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SUMMARY

Recordings of daily, weekly or yearly maxima in environmental time series are classically

fitted by the Generalized Extreme Value (GEV) distribution that originates from the well

established Extreme Value Theory (EVT). One special case of such GEV distribution is the

Gumbel family which corresponds to the modeling of maxima stemming from light-tailed

distributions. To capture temporal dependencies, linear autoregressive (AR) processes offer

a simple and elegant framework. Our objective is to extend linear AR models in such a way

that they handle Gumbel distributed maxima. To reach this goal, we take advantage of the

stability of Gumbel random variables when added to the logarithm of a positive α-stable

random variable. This allows us to propose a linear Gumbel distributed AR model whose

main theoretical properties are derived. For the atmospheric scientist, this link between

linear AR processes and EVT widens the statistical treatment of extreme environmental

recordings in which temporal dependencies are present. For example, our model is fitted

to daily and weekly maxima of methane (CH4) and daily maxima of nitrous oxide (N2O)

measured in Gif-sur-Yvette (France). Simulation results are also presented in order to assess

the quality of our parameter estimations for finite samples.

Key words: Extreme Value Theory, Dependence, Gumbel Distribution, Autoregressive Model,

Atmospheric Chemistry.

1 Autoregressive models and environmental

sciences

The tight connection between environmental sciences and statistics can be exemplified by

the key figure of Sir Gilbert Walker (1868-1958) whose name has been associated to both
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climatological and statistical concepts (Katz, 2002). For example, the Walker circulation

characterizes a zonal atmospheric circulation at the equator and the Yule-Walker equa-

tions describe correlation relationships for autoregressive (AR) processes (e.g. Brockwell and

Davis, 1987). These equations have been widely used in time series analysis, especially in

climatology. Two reasons of the success of AR models are their conceptual simplicity and

their flexibility for modeling quasi-periodic phenomena (e.g. sunspots time series) and short-

term dependencies (e.g. day-to-day memories in weather systems). One drawback of current

linear AR models is that they are unable to represent the distributional behavior of maxima.

Classical Extreme Value Theory (EVT) (e.g. Embrechts et al., 1997; de Haan and Ferreira,

2006; Coles, 2001; Beirlant et al., 2004) dictates that correctly normalized maxima should

follow (under various conditions) a Generalized Extreme Value (GEV) distribution. The

key characteristic of the GEV is its stability for the max operator. The maximum of two

independent and identically distributed (iid) GEV distributed random variables is still GEV

distributed. But adding two GEV random variables does not generate a GEV distributed

random variable. This explains why linear AR processes are not generally used to describe

maxima behavior. For example, Davis and Resnick (1989) or Zhang and Smith (2008) de-

fined and studied max AR (and not additive AR) models with Fréchet distributed marginals.

In finance and reinsurance, two well studied EVT domains of applications in which heavy

tailed distributions are prevalent, this issue may not be central because taking the maxima

or the sum of two heavy tailed random variables is basically equivalent for the upper tail

behavior, see chapter 2 of Embrechts et al. (1997). In contrast, light-tailed random vari-

ables are much more common in atmospheric sciences, e.g. temperature maxima. The link

between max and sum for heavy tails is not valid anymore and other methods have to be

developed to combine linear AR for light tails and maxima. It is well-known (Fisher and

Tippett, 1928; Gnedenko, 1943) that correctly normalized maxima from such light-tailed

distributions belong to the Gumbel domain. This means that maxima can be expected to
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be adequately fitted by the Gumbel distribution defined by

Hµ,σ(x) = exp

{
− exp

(
−x− µ

σ

)}
, with −∞ < x < +∞, (1)

where µ and σ correspond to the so-called location and scale parameters, respectively. For

example, the Quantile-quantile (QQ-) plots in Section 4 illustrates this point for maxima of

methane (CH4) and of nitrous oxide (N2O).

At least two possible methods can be implemented to model the bivariate behavior between

two consecutive maxima. The now popular copula approaches (e.g. Joe, 1997) allow con-

struction of bivariate distributions under the assumption that all marginals can be identified.

Another possibility is to take advantage of bivariate EVT, i.e. to choose and estimate a bivari-

ate extremal dependence function (e.g. Naveau et al., 2008). Although both aforementioned

methods are flexible and practical, we prefer to opt for a new representation based on AR

processes. This approach has the advantages that AR equations provide explicit relation-

ships and can be directly used for prediction purposes. In addition, as we will see in the

coming sections, parameter estimation is based on classical techniques and their interpreta-

tion is straightforward. All these elements are of importance for atmospheric scientists who,

by training, are already well-versed in dynamical equations. For example, AR processes are

routinely used in filtering schemes in atmospheric sciences (assimilation, kalman filtering,

etc).

Before presenting and explaining in detail our models, our paper can be summarized as

follows. In Section 2, the description and the main properties of our AR models are given.

Simulations to assess the quality of our parameter estimators and prediction exercises on

simulated data are presented in Section 3. Section 4 focuses on the analysis of CH4 and

N2O maxima. As usual, conclusions and perspectives are given in the last section. Finally

all the proofs are given in the Appendix.
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2 Gumbel AR models

The building block of our models is an additive relationship between Gumbel and positive

α-stable variables. Recall that a random variable S is said to be stable if for all non-negative

real numbers c1, c2, there exists a positive real a and a real b such that c1S1 + c2S2 is equal

in distribution to aS + b where S1, S2 are iid copies of S.

IfX is Gumbel distributed with parameters µ and σ and is independent of S which represents

a positive α-stable variable with α ∈ (0, 1) defined by its Laplace transform

E(exp(−uS)) = exp(−uα), for all u ≥ 0, (2)

then the sum X + σ logS is also Gumbel distributed with parameters µ and σ/α. Such an

additive property has been recently studied by Fougères et al. (2008) in a mixture context.

Crowder (1989), Hougaard (1986) and Tawn (1990) also worked with such distributions in

survival analysis and the modeling of multivariate extremes. In time series analysis, the

additive stability between Gumbel and positive α−stable random variables allows us to

propose a simple linear AR model that can be summarized by the following proposition.

PROPOSITION 1 Let St be iid positive α-stable variables defined by (2) for any t ∈ Z. Let

{Xt, t ∈ Z} be a stochastic process defined by the recursive relationship

Xt = α Xt−1 + α σ logSt (3)

where σ > 0. Equation (3) has a unique strictly stationary solution,

Xt = σ

∞∑
j=0

αj+1 logSt−j (4)

and Xt follows a Gumbel distribution with parameters (0, σ).
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Although one can easily recognize the classical AR(1), Xt = αXt−1 + σεt with εt = α logSt

in (3), it is important to notice that the “noise” εt depends here on α. An advantage of

the parameterization (3) is that Xt follows a Gumbel distribution whose parameters are

independent of α. The covariance between Xt and Xt−h is increasing with α; more precisely,

we have Cov(Xt, Xt−h) = Var(Xt)α
|h|. The first two moments of the Gumbel distribution

can also be easily computed

µ = E(X0)− π−1δ
√

6Var(X0) (5)

and

σ = π−1
√

6Var(X0) (6)

where δ is the Euler’s constant.

To simplify the statement of our proposition, the Gumbel location parameter µ was set equal

to zero. In practice, µ can be different from zero. It suffices to add µ to Xt in (4) to have a

Gumbel(µ, σ) distribution. Another possible extension is the following AR model

Zt = α1α2Zt−1 + α1α2σ logSt(α1) + α2σ logSt−1(α2) (7)

where St(α1) and St(α2) are independent sequences of iid positive αi-stable variables with

i = 1, 2. If Z0 is Gumbel distributed with parameters (0, σ) then Zt is also Gumbel dis-

tributed with parameters (0, σ) for any t > 0. Equation (7) can be used to define a Gumbel

ARMA(1,1) and, a generalization of the same idea could produce a Gumbel ARMA(1, q).

Instead of studying in detail such models, we prefer to investigate the properties of the sim-

pler Gumbel AR(1) defined by (3). This latter model has fewer coefficients, whereas more

complex models, although important for some applications, do not bring any new conceptual

ideas in this paper.

7



Parameterization (3) offers an explicit identification of the process Xt by its characteristic

function as shown in the next proposition.

PROPOSITION 2 Let {Xt, t ∈ Z} be defined as in Proposition 1. The characteristic func-

tion of any random vector Xh = (Xt, . . . , Xt−h)
′
with h > 0 can be written as

E
(
exp[i u

′
Xh]

)
= Γ

(
1− iσ

h∑
j=0

ujα
h−j

)
h−1∏
j=0

Γ
(
1− iσ

∑j
k=0 ukα

j−k
)

Γ
(
1− iσ

∑j
k=0 ukαj−k+1

) .

A natural question connected to extreme events analysis is to know what kind of dependence

is present in the upper tail. There are a variety of ways to answer such a question (e.g.

Fougères, 2004). Coles (2001) or Coles et al. (1999) advocate the following two upper tail

dependence coefficients

χ = lim
x→∞

P(Xt−1 > x,Xt > x)

P(Xt−1 > x)
and χ = lim

x→∞

2 log P(Xt−1 > x)

log P(Xt−1 > x,Xt > x)
− 1.

These quantities can be computed for our Gumbel AR model.

PROPOSITION 3 Let {Xt, t ∈ Z} be defined as in Proposition 1. The parameter χ equals

zero, while the dependence parameter χ is equal to α/(2− α) ∈ (0, 1).

As expected for light-tailed distributions, χ is null and this situation corresponds to the

so-called asymptotic independence (e.g. Coles, 2001). Still, the coefficient χ clearly indicates

that the dependence strength in the upper tail increases almost proportionally to α.

To estimate our three parameters α, σ and µ in our Gumbel AR(1) model, we opt for

a method of moments approach because of its simplicity of implementation and its good

asymptotic properties. A possible alternative resides in a maximum likelihood procedure
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(e.g. Breidt and Davis, 1991; Andrews et al., 2008). The expressions of the two parameters

of the Gumbel distribution given in Equation (5) and Equation (6) provide the following

estimators of µ and σ

µ̂ = X − π−1δ
√

6s and σ̂ = π−1
√

6s (8)

where X =
∑T

t=1Xt/T and s2 =
∑T

t=1(Xt − X)2/T . Concerning the estimation of α, a

least-square estimator can be introduced by writing

arg min
r

{
T−1∑
t=1

([Xt+1 − E(X0)]− r [Xt − E(X0)])
2

}
=

∑T−1
t=1 (Xt − E(X0))(Xt+1 − E(X0))∑T−1

t=1 (Xt − E(X0))2
.

This is similar to the classical Yule-Walker equation for AR(1) models. It follows that our

estimator of α is simply

α̂ =
1

s2T

T−1∑
t=1

(Xt −X)(Xt+1 −X). (9)

The asymptotic properties of our triplet of estimators can be summarized by the following

proposition.

PROPOSITION 4 As T the sample size goes to infinity, the estimators of µ, σ and α defined

by (8) and (9) are almost surely consistent and the vector
√
T (µ̂−µ, σ̂−σ, α̂−α)

′
converges

in distribution to a zero-mean Gaussian vector with covariance matrix
π2σ2

6
1+α
1−α

− 12δσ2ζ(3)(1+α+α2)
π2(1−α2)

+ 11δ2σ2(1+α2)
10(1−α2)

6σ2ζ(3)(1+α+α2)
π2(1−α2)

− 11δσ2(1+α2)
10(1−α2)

−ασδ
6σ2ζ(3)(1+α+α2)

π2(1−α2)
− 11δσ2(1+α2)

10(1−α2)
11σ2(1+α2)
10(1−α2)

ασ

−ασδ ασ 1− α2

 (10)

where ζ(.) represents the Riemann function.
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3 Simulation results

To study the finite sample size behavior of our estimators µ̂, σ̂ and α̂, we generate 1000

samples from (3) with different values of n (sample size) and α. We have chosen n =

50, 100, . . . , 1000, α ∈ {0.2, 0.5, 0.8}, µ = 0 and σ = 2. Figure 1 recapitulates the outputs

of our simulations. The top, medium and bottom panels correspond respectively to the

properties of µ̂, σ̂ and α̂ with respect to different sample sizes (x-axis). The mean, first and

third quartiles of our 1000 replica are represented by the dashed line and the two dotted-

dashed lines, respectively. For small sample sizes, we observe some bias in the estimation of

α which is asymmetric. As the dependence captured by α decreases, the estimation of the

two Gumbel parameters µ and σ improves.

From a prediction point of view, it is interesting to quantify the error if one predicts with a

classical Gaussian AR(1) model while the underlying true model is Gumbel AR(1) one. As

discussed in the introduction, this could be the case if the variable of interest is a maximum

obtained from a light-tailed distribution. To reach this goal, we remark that, under our

model (3), we have

P(Xt+1 ≤ y|Xt = x) = P
(

logSt+1 ≤
y − αx

ασ

)
. (11)

This means that the predictive distribution of [Xt+1|Xt = x] under (3) is simply the one of

the log of a positive α-stable random variable. To visualize this one-step prediction density,

we simulate a sample of 1000 observations from our AR(1) Gumbel model with α = 0.5,

µ = 0 and σ = 2. After estimating µ, σ and α according to (8) and (9), 1000 values of

[X̂t+1|Xt = x] are drawn from α̂-stable positive realizations according to (11), µ̂ and σ̂. The

corresponding histogram and the true density (solid line) are superimposed in the left panel

of Figure 2. The same exercise is repeated but under the wrong assumption that the model

is Gaussian AR(1). The right panel clearly indicates a discrepancy between the true density
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α = 0.2 α = 0.5 α = 0.8
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αα̂ −− αα   
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n n

Figure 1: Simulation results for µ̂, σ̂ and α̂ defined by (8) and (9). The mean, first and third
quartiles obtained from 1000 replica with µ = 0, σ = 2 and α ∈ {0.2, 0.5, 0.8} correspond to
the dashed line and the two dotted-dashed lines, respectively. The x-axis represents different
sample sizes. The top, medium and bottom panels corresponds to µ̂, σ̂ and α̂− α.
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(solid line) and the estimated histogram obtained under the Gaussian setup. Of course, it

is not surprising that the asymmetry present by construction in [Xt+1|Xt = x] cannot be

handled by the Gaussian model. This simply illustrates that the information contained in

the type of random variable, here maxima, can help in the modeling of predictive densities

whenever classical EVT can be applied.

αα unknown − Model 1

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

αα unknown − Model 2

−5 0 5 10

Figure 2: Conditional histograms of X̂t+1 for the Gumbel model (Model 1) and for the
Gaussian one (Model 2).

4 Analysis of maxima of CH4 and N2O

In practice the connection between light-tailed maxima and the Gumbel distribution can be

illustrated by environmental variables. Our example choice is primarily motivated by atmo-

spheric considerations. After water vapor, carbon dioxide, methane and nitrous oxide are the

three most important greenhouse gases. They play a fundamental role in our understanding

of the past, present and future state of the Earth atmosphere. In this context, identifying the
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temporal structure among the largest CH4 and N2O measurements is of primary interest for

the atmospheric chemist because this can help to predict future maxima of CH4 and N2O at

a specific location. For our site of Gif-sur-Yvette (France), the maxima block sizes of a day

and a week are convenient with respect to the length and the resolution of our time series.

The length of our records, five years, is too short to study yearly maxima, or even monthly

maxima, at a climatic scale.

To illustrate the distributional behaviors of our chosen variables, a Gumbel distribution has

been fitted to two time series of daily and weekly CH4 concentration recorded from 2002 to

2007. The data measured in parts per billion (ppb) are presented in Figure 3.

Daily maxima of CH4 Weekly maxima of CH4
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Figure 3: The y-axis corresponds to maxima of CH4 in ppb recorded at Gif-sur-Yvette
(France) from 2002 to 2007 (x-axis). The zeros represent missing values.

QQ-plots displayed in Figure 4 indicate that a Gumbel fit seems to be reasonable. Concerning

the short-term temporal dependence, the scatter plot of two consecutive maxima of CH4 in

Figure 5 shows a dependence, as one would expect, that seems stronger at the daily scale

than at the weekly one. As the marginals can be approximated by a Gumbel density, classical
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Figure 4: Gumbel QQ-plot of the daily and weekly maxima of CH4 displayed in Figure 3.
The two Gumbel parameters of (1) are estimated by the method of moments.
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Figure 5: Scatter plots of consecutive maxima of CH4.
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correlation measures are not appropriate to capture such dependencies among maxima. The

same type of plots (QQ-plot and scatter plot) can be obtained for daily maxima of N2O,

see Figure 6 and the same type of conclusions can also be made. Note that an increasing

linear trend has been removed from the daily maxima of N2O in order to make them more

stationary (see the upper panel of Figure 6).

Concerning our CH4 example, α’s estimators are equal to α̂Day = 0.54 and α̂Week = 0.35.

From Proposition 4, we obtain for α the following 95% confidence intervals: CI95%(αDay) :

[0.49, 0.59] and CI95%(αWeek) : [0.23, 0.47]. As an example, for a visual check, we plot in

Figure 7 the scatter plot of two consecutive maxima from a Gumbel AR(1) with parameters

corresponding to the estimators from the series and with α = 0.35. Moreover the sizes of

the observed and simulated series are the same. Therefore comparison of Figure 5 for weekly

maxima and Figure 7 shows a good visual agreement between the observed and simulated

bivariate structure for successive maxima.

To assess the predictive power of our model, we estimate the three parameters on the first

period, here from 2002 to the middle of 2006. For the second part of 2006, we draw 1000

X̂t+1 = α̂xt + α̂σ̂ logSt+1 + µ̂(1− α̂) with xt the observed value at time t and St+1 a random

positive α̂-stable variable as defined in (2). Then the empirical quartiles of the distribution of

[X̂t+1|Xt = xt] are deduced. Figure 8 represents the prevision of daily maxima (on the left)

and weekly maxima (on the right) of methane in Gif-sur-Yvette during the second period of

2006.

5 Conclusions and perspectives

Our Gumbel AR(1) process defined and studied in this paper offers a simple way to model

short-term dependencies among maxima stemming from light-tailed distributions. Although
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Figure 6: Daily maxima of N2O in parts per billion by volumn (ppbv) recorded at Gif-sur-
Yvette (France) from 2002 to 2007. Upper panel: N2O time series after removing a linear
trend (the “zeros” represent missing values). Left lower panel: Gumbel QQ-plot of the upper
panel data. Right lower panel: scatter plot of consecutive values from the upper panel data.
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Figure 7: Scatter plot from a Gumbel AR(1) with α = 0.35.

it is possible to extend it to ARMA(1, q), we do not yet know how to preserve the Gumbel

characteristic for AR(p) for p ≥ 2. In addition, we impose that maxima have to follow a

Gumbel distribution. As noticed in Section 1, this is reasonable for a lot of variables in

atmospheric sciences. Still, some variables like precipitation records at some locations and

specific temporal scales may not be light tail distributed but rather slightly heavy tailed.

Hence, for such phenomena, it would be of interest to propose a more general AR model

like a GEV AR(1) process. This is possible if we define St, t ∈ Z, as in Proposition 1 and

{Xt, t ∈ Z} by the recurrence equation

Xt +
σ

ξ
=

(
Xt−1 +

σ

ξ

)α

× Sαξ
t ×

(
σ

ξ

)1−α

(12)

where σ > 0 and ξ ∈ R∗. It is possible to demonstrate as in Proposition 1 that Equation

(12) has a unique strictly stationary solution given by

Xt +
σ

ξ
=
σ

ξ

∞∏
j=0

(St−j)
ξαj+1

(13)
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Figure 8: One-step prevision of methane daily maxima (on the left) and methane weekly
maxima (on the right) on the second part of the year 2006.

and that Xt follows a GEV (0, σ, ξ) distribution. This model could be used in practice.

Nevertheless, this extension leads to a non additive model. This complexity could diminish

its application in atmospheric sciences. Maybe, a more promising road would be to develop

and study a state-space model based on our Gumbel AR(1) process. This could lead to

important applications in filtering schemes like data assimilation, the latter being routinely

used by geoscientists.
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6 Appendix

Proof of Proposition 1. With Yt = Xt − δσ and εt = ασ logSt − δσ(1 − α) where δ is the

Euler’s constant, (3) may be rewritten as

Yt = αYt−1 + εt. (14)

This is a well-known model, an AR(1) process where the random variables εt are iid with null

expectation and variance equal to α2σ2σ2
ε . Indeed, according to Zolotarev (1986, Section 3.6),

E(logS) = δ (1/α− 1) and Var(logS) = (π2/6) × (1/α2 − 1) =: σ2
ε . According to classical

results concerning the AR process of order one detailed in Brockwell and Davis (1987, Section

3.1), we have in case |α| < 1 and if {Yt} is stationary that

lim
n→∞

E

(
Yt −

n∑
j=0

αjεt−j

)2

= 0 (15)

and
∑∞

j=0 α
jεt−j is mean-square convergent. Consequently the process {Yt} has a unique

second-order stationary solution

Yt =
∞∑

j=0

αjεt−j. (16)

Since it is obvious that (16) is equivalent to (4), the process {Xt} defined in (4) is the unique

second-order stationary solution of (3).

In order to obtain the distribution of Xt we are interested in the characteristic function of

logS. According to Zolotarev (1986, p. 117), it is possible to establish the characteristic
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function of logS as follows:

E (exp(iu logS)) =
Γ
(
1− iu

α

)
Γ(1− iu)

. (17)

The characteristic function of Xt could now be computed. According to (15) we have

lim
n→∞

E

(
Xt − σ

n∑
j=0

αj+1 logSt−j − δσαn+1

)2

= 0 (18)

which implies

E
(
eiuXt

)
= lim

n→∞
E
(
eiu(σ

∑n
j=0 αj+1 log St−j+δσαn+1)

)
= lim

n→∞
eiuδσαn+1E

(
n∏

j=0

eiuσαj+1 log St−j

)
.

Since the variables St, t ∈ Z, are independent, it is possible to show that E
(
eiuXt

)
= Γ(1−

iuσ) which exactly corresponds to the characteristic function of a Gumbel(0, σ) distribution.

The same result holds for a Gumbel(µ, σ) with µ not necessarily equal to zero. It suffices

to add µ to Xt. Moreover, since St, for all integers t, are iid, the process Xt is not only

second-order stationary but strictly stationary. tu

Proof of Proposition 2. For any h > 0, let

Xh =



Xt

Xt−1

...

Xt−k

...

Xt−h


=



αhXt−h + σ
∑h−1

j=0 α
j+1 logSt−j

αh−1Xt−h + σ
∑h−1

j=1 α
j logSt−j

...

αh−kXt−h + σ
∑h−1

j=k α
j−k+1 logSt−j

...

Xt−h


and u =



u0

u1

...

uk

...

uh


.
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Then

E
(
exp[i u

′
Xh]

)
=E

(
eiu0Xt+iu1Xt−1+···+iukXt−k+···+iuhXt−h

)
=E

(
eiu0(αhXt−h+σ

∑h−1
j=0 αj+1 log St−j)+···+iuk(αh−kXt−h+σ

∑h−1
j=k αj−k+1 log St−j)+···+iuhXt−h

)
=E

(
eiXt−h

∑h
j=0 ujαh−j

)
E
(
eiσ

∑h−1
j=0 (

∑j
k=0 αj−k+1uk) log St−j

)
=Γ

(
1− iσ

h∑
j=0

ujα
h−j

)
h−1∏
j=0

E
(
eiσ(

∑j
k=0 αj−k+1uk) log St−j

)

=Γ

(
1− iσ

h∑
j=0

ujα
h−j

)
h−1∏
j=0

Γ
(
1− iσ

∑j
k=0 ukα

j−k
)

Γ
(
1− iσ

∑j
k=0 ukαj−k+1

) . tu

Proof of Proposition 3. The following quantity is essential in the computation of the two

dependence parameters χ and χ

P(Xt−1 > x,Xt > x) = P(Xt−1 > x, αXt−1 + ασ logSt > x)

=

∫ ∞

x

P
(

logSt >
1

ασ
(x− αy) |Xt−1 = y

)
dH0,σ(y)

=

∫ ∞

x

P
(
St > exp

(
1

ασ
(x− αy)

))
dH0,σ(y)

where St is a positive α−stable variable andXt a Gumbel (0, σ)−distributed random variable.

Consequently

P(Xt−1 > x,Xt > x) =

∫ exp(− 1
σ

x)

0

P
(
St > z exp

( x

ασ

))
exp(−z)dz

= exp
(
− x

ασ

) ∫ exp(− x
ασ

(α−1))

0

exp
(
−u exp

(
− x

ασ

))
P(St > u)du

= exp
(
− x

ασ

) ∫ ∞

0

exp
(
−u exp

(
− x

ασ

))
1

0≤u≤e
x

ασ (1−α) P(St > u)du.
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Note that 1
P(Xt−1>x)

x→∞∼ exp
(

x
σ

)
. The dependence parameter χ can be written as

χ = lim
x→∞

P(Xt−1 > x,Xt > x)

P(Xt−1 > x)

= lim
x→∞

exp
( x

ασ
(α− 1)

) ∫ ∞

0

exp
(
−u exp

(
− x

ασ

))
1

0≤u≤e
x

ασ (1−α) P(St > u)du

= lim
x→∞

∫ 1

0

exp
(
−ω exp

(
−x
σ

))
P
(
St > ωe

x
ασ

(1−α)
)
dω.

Since St is a positive α−stable variable, we have P(St > x) = x−αL(x) where L is a slowly

varying function (see Bingham et al., 1987, Section 8.3.5), which implies that

χ = lim
x→∞

∫ 1

0

exp
(
−ω exp

(
−x
σ

))
ω−αL

(
ωe

x
ασ

(1−α)
)
dω e−

x
σ

(1−α).

By Taylor expansion, we have exp(−ω exp(−x/σ)) = 1 − ωe−ωκe−
x
σ with κ ∈

(
0, e−

x
σ

)
, and

therefore

χ = (1 + o(1)) lim
x→∞

∫ 1

0

ω−αL
(
ωe

x
ασ

(1−α)
)
dω e−

x
σ

(1−α)

∼ 1

1− α
lim

x→∞

L(e
x

ασ
(1−α))

e
1
σ

x(1−α)

= 0,

since 0 < α < 1, the approximation coming from Karamata’s theorem.
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Now, we are interested in the dependence parameter χ:

χ = lim
x→∞

2 log P(Xt−1 > x)

log P(Xt−1 > x,Xt > x)
− 1

= lim
x→∞

−2x/σ

− x
ασ

+ log
(∫∞

0
exp

(
−u exp

(
− x

ασ

))
1

0≤u≤e
x

ασ (1−α) P(St > u)du
) − 1

= lim
x→∞

[
1

2α
− σ

2x
log

(∫ 1

0

exp
(
−ω exp

(
−x
σ

))
P
(
St > ωe

x
ασ

(1−α)
)
dω e

x
ασ

(1−α)

)]−1

− 1

= lim
x→∞

[
1

2
− σ

2x
log

(∫ 1

0

exp
(
−ω exp

(
−x
σ

))
P
(
St > ωe

x
ασ

(1−α)
)
dω

)]−1

− 1.

As previously, we have P(St > x) = x−αL(x) where L is a slowly varying function. Conse-

quently, we obtain

χ = lim
x→∞

[
1

2
− σ

2x
log

(∫ 1

0

exp
(
−ω exp

(
−x
σ

))
ω−αL

(
ωe

x
ασ

(1−α)
)
dω e−

x
σ

(1−α)

)]−1

− 1

= lim
x→∞

[
1− α

2
− σ

2x
log

(∫ 1

0

exp
(
−ω exp

(
−x
σ

))
ω−αL

(
ωe

x
ασ

(1−α)
)
dω

)]−1

− 1

=
[
1− α

2

]−1

− 1

=
α

2− α
. tu

Proof of Proposition 4. Since Xt is Gumbel(µ, σ) distributed, its first and second moments

are known and finite. By the ergodic theorem, X = 1
T

∑T
t=1Xt converges almost surely to

E(X0) and s2 = 1
T

∑T
t=1(Xt−X)2 to Var(X0). Then by continuity it follows that µ̂ converges

almost surely to µ and σ̂ to σ. Concerning α̂, as 1
T

∑T−1
t=1 (Xt − X)(Xt+1 − X) converges

almost surely to Cov(X0, X1) = αVar(X0), it follows that α̂ = 1
Ts2

∑T−1
t=1 (Xt−X)(Xt+1−X)

converges almost surely to α.

Now let us introduce {Yt} the two-sided moving average defined by Yt =
∑∞

j=−∞ ψjεt−j

where ψj = σαj+1 for j ≥ 0 and 0 otherwise with α ∈ (0, 1). We note εt = logSt − δ
α
(1− α)

with St defined as in Proposition 1. Therefore the random variables εt are iid with null
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expectation and variance equal to σ2
ε = (π2/6)× (1/α2 − 1).

The proof of the remaining part of the proposition can be divided into two parts. First, we

establish the following lemma and then we combine it with the delta method in order to

conclude.

LEMMA 5 Let {Yt} defined as previously. The random vector

√
T


1
T

∑T
t=1 Yt

1
T

∑T
t=1(Y

2
t − EY 2

t )

1
T

∑T
t=1(YtYt+1 − EYtYt+1)

 (19)

converges to a normal distribution with mean vector equal to 0 and covariance matrix ΣY

equal to


γ0

1+α
1−α

2σ3ζ(3)(1+α+α2)
1−α2

2σ3ζ(3)α(1+α+α2)
1−α2

2σ3ζ(3)(1+α+α2)
1−α2

22
5
γ2

0
1+α2

1−α2

4αγ2
0

1−α2 (1 + 3
5
(1 + α2))

2σ3ζ(3)α(1+α+α2)
1−α2

4αγ2
0

1−α2 (1 + 3
5
(1 + α2))

γ2
0

1−α2 [(1 + α2)(12
5
α2 + 1) + α2(3− α2)]

 (20)

where ζ(.) is the Riemann function and γk = γ(k) with γ(.) the autocovariance function of

{Yt}.

We are interested in the behavior of θ̂ =
√
T (µ̂− µ, σ̂ − σ, α̂− α)

′
with µ̂, σ̂ and α̂ defined

in (8) and (9). First we are going to study θ̃ =
√
T (µ̂− µ, σ̂ − σ, α̃− α)

′
where

α̃ =

1
T

∑T
t=1

(
YtYt+1 − Y

2
)

1
T

∑T
t=1(Yt − Y )2

.
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We combine Lemma 5 with the delta method applied to the functions

φ1(z) := z1 −
δ
√

6

π

√
z2 − z2

1 , φ2(z) :=

√
6

π

√
z2 − z2

1 and φ3(z) :=
z3 − z2

1

z2 − z2
1

where z = (z1, z2, z3)
′
. The partial derivatives of φ1, φ2 and φ3 exist, they are continuous

and H(µ, σ, α) defined as

H(µ, σ, α) =
∂φµ

∂zν

(z)

∣∣∣∣
(z1,z2,z3)=(0,E(Y 2),E(Y0Y1))

, µ, ν = 1, 2, 3

is equal to (2γ0)
−1


2γ0 −σδ 0

0 σ 0

0 −2α 2

 and has rank 3. Therefore we obtain by the delta method

the asymptotic normality of θ̃ with a mean vector equals to 0 and a covariance matrix equals

to H(µ, σ, α)ΣYH(µ, σ, α)
′
where ΣY is defined in Lemma 5. After computations we obtain

the matrix given in (10). Since it is possible to show that
√
T (α̂− α̃) = oP(1) with α̂ defined

in (9), we conclude that the vector θ̂ converges to the same limiting distribution.

It remains to give the proof of Lemma 5.

Proof of Lemma 5. In a first part we compute the elements of ΣY. Since it is possible to

show that E(ε4
t ) = ησ4

ε <∞ with η = 3+ 12
5

1+α2

1−α2 and since
∑∞

j=−∞ |ψj| <∞ we can directly

deduce the asymptotic covariance matrix of the vector
(

1√
T

∑T
t=1 Y

2
t ,

1√
T

∑T
t=1 YtYt+1

)′
using

Proposition 7.3.1 in Brockwell and Davis (1987). Using similar techniques, we obtain

lim
T→∞

TVar


1
T

∑T
t=1 Yt

1
T

∑T
t=1 Y

2
t

1
T

∑T
t=1 YtYt+1



=


∑∞

k=−∞ γk

∑∞
k=−∞ E(Y0Y

2
k )

∑∞
k=−∞ E(Y0YkYk+1)∑∞

k=−∞ E(Y0Y
2
k ) (η − 3)γ2

0 + 2
∑∞

k=−∞ γ2
k (η − 3)γ0γ1 + 2

∑∞
k=−∞ γkγk+1∑∞

k=−∞ E(Y0YkYk+1) (η − 3)γ0γ1 + 2
∑∞

k=−∞ γkγk+1 (η − 3)γ2
1 +

∑∞
k=−∞(γ2

k + γk+1γk−1)

 .

25



Since E(ε3
t ) = 2ζ(3)(1/α3 − 1) and γk = γ0α

|k|, the expression for ΣY given in (20) follows.

In the second part of the proof of Lemma 5, we have to show the convergence to a normal

distribution. To this aim, we define the truncated sequence as follows Wm,t = (Ym,t , Y
2
m,t−

EY 2
m,t , Ym,tYm,t+1 − EYm,tYm,t+1)

′
where Ym,t =

∑m
j=−m ψjεt−j and ψj as previously. The

idea is to prove first the asymptotic normality of T−1/2
∑T

t=1 Wm,t and then to let m tend to

infinity. To this aim, we have to show that any linear combination of the three components

of T−1/2
∑T

t=1 Wm,t is Gaussian. Note that, for any λ ∈ R3, the sequence {λWm,t} is strictly

stationary (2m+ 1)-dependent. Moreover limT→∞ T
−1Var(

∑T
t=1 λ

′
Wm,t) = λ

′
ΣYmλ where

ΣYm is defined as


∑∞

k=−∞ γm,k

∑∞
k=−∞ E(Ym,0Y

2
m,k)

∑∞
k=−∞ E(Ym,0Ym,kYm,k+1)∑∞

k=−∞ E(Ym,0Y
2
m,k) (η − 3)γ2

m,0 + 2
∑∞

k=−∞ γ2
m,k (η − 3)γm,0γm,1 + 2

∑∞
k=−∞ γm,kγm,k+1∑∞

k=−∞ E(Ym,0Ym,kYm,k+1) (η − 3)γm,0γm,1 + 2
∑∞

k=−∞ γm,kγm,k+1 (η − 3)γ2
m,1 +

∑∞
k=−∞(γ2

m,k + γm,k+1γm,k−1)


with γm,k = γm(k) where γm(.) is the autocovariance function of {Ym,t}. Therefore we can

directly apply Theorem 6.4.2 in Brockwell and Davis (1987) and we obtain that

T−1/2

T∑
t=1

λ
′
Wm,t

d→ Θm with Θm ∼ N
(
0, λ

′
ΣYmλ

)

for all vectors λ ∈ R3 such that λ
′
ΣYmλ > 0. Consequently

T−1/2

T∑
t=1

Wm,t
d→ Ωm with Ωm ∼ N (0,ΣYm). (21)

The last step in the proof of this lemma is to show that the asymptotic normality described

in (21) remains true if Wm,t is replaced by Wt = (Yt , Y
2
t − EY 2

t , YtYt+1 − EYtYt+1)
′
.

The idea is to derive the result for Wt by letting m → ∞. Using mainly the convergence

dominated theorem, it is easy to show that ΣYm converges to ΣY as m tends to infinity,

which entails that Ωm
d→ Ω as m tends to infinity with Ω ∼ N (0,ΣY).
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The proof can now be completed by an application of Proposition 6.3.9 in Brockwell and

Davis (1987) as in the proof of Proposition 7.3.3 of the same book. To this aim, we have to

check one condition. It has already been proved in Proposition 7.3.3 that for p = 0, 1, the

following limit

lim
m→∞

lim sup
T→∞

P

(
√
T

∣∣∣∣∣ 1T
T∑

t=1

(Ym,tYm,t+p − E(Ym,tYm,t+p))−
1

T

T∑
t=1

(YtYt+p + E(YtYt+p))

∣∣∣∣∣ > ε

)

is equal to 0. Similarly, we have to show that

lim
m→∞

lim sup
T→∞

P

(
√
T

∣∣∣∣∣ 1T
T∑

t=1

Ym,t −
1

T

T∑
t=1

Yt

∣∣∣∣∣ > ε

)
= 0. (22)

Using Chebychev’s inequality

P

(
T 1/2

∣∣∣∣∣T−1

T∑
t=1

Ym,t − T−1

T∑
t=1

Yt

∣∣∣∣∣ > ε

)

≤ ε−2TVar

(
T−1

T∑
t=1

Ym,t − T−1

T∑
t=1

Yt

)

= ε−2T

[
Var

(
T−1

T∑
t=1

Ym,t

)
+ Var

(
T−1

T∑
t=1

Yt

)

− 2Cov

(
T−1

T∑
t=1

Ym,t, T
−1

T∑
t=1

Yt

)]
.

The two variances and the covariance involved in this bound can easily be computed and we

obtain

lim
m→∞

lim sup
T→∞

ε−2TVar

(
T−1

T∑
t=1

Ym,t − T−1

T∑
t=1

Yt

)
= 0.

This establishes (22), achieves the proof of Lemma 5 and also the one of Proposition 4. tu
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