric logistic dependence function

N =
(q1$1 . . . $d−1)−1 + (q2/$1)−1 + . . .+ (qd/$d−1)−1

{(q1$1 . . . $d−1)−1/α + (q2/$1)−1/α + . . .+ (qd/$d−1)−1/α}α
. (A4)

Confidence bands for N can be derived from the parameter estimates and their covariance508

by using the delta method [cf. Coles, 2001].509

Appendix B: Shifting of dry spells
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Overlapping dry spells are assumed to be dependent. The presented approach does510

not model the duration of dry spells. Thus the data is preprocessed to integrate this511

assumption: Overlapping dry spells are shifted to a common time point. Extremes are512

defined as threshold excesses. Here the actual time point of occurrence of an extreme513

is not modelled and thus the shifting does not alter the results of the analysis of single514

series.515

Comparison: To shift the dry spells, they are compared in descending order, i.e. sta-516

tion 1 is compared with stations 2 to d, where d is the number of stations. Let station 1517

be the principal station and stations 2 to d the comparison stations. The comparison is518

not repeated, so station 2 is compared with stations 3 to d, and so forth.519

Eligibility: For each dry spell i of the principal station, dry spells of the comparison520

stations are only eligible for a shift, if they occur during the time period of dry spell i,521

and in case they have the longest overlap with dry spell i and not with some other dry522

spell j of the principal station. Furthermore, they must not have been shifted previously.523

New time point: The time point t within the period of dry spell i for which the cu-524

mulative dry spell lengths of all eligible dry spells are the highest, is chosen as new time525

point. If there are several such time points, the time point with the largest number of526

overlapping dry spells is chosen. Dry spell i and all eligible dry spells, which also cover527

the new time point, are shifted to the new time point t.528

The result of the shifting algorithm depends on the (arbitrary) indexing of the stations.529

To avoid a bias of the results due to the shifting algorithm, it is repeated in reverse order.530

Here the principal station is station d, and it is compared to stations 1 to (d − 1). Then531

the principal station (d − 1) is compared to stations 1 to (d − 2), and so forth. For532
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illustration see Fig. 10. Here durations for dry spells defined at the 42.7 mm/month level533

and the whole year are depicted. 20 stations have been selected randomly from the 491534

available station and the time period January 1975 to December 1978 has been chosen for535

illustrations. Small differences between the shifting and reverse shifting get apparent.536

When assessing two stations, shifting is not problematic: Results with standard shifting537

and reversed shifting are always the same. To eliminate the influence of the shifting538

algorithm for more stations, the results obtained with both algorithms are compared and539

only common results are kept, that is FI estimates whose standard deviations overlap.540

Appendix C: Maximum likelihood estimation

The Poisson process model is used, so it is assumed that the extremes in the tail region

A occur independently from each other [Beirlant et al., 2004]. Let A = {(q1,∞)× . . .×

(qd,∞)} denote the region above thresholds q1, . . . , qd. The likelihood for the poisson

process is modelled as

L(θ; rj,ωj, j = 1, . . . , m) = Λ−m
η (A)

m
∏

j=1

λη(rj,ωj). (C1)

Thus m events occur in the joint tail of d dry spell severity time series at d stations.541

Here solely the joint tail is examined, so the probability of the occurrence of exactly m542

extremes in A is set to 1. The estimates θ̂ are obtained by numerical optimization. Due543

to the specifities of Hη(ω), the equation differs slightly from the result for the classic EVT544

model. For this metric, the radius r cannot be neglected in the likelihood equation: It is545

needed to estimate η. However, r and ω can still be divided into separate factors.546
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The likelihood function is given by

L(θ; rj,ωj , j = 1, . . . , m) = (C2)

N (−m)
q1...qd#

m
∏

j=1

[(−r−(d+1/η)
j )

∏d−1
i=1 (iη − α)

ηdαd−1

×
{

d
∑

i=1

(ωji

$i

)−1/α}α/η−d
×

(

d
∏

i=1

ωji

)−1/α−1]

(C3)

Nq...q# = N#q−1/η holds for equal thresholds q1 = . . . = qd = q.547

As initial values α = 0.65 and $i = 0.75, i = 1, . . . , d − 1 are chosen [Ramos and548

Ledford, 2009]. The initial value for η is obtained by means of the structure variable549

Ti = min(X1i , . . . , Xdi): The shape parameter of the distribution the excesses of Ti over550

a high threshold is taken as initial value [Ledford and Tawn, 1996].551

The maximum likelihood estimation is only performed, in case 20 or more extremes552

occur in the joint tail.553
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Notes

1. Although we have also studied a second level of 42.7 mm/month, see our figures and our conclusions
561

2. A study of sub-basin regions, where station series in those regions have been joined (see Sec. 4.2), is based on the rate

of 20% uppermost dry spells (for the whole year and for the irrigation period).

D R A F T April 10, 2013, 2:47pm D R A F T



KALLACHE ET AL.: PRECIPITATION DEFICIT ASSESSMENT WITH MEVT X - 31

3. In MEVT, it is classical to present all mathematical results in terms of excess above a high threshold or maxima. For our

application, we focus on precipitation deficits and consequently we study low values under a threshold. Theoretically,

it is always possible to multiply by −1. This trick transforms deficits under a low threshold into excesses above a high

threshold. For this reason, we follow the conventional way to present MEVT tools and in practice, those tools will be

applied on negative deficits, ie. excesses.
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Table 1. Dry Spell Definition Levels and according Characteristics on Average (Minimum -

Maximum) over all Stations and Years

Level [ mm/month] Dry Spell Length [month] Dry Spell Number Dry Spell Severity [ mm/dry spell length]

30.5 (all year) 2 (1.3-3.7) 147 (60-180, 1-3 per year) 33.73 (17.74-68.13)

30.5 (irrigation period) 2.4 (1.3-3.7) 68 (48-79, 0.8 - 1.3 per period) 43.59 (18.05-101.93)

42.7 (all year) 2.73 (1.4-5.5) 147 (83 -172, 1.3 - 2.8 per year) 64.21 (27.13-151.29)

42.7 (irrigation period) 3.1 (1.5-5.7) 67 (46-81, 0.8 - 1.3 per period) 84.1 (31.37-217.2)

Table 2. Variance contributions (%)of the first four unrotated PCs and of the rotated PCs

for SPI3 data. Rotations have been performed with the first two or three PCs.

number PCs SPI3 Variance SPI3 Varimax SPI3 Varimax

(2 PC rot.) (3 PC rot.)

1 76.04 44.36 31.64

2 4.49 38.04 25.45

3 1.81 27.00
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Figure 1. A) Elevation and rivers of the Duero basin in central Spain. B) Parts of sub-

waterbasins in the middle of the Duero basin, in which agriculture plays a major role. The

available precipitation stations are marked with dots.

Figure 2. Precipitation at station Valladolid for years 1961-1968 (black line). Connected areas

below the levels 30.5 mm/month and 42.7 mm/month indicate dry spells (grey hatched areas).

Figure 3. SPI1, SPI3, and SPI6 and the cumulative precipitation deficits (standardized,

negative) at level 30.5mm/month and 42.7mm/month for station La Parilla and years 1970-1972.

Figure 4. Left hand side: χ calculated from N estimates (black line, with 95% confidence

bands) and an empirical estimate of χ (grey). Right hand side: χ̄ calculated from η estimates (in

black) and an empirical estimate of χ̄. The dependence of stations Aguas de Cabreiroa (2978E)

and Barxa (2970I) (A and B) and stations Aguas de Cabreiroa (2978E) and Cantimpalos (2199)

(C and D) is measured.

Figure 5. Maps of the dry spell characteristics. Average yearly precipitation (A), average dry

spell severity for level 30.5 mm/month (B), and average dry spell numbers for 30.5 mm/month

(C) and 42.7 mm/month (D).

Figure 6. FI of bivariate assessment for the stations in the Duero basin crop lands (grey dots).

A) For 30.5 mm/month level and B) for 42.7 mm/month level. A linear fit and polynomial fit of

degree 3 with 68% confidence bands are added in black.

Figure 7. Maps of the fragility index (FI) as measure of bivariate dependence between

Castronuño (red dot) and all other stations. In the upper line results for level 30.5 mm/month

and all year (A) and the irrigation period (B) are depicted. In the lower line the same for level

42.7 mm/month is shown (all year, C) and irrigation period (D).
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Figure 8. Strong bivariate dependence (FI > 1.5) between sub-waterbasins in the crop zones

of the Duero basin for dry spells defined with A) a level of 30.5 mm/month and B) dry spells

defined with a 42.7 mm/month level. Regions with similar dependence are hatched in the same

color. Extremes in the region hatched in two colors are strongly dependent to extremes in both

neighboring regions.

Figure 9. Loading patterns of the first unrotated three principal components of the SPI3 data

(upper line, figures A) to C). Figures D) and E) show the loading patterns after a rotation of the

first two PCs, and figures F) to H) the loading patterns after a rotation of the first three PCs.

Figure 10. Dry spell durations for January 1975 to December 1978 for 20 randomly chosen

stations (the labels of the y-axis are the station IDs) are depicted as black lines and small black

dots in case the duration is one month. Furthermore, the time points of the shifted dry spells

are marked as grey dots for the shifting algorithm and as black circles for the reversed shifting

algorithm.
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