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[1] A statistical method is developed to generate local
cumulative distribution functions (CDFs) of surface climate
variables from large-scale fields. Contrary to most
downscaling methods producing continuous time series,
our ‘‘probabilistic downscaling methods’’ (PDMs), named
‘‘CDF-transform’’, is designed to deal with and provide
local-scale CDFs through a transformation applied to large-
scale CDFs. First, our PDM is compared to a reference
method (Quantile-matching), and validated on a historical
time period by downscaling CDFs of wind intensity
anomalies over France, for reanalyses and simulations from
a general circulation model (GCM). Then, CDF-transform
is applied to GCM output fields to project changes in wind
intensity anomalies for the 21st century under A2 scenario.
Results show a decrease in wind anomalies for most weather
stations, ranging from less than 1% (in the South) to nearly
9% (in the North), with a maximum in the Brittany region.
Citation: Michelangeli, P.-A., M. Vrac, and H. Loukos (2009),

Probabilistic downscaling approaches: Application to wind

cumulative distribution functions, Geophys. Res. Lett., 36,

L11708, doi:10.1029/2009GL038401.

1. Introduction

[2] A robust general circulation or ‘‘climate’’ model
(GCM) is characterized (at least) by its ability to simulate
key climate variables with correct statistical properties:
modes, variability, extreme event return levels or periods,
et cetera. Although GCMs are useful tools to generate
spatially and temporally coherent large-scale statistics,
computational limitations currently prohibit GCMs from
performing global simulations at the high spatial resolution
required to generate useful climate information at regional- or
local-scales [Wilks and Wilby, 1999], indispensable to drive
climate impact studies [Giorgi et al., 1990]. Dynamical or
statistical downscaling methods aim at bridging this gap.
Regional Climate Models (RCMs) constitute the dynamical
approach [Chen et al., 2003]. Resolving physical equations
of the atmospheric regional dynamics, RCMs are meteoro-
logically consistent [Wood et al., 2004] but are also com-
putationally expensive and therefore restricted in their
applications to few runs. On the opposite, because of their
computational properties and their flexibility (e.g., for
extremes, uncertainty), statistical downscaling methods
(SDMs) have recently received an outburst of interest.
Transfer functions [Wilby et al., 2002;Cannon and Whitfield,

2002], stochastic weather generators [Wilks and Wilby, 1999;
Semenov et al., 1998], and weather typing approaches [Vrac
et al., 2007] are the main three SDM categories. Those are
usually applied to GCM outputs or reanalyses to statistically
generate local climate variables such as temperature or
precipitation. However, they can also be applied to large-
scale climate statistics to provide local-scale climate statis-
tics [Pryor et al., 2005]. This latter context is retained for
this study. Hence, since our goal is here to downscale
statistical characteristics, and not directly to provide local-
scale values as in a usual SDM approach, we will speak of
probabilistic downscaling methods (PDMs). While classical
SDMs assume direct relationships between large- and local-
scale climate, PDMs model relationships between their
associated statistical properties. In this present work, cumu-
lative distribution functions (CDFs) are used. In other
words, the basic question we are trying to answer is: from
a CDF describing a climate variable (say the wind inten-
sity) at a large (GCM) scale, can we model the equivalent
CDF at a lower scale, say at a weather station? If so, how
to proceed? Remark that, if its statistical characteristics can
be downscaled – i.e., CDFs in this work – local values
can be easily generated to create realistic local-scale time
series.
[3] Modeling this link between large- vs. local- statistics

brings up two problems: (1) it can be highly non-linear and
difficult to build; (2) predictands and predictors are often
non-trivial and generally do not belong to a well-known
distribution family such as the Gaussian family. Thus, an
idea shared by the two methods presented in this work is to
make assumption neither on the shape of the relationship to
be modeled, nor on the family of the CDFs, but rather to use
non-parametric correspondences between the predictor and
predictand CDFs.
[4] In the next section, we first remind the reader of a

known PDM generating local-scale quantiles, and extend it
to a non-parametric approach capable of modeling station-
wise CDFs based on large-scale CDFs. In section 3, the data
used in this work are introduced, and the two PDMs are
validated on present climate, before applying the extension
method to a future climate simulation. Some conclusions
and perspectives are then given in the last section.

2. Two PDMs for CDFs

[5] Two probabilistic downscaling approaches, with the
same philosophy, are presented. In this section, two time
periods are considered; one corresponding to the calibration
period, and the other one to the validation period for which
local-scale CDFs have to be downscaled. In a climate
change context, these time periods would correspond re-
spectively to present and future periods.
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2.1. Quantiles-Matching Method

[6] The Quantiles-matching approach (hereafter
‘‘Q-matching’’) has been known for a while [see, e.g.,
Panofsky and Brier, 1958; Haddad and Rosenfeld, 1997]
but only a few climate studies applied it [e.g., Déqué, 2007].
This method is used as reference in the present study.
[7] Let FS stand for the CDF of a climate random

variable, the predictand, observed at a given weather station
during the calibration time period, and FG for the CDF of
the predictor variable from GCM outputs or reanalyses bi-
linearly interpolated at the station location during the same
time period. For simplicity in this paper, we assume that the
predictor and the predictand are the same climate variable
X for both methods (e.g., temperature, amount of precip-
itation, or wind velocity). FS(x) and FG(x) are non-linear
and give the probability that X is below or equal to a given
value x, i.e., F(x) = Pr(X � x), respectively in the real data
and GCM spaces.
[8] To downscale a large-scale value xG, the basic idea of

this method is to select a local-scale value xS based on the
assumption that:

FS xSð Þ ¼ FG xGð Þ; ð1Þ

that is equivalent to

xS ¼ F�1
S FG xGð Þð Þ; ð2Þ

where FS
�1 defined from [0,1] is the inverse function of FS.

Applying relationship (2) to large-scale simulated data for a
new (e.g., validation or future) time period, allows to build
a new local-scale time series. Although the Q-matching
method directly allows to provide local-scale values, it is
considered as a PDM in the sense given in the introduction
section, since the downscaled values are local-scale
quantiles, i.e., statistical characteristics. However, this
method does not take into account the information on the
distribution of the future modeled dataset. To overcome this
potential issue, we propose a new probabilistic downscaling
approach extending Q-matching.

2.2. CDF-Transform Method

[9] This approach (hereafter ‘‘CDF-t’’) can be perceived
as an extension of Q-matching, directly dealing with and
providing CDFs. It is based on the assumption that there
exists a transformation T allowing to ‘‘translate’’ the CDF of
a GCM variable (such as temperature, precipitation or wind
intensity), i.e., the predictor, into the CDF representing the
local-scale climate variable, i.e., predictand, at a given
weather station.
[10] Let FSh stand for the CDF of observed local data at

a weather station for the historical calibration period, and
FGh for the CDF of GCM outputs bi-linearly interpolated
at the station location for the same time period. FSf and
FGf are the CDFs equivalent to FSh and FGh but for a
future (or simply different) time period. Then, assuming
that we know FGf (that can be modeled through future
GCM outputs), and that there exists a transformation T:
[0,1] ! [0,1] such that

T FGh xð Þð Þ ¼ FSh xð Þ; ð3Þ

can we correctly approximate the local future CDF FSf by
applying T to FGf?
[11] The first step to test this point is to model T. A

simple way to do so is to replace x by FGh
�1(u) in equation

(3), where u belongs to [0,1]. We then obtain

T uð Þ ¼ FSh F�1
Gh uð Þ

� �
; ð4Þ

corresponding to our definition of T. Hence, assuming that
relationship (4) will remain valid in the future, i.e., that
FSf (x) = T(FGf (x)), the researched CDF is provided by

FSf xð Þ ¼ FSh F�1
Gh FGf xð Þ

� �� �
: ð5Þ

Remark that this common assumption of stationarity made
by most of the statistical downscaling approaches should be
taken with care because it is not guaranteed.
[12] From a technical/algorithmic point of view, the CDF

transform approach is defined in two steps:
[13] 1. The estimates of FSh, FGh

�1 and FGf, respectively
F̂Sh, F̂Gh

�1 and F̂Gf, are empirically modeled respectively
from the historical observations and the historical and future
large-scale simulated data.
[14] 2. Then, by combining them according to equation (5),

we dispose of F̂Sf, an estimation of FSf.
[15] However, FSf (x) defined through equation (5) is

only valid for x in [mf; Mf], where mf and Mf are
respectively the minimum and maximum values of the
future simulation dataset. Indeed, let’s take x lower (resp.
higher) than mf (resp. Mf). It leads to F̂Gf (x) = 0 (resp. 1)
and to F̂Gh

�1(F̂Gf (x)) = mh (resp. = Mh), where mh (resp. Mh)
is the minimum (resp. maximum) of the historical simu-
lated dataset. Hence, for all x � mf, F̂Sf (x) is constant and
equal to F̂Sh(mh), and for all x � Mf, F̂Sf (x) is constant and
equal to F̂Sh(Mh). Therefore, depending on the historical
station dataset, mf and Mf, F̂Sh(mh) and F̂Sh(Mh) can be
respectively different from 0 and 1. So, how to deal with x
out of [mf; Mf]?
[16] To answer this question, the method suggested by

Déqué [2007] is retained: outside [mf; Mf], a constant
correction is applied. For example, if FSf (mf) = p/100 (i.e.,
is the pth percentile), and that it represents an increase of
2 m/s compared to the pth percentile of the historical local-
scale CDF, any wind anomaly value below mf is corrected
by +2 m/s for this station. An equivalent procedure is applied
for x > Mf. Déqué [2007] assumed that ‘‘more sophisticated
methods would lack robustness and might introduce un-
physical extreme values after correction’’. In consequences,
although this method can be a bit restrictive for extremes, it
should not provide totally aberrant extreme values.
[17] We insist that the portion of the FSf domain such that

x is outside [mf; Mf] is very small in the application
presented in section 3: the vast majority of the downscaled
CDF will not come from the ‘‘constant correction’’ part but
from equation (5).
[18] Although the two methods clearly have a similar

philosophy, CDF-t takes into account the change in the
large-scale CDF from the historical to the future time
period, while Q-matching does not and only projects the
simulated large-scale values onto the historical CDF to
compute and match quantiles. Moreover, Q-matching can-
not provide local-scale quantiles outside the range of the

L11708 MICHELANGELI ET AL.: PROBABILISTIC WIND DOWNSCALING L11708

2 of 6



historical observations. This can be a clear restriction in a
changing climate context, whereas CDF-t allows one to
overcome this problem by taking advantage of the simulated
future large-scale CDF.

3. Application to Wind Downscaling

[19] In order to test the two PDMs detailed above, CDFs
of monthly mean 10m wind velocity (w10m hereafter) are
downscaled on 26 stations spread among France.

3.1. Observed and Modeled Wind Data

[20] Three time series of monthly w10m are available for
each station: the observed one (1958–2005), a second one
extracted from NCEP/NCAR reanalyses (1958–2005), and
a third one (1958–2100) extracted from a IPSL-CM4 GCM
climate simulation [Marti et al., 2005]. The model is forced
by the historical 20c3m scenario and the SRESA2 green-

house gas emission climate scenario [Nakićenović et al.,
2000] respectively for the 20th and 21st centuries. NCEP/
NCAR reanalyses have a 1.875� � 1.9� spatial resolu-
tion whereas IPSL outputs have a 3.75� � 2.5� resolu-
tion. For each station, the NCEP/NCAR and GCM time
series are obtained from bi-linear interpolations at the
station location.
[21] Although the Q-matching and CDF-t methods can be

calibrated on the whole data signal, in applications below,
data are detrended and deseasonalized. Moreover, the PDMs
are not applied to a particular season but to the whole year.
Indeed, preliminary analyses showed that results are slightly
better when working on winter data only; and of slightly
lower quality for summer only. Working on the whole year
(i.e., without separating the seasons) provides a suitable
intermediary for illustration purposes.

3.2. Validation on Historical Statistical Characteristics

[22] The validation of the two PDMs is based on the three
time series presented above, and is done on the so-called
‘‘historical’’ period (1958–2005) which is cut into two
chronologically following time periods: 1958–1989 (cali-
bration period) and 1990–2005 (validation period). For
both methods, the evaluation is performed in three steps:
[23] 1. Calibration: the observed, NCEP/NCAR, and

IPSL w10m CDFs are estimated from 75% randomly
chosen data from the calibration period.
[24] 2. Downscaling: the downscaling process is applied

to 75% randomly chosen data from the validation period.
[25] 3. Evaluation: the resulting local-scale CDFs are

compared to the observed ones through the Kolmogorov-
Smirnov statistics (KS hereafter) and the Cramér-von Mises
statistics (hereafter CvM) [Darling, 1957].
[26] KS provides the maximum difference between two

CDFs, whereas CvM is a kind of ‘‘integrated’’ squared error.
Hence, KS and CvM can be seen as ‘‘distances’’ beetwen
CDFs. These three steps are repeated a hundred times to
produce confidence intervals. The boxplots of the obtained
KS and CvM values for the verification period are presented
in Figure 1. Figure 1 (top) gives KS results and Figure 1
(bottom) provides CvM results. In Figures 1 (top) and 1
(bottom), white boxplots correspond to large-scale (IPSL
and NCEP/NCAR) CDFs scores, grey boxplots to down-
scaled CDFs scores. Each boxplot is made of 2600 values
and the critical level below which two CDFs are considered
as significantly similar for KS and CvM is shown as a
vertical line (significance at a = 0.05). In general, KS and
CvM values indicate the same results. For both criteria,
results are better for NCEP/NCAR (downscaled or not) than
for IPSL, which one could expect since NCEP/NCAR data
are reanalyses and have a higher spatial resolution than
IPSL data. Referring to the critical levels, the two down-
scaling methods provide good results (i.e., clear improve-
ments) for NCEP/NCAR and IPSL, even though the gain of
the two PDMs is much more visible when working with
IPSL outputs. However, although the downscaling results
are equivalently good (in terms of KS and CvM statistics)
for both PDMs applied to NCEP/NCAR data, the improve-
ment is better for CDF-t than for Q-matching when applied
to IPSL simulations. For IPSL (Figure 1), about 78% of the
dowscaled CDFs can be considered as equal to the observed

Figure 1. (top) Kolmogorov-Smirnov and (bottom) Cramér-
von Mises tests between the observed wind anomaly CDFs
and the CDFs downscaled with the two PDMs applied on
NCEP/NCAR and IPSL data on the validation period
(1990–2005). Each boxplot is made of an ensemble of
26 (stations) � 100 (cross-validation iterations) KS and
CvM values and shows the smallest, 25th, median, 75th and
largest values; crosses correspond to the ensemble average.
Vertical solid lines are critical values at a = 0.05. In white:
boxplots for data (IPSL or NCEP/NCAR) without down-
scaling; in dark grey: data downscaled with Q-matching; in
light grey: with CDF-t. See the text for details.
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ones for CDF-t (i.e., below the critical level a = 0.05
significance with KS) whereas we have 68% for Q-matching
(respectively 83% and 76% with CvM). A potential expla-
nation is that the CDF-t uses the large-scale CDF of the
validation (i.e., target) period whereas the Q-matching does
not. Boxplots displayed in Figure 1 show spreads that can be
relatively large, mostly for the scores of the large-scale
CDFs. For the raw (i.e., not downscaled) CDFs, it is mainly
due to differences between stations, whereas, for the down-
scaled CDFs, the spread comes from the random sampling
of the validation procedure. This is illustrated in Figure S1

of the auxiliary material and showing the 100 validation KS
values for each station.1

[27] Based on the KS and CvM statistics, we conclude that
the CDF-t approach provides better downscaling results over
the validation time period. Moreover, as explained previous-
ly, CDF-t takes advantage of the future CDF of the simulated
data (whereas the Q-matching does not) and Q-matching
cannot provide local-scale quantiles outside the range of the

Figure 2. (a) The 10m wind climatology for 1958–2005, and the other panels the change between 1958–2005 and the
future time periods (b) 2006–2040, (c) 2041–2070 and (d) 2071–2100: colors correspond to the change in the mean 10m
wind intensity relatively to 1958–2005; the radius of the circles is proportional to the CvM value between 1958–2005
wind anomaly CDF and future time period wind anomaly CDF; and bold lined circles correspond to stations where the
future anomaly CDFs are significantly different from 1958–2005 CDFs (a = 0.05 significance).

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GL038401.
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historical observations. Those are two prevailing reasons for
preferring CDF-t to Q-matching when projecting future
climate. Hence, only CDF-t is retained in the following.

3.3. Climate Projections for the 21st Century

[28] CDF-t is now applied to downscale w10m anomalies
CDFs at the 26 stations for the 21st century based on the
IPSL simulations for 2006–2100 under the SRESA2 IPCC
greenhouse gas emission scenario. The downscaling is
applied on detrended and deseasonalized anomalies. Time
series are generated from the CDF by applying a Quantile-
matching approach between future large-scale and future
(downscaled) local-scale CDFs. To reconstruct the projected
signal after the downscaling of anomalies, we add (1) the
future large-scale seasonal cycle where the historical bias
(i.e., large- minus local-scale historical cycle) has been
removed, and (2) the future large-scale trend (from bi-linear
interpolations at each station location). Calibrations are
performed on the 1958–2005 period and projected CDFs
are estimated on three periods, 2006–2040, 2041–2070 and
2071–2100. Those projections are done for illustration
purpose: the aim of the paper is not to fully investigate
the impact of climate change on w10m over France. It
would be hazardous to conclude with only one climate
model and a single scenario. The results are presented in
Figure 2, where the Figure 2a shows the 10m wind
climatology for 1958–2005, and Figures 2b–2d the
evolution for the three future time periods relatively to
1958–2005 and: colors correspond to the change in the mean
10mwind intensity relatively to 1958–2005; the radius of the
circles is proportional to the CvM value between 1958–2005
future time period wind anomaly CDFs; and bold lined
circles correspond to stations where the future anomaly CDFs
are significantly different from 1958–2005 CDFs (a = 0.05
significance). For the 26 stations, the 10m wind intensity is
decreasing during the 21st century. The relative decrease
ranges from�0.5% to�9%. A separation is visible between
Northwest and Southeast stations: the former see a larger
decrease than the latter. Changes in the anomaly CDFs
(radius of the circles) are not as geographically divided, even
if for the 2071–2100 period, Northwest stations show larger
changes. Note that only few stations for each future period
have a significantly different anomaly CDF relatively to the
historical period (bold circles – 1 in Brittany for 2006–
2040, 2 in Brittany and 2 in Provence for 2041–2070, 1 in
the North for 2071–2100). Diagnostics are not pushed
further.

4. Conclusions and Perspectives

[29] A new probabilistic downscaling method, named
CDF-transform (or CDF-t), has been developed in this
paper, and can be seen as an extension of the Quantiles-
matching method [Déqué, 2007]. Beyond its simplicity of
use, CDF-t gives promising results. First, CDF-t was
validated and compared to Q-matching on monthly mean
10m wind velocity anomaly data from reanalyses and
historical GCM simulations for 1958–2005. While both
methods provided equivalently good results when down-
scaling NCEP/NCAR data, CDF-t was found more efficient
than Q-matching (in terms of Kolmogorov-Smirnov and
Cramér-von Mises statistics) when applied to the IPSL

GCM outputs. For this reason and the fact that CDF-t takes
advantage of the CDF of the simulated future data whereas
Q-matching does not, CDF-t was preferred to Q-matching.
For illustration purpose, CDF-t was applied to IPSL-CM4
climate simulation of the 21st century under the SRESA2
scenario. In this specific case (model and emission scenario),
the results show a decrease between �0.5% and �9% of the
10m wind velocity, depending on the location, with a
stronger signal for the Northwest than for the Southeast
stations.
[30] This study brings out some perspectives and remarks.

If the distribution family of the downscaled variable is
(supposed to be) known, one could work with parametric
CDFs which would smooth the resulting CDFs. Moreover,
predictor and predictand variables are identical in this paper
but there is no a priori restriction to work with a large-scale
variable different from the local-scale one to be predicted.
Nevertheless, this point remains to be tested. This is true
also for a potential extension in a multivariate framework
(i.e., several predictors and/or predictands). However, that
context is a more difficult challenge and will require adapta-
tions of the proposed approach. Besides, other variables can
lead to different problems.AlthoughCDF-t is virtually directly
applicable to any variable (e.g., temperature, pressure), it
can need some carefulness with specific variables such as
precipitation intensity. Indeed, the ‘‘no-precipitation’’ events
may require adjustments (e.g., Dirac mass) to fit into the
proposed PDM. More developments are necessary to allow
CDF-transform to deal with such variables, bringing new
practical research prospects within the downscaling field.
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