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s u m m a r y

Impact investigations of climate change on urban drainage require projections to be made on short-
duration precipitation extremes. The relevant time scales can be as low as 10 min, which requires strong
statistical downscaling of climate model simulation results. In this research, two sets of methods have
been suggested and tested based on Belgian data. The first set makes direct use of the precipitation
results of the climate models. They involve computation of quantile perturbations on extreme precipita-
tion intensities, and the tested assumption that the same perturbations hold for daily and sub-daily time
scales. The second set of methods is based on weather typing, and accounts for the low accuracy of daily
precipitation results in current climate modelling. In these methods, climate model outputs on pressure
(atmospheric circulation) are used to obtain precipitation estimates from analogue days in the past. Dif-
ferent criteria for defining analogue days have been tested. The weather typing methods have been fur-
ther advanced accounting for the fact that precipitation change does not only depend on change in
atmospheric circulation, but also on temperature rise. Results have been investigated as changes to pre-
cipitation intensity–duration–frequency (IDF) relationships. It is shown that both the quantile-
perturbation and advanced weather typing based methods allow precipitation biases in climate model
simulation results to be largely corrected. Both types of methods moreover produce similar short-dura-
tion changes in precipitation extremes, which gives some credibility to the downscaled impacts. The cor-
responding changes in IDF statistics show that the extreme precipitation quantiles typically used for
design of urban drainage systems, can increase up to 30% by the end of this century. Those changes mean
that sewer surcharge or flooding would occur about twice more frequently than in the present climate (if
no other environmental or management changes are accounted for). This would have a significant impact
on future urban water management and planning.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

One of the major problems in current hydrological impact
investigations of climate change is the spatial and temporal scale
mismatch between the outputs of climate models (General
Circulation Models or Regional Climate Models) and the small scale
at which hydrological impact investigations are carried out. Up-
to-date global and regional climate models produce results at spa-
tial grid sizes in the range from 100 to 10 km, and at time steps of
days to hours. Hydrological impact investigations, however, need
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information on climate changes at finer spatial scales (down to
point scales), and for time scales as small as few minutes. Although
river and urban drainage catchments most often have spatial sizes
of at least few kilometers, the precipitation, temperature and evap-
oration inputs to hydrological models are most frequently based on
point data (from meteorological stations). In terms of temporal
scale, the flow in urban drainage systems has response times to
precipitation in the order of magnitude of minutes. For Belgium,
10 min can be considered the shortest response time of our urban
drainage systems.

In order to overcome this scale related gap between what cli-
mate models provide and what hydrological impact modelers
need, statistical downscaling methods are traditionally applied.
In the literature, they are usually classified in three types (Wilby
et al., 1998; Nguyen et al., 2006; Fowler et al., 2007; Vrac and
Naveau, 2007):
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� Transfer function approaches, trying to translate directly large-
scale atmospheric information to local-scale meteorological
data. In this class, some recent developments for enhanced
downscaling of precipitation can be found in Vrac et al.
(2007b), Dibike et al. (2008) and Olsson et al. (2004);
� Stochastic weather generators (Wilks and Wilby, 1999; Olsson

et al., 2009), which are statistical models generating local-scale
time series based on probability density functions whose
parameters can be related to large-scale data (e.g. Vrac and
Naveau, 2007); and
� Weather typing approaches, conditioning the simulation of

small-scale data on so-called weather types over the region of
interest (e.g. Vrac et al., 2007a).

Current literature on the development, application and testing
of statistical downscaling methods, however, mostly focuses on
hydrological impacts on larger river catchments and at daily time
scales. These scales are rather coarse in comparison with the needs
for finer scale urban drainage impact investigations (10-min and
point scale). Most studies furthermore only cover one specific se-
lected downscaling method. Given the high uncertainties involved
in the downscaling process (see also the results of this paper), good
practice would involve quantification of these uncertainties. Given
that future climate conditions are highly uncertain, it is clear that
such quantification is very difficult (which probably also explains
why past studies most often did not deal with it). Instead of quan-
tifying statistical uncertainties, it would, however, be possible to
deal with scenario uncertainties. In the same way as it became
common practice in climate change impact modelling to use an
ensemble modelling approach using several climate model runs
(several climate models, greenhouse gas emission scenarios and
initial conditions), it should become common practice to apply sev-
eral downscaling approaches. The latter would require an ensem-
ble of statistical downscaling techniques and scaling assumptions
to be considered.

This paper deals with the testing of statistical downscaling
techniques with particular focus on small-scale hydrological im-
pact investigations. In these investigations, the change in local pre-
cipitation is of primary importance. Uncertainties in the
assessment of local scale precipitation changes mainly arise from
(i) the significant uncertainties in the precipitation results from
the climate models and (ii) the various assumptions underlying
the downscaling process. Referring to reason (i), it is well-known
that the uncertainties in the precipitation results of climate models
are an order of magnitude higher in comparison with the climate
model outputs on pressure (atmospheric circulation) and temper-
ature (Hewitson, 1996; Baguis et al., 2009). This brings us to the
two classes of statistical downscaling methods considered in this
paper: methods that make use of the precipitation results of the
climate models, and methods that do not make use of these results
but are based on the more accurate climate models outputs,
namely atmospheric pressure and related circulation patterns
and temperature. When considering the former class (i.e., use of
GCM precipitation), either the climate model precipitation results
are used directly, or only the information of the precipitation
changes. The precipitation changes can be represented in the form
of ‘‘perturbation factors’’ (factor change u), as commonly used in
the so-called ‘‘Delta-approach’’ (Gellens and Roulin, 1998;
Lettenmaier et al., 1999). When the precipitation results are biased
(say with a factor ub), and assuming that the bias will be identical
under future climate conditions, the same bias factor ub applies to
the precipitation results under current climate conditions and the
precipitation results under future climate conditions. It is clear that
under these conditions the perturbation factor is not affected by
the bias. Consequently, the results on the factor change (the
perturbation factors) can be seen as being more accurate in
comparison with the precipitation results themselves. This partly
meets the above-mentioned problem on the poor accuracy of the
climate model precipitation results.

The perturbation factors can be derived depending on different
conditions, such as season, month of the year, time scale, precipi-
tation intensity or exceedance probability of this intensity. The
dependence on season and month is trivial given that climate con-
ditions and their changes highly depend on the period in the year.
Dependence on intensity or exceedance probability (or return per-
iod) might be relevant as well, given that changes in more extreme
rain storms might differ from changes in less intense (i.e., more
regular) storms. Given that intensities associated with given
exceedance probabilities are called quantiles, the corresponding
perturbation factors are in this paper called quantile-perturbation
factors.

The second type of methods, which do not make direct use of
the precipitation results of the climate models, tries to relate
(small-scale) precipitation to the (climate model scale) atmo-
spheric pressure and temperature results. This is commonly done
by means of ‘‘weather typing’’ (e.g. Vrac and Naveau, 2007). For
each time step (i.e., day) in the climate model simulation result,
the atmospheric circulation pattern is identified from the climate
model spatial atmospheric pressure results. The pattern is selected
out of a limited set of patterns (or weather types). The local (down-
scaled) precipitation value for that day is taken from a local histor-
ical precipitation series, selecting the day in that series having
analogue large-scale weather conditions (Zorita and von-Storch,
1998). ‘‘Analogue’’ means that the large-scale condition of the
day to be downscaled is similar to that of 1 day in the historical
dataset. This similarity can be defined through different distances
or metrics, and can involve weather types (or more generally circu-
lation data over a large region), as well as other criteria, such as
season, month of the year and temperature.

Both types of statistical downscaling (SD) methods have been
applied and tested in the paper. Because the hydrological impact
investigations envisaged for this paper include the impacts on high
runoff flows (in order to assess climate change impacts on floods),
specific focus is given to the high precipitation extremes. Due to
this focus, the perturbation factors (in the first type of methods)
are considered in a quantile-based way. The quantile-perturbation
based methods hereafter will be referred to as statistical downscal-
ing methods type A: SD-A, whereas the methods based on weather
typing are called methods type B: SD-B.

The downscaling approaches are calibrated and tested based on
local data (including 10-min precipitation) for the main hydro-
meteorological station of the Royal Meteorological Institute of
Belgium at Uccle (Brussels) and a set of available climate model
simulations covering that location.

Section 2 describe the data used (climate model runs and his-
torical data). Sections 3 and 4 thereafter give an overview of the
quantile-perturbation and weather typing based downscaling
methods applied and evaluated in this paper. Section 5 summa-
rizes the results and evaluates the differences, and is followed by
general conclusions in Section 6.
2. Data used (climate model runs and historical data)

Use is made of global climate model simulations, specifically for
the climate model grid cell covering the main meteorological sta-
tion of Belgium at Uccle (Brussels). From the European ESSENCE
project (http://www.knmi.nl/~sterl/Essence/), a set of 17 ensemble
runs from the ECHAM5 general circulation model were provided
by the Dutch Royal Meteorological Institute (KNMI). These ensem-
ble runs are labelled as run 21 till run 37 and cover continuous
simulations for the period 1950–2100 (historical forcing till

http://www.knmi.nl/~sterl/Essence/
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2000; A1B emission scenario of IPCC after 2000). The 17 runs differ
in the initial circulation conditions. Daily sea level pressure, tem-
perature and precipitation results have been taken from these
runs. In order to investigate the climate changes, the period
1961–1990 is considered as the reference period, and the period
2071–2100 as the future climate period. Hence, climate changes
in this paper refer to the changes from the 30-year reference period
to the 30-year future period.

Local historical data at Uccle (10-min precipitation intensities
and daily temperatures) were considered for the period 1901–
2000 (100-year period, or subperiods). To obtain information on
historical weather types, these station data were complemented
with the daily 1.125� � 1.125� ERA40 re-analysis data on European
sea level pressures (Uppala et al., 2005), for the period 1967–2000,
and selected for the NorthWest-Atlantic region (15�W–25�E;
35– 65�N).
3. Quantile-perturbation based downscaling methods

The SD-A (quantile-perturbation based) methods in this paper
have the common feature that precipitation quantile-perturbations
are obtained per month after ranking the daily precipitation values
from the climate model results in both the reference period
1961–1990 and the future period 2071–2100. Daily precipitation
intensities (i.e., quantiles) having the same rank number in the fu-
ture and reference periods are compared; the ratio of the precipi-
tation quantile value in the future period over the corresponding
quantile value in the reference period being the perturbation factor
u:

uðpÞ ¼
Q f ðpÞ
Q cðpÞ

ð1Þ

where Qf(p) and Qc(p) are respectively the future (2071–2100) and
current (1961–1990) climate precipitation quantiles, both associ-
ated to the exceedance probability p.

The quantile-perturbation factors on daily precipitation intensi-
ties afterwards are applied to the historical Uccle series of 10-min
precipitation intensities (considering the same reference period
1961–1990 or any longer period) in order to perturb this Uccle ser-
ies. The perturbed Uccle series represents a modification of the his-
torical Uccle series, to account for the expected changes (based on
a specific climate model run) of the future climate conditions. All
10-min values of a given day are perturbed by the same perturba-
tion factor for that given day.

The quantile-perturbation procedure thus basically involves the
calculation of the factor change in daily precipitation for each spe-
cific month and each specific empirical probability (estimated by
sorting the daily precipitation values). Suppose that the climate
model control or scenario run contains ng days in a given month;
and that the historical series covers nh days in the same month.
In case the series are of the same length (cover the same years),
ng will be identical to nh. The perturbation factors in (1) are calcu-
lated after sorting the precipitation intensities (Qc or Qf) of the ng

days in the climate model control and scenario runs: Q(1)
P � � � P Q(kg) P � � � P Q(ng). The exceedance probability p of any
daily precipitation intensity Q(kg) is empirically calculated as the

ratio kg

ng

� �
of the rank number kg over the total number of days

ng. In the same way, the historical series is sorted based on the dai-
ly precipitation intensities (Qh): Qh(1) P � � � P Qh(kh)
P � � � P Qh(nh). For each historical daily precipitation intensity
Qh(kh), the empirical exceedance probability is calculated as the ra-

tio kh
nh

� �
of the rank number kh for that day over the length nh of the

historical series. The factor change (perturbation factor) applied to
that day is based on the climate model control and scenario
intensities for the same exceedance probability (in case ng and nh

are identical):

u
kg

ng

� �
¼

Q f
kg

ng

� �

Q c
kg

ng

� � ð2Þ

In case ng and nh are different, control and scenario intensities
with closest empirical exceedance probability are selected. This
means that in (2) the rank number kg will be selected such that
the absolute difference kg

ng
� kh

nh

��� ��� is minimum for all integer values
of kg in the range 1 6 kg 6 ng, with kh the rank number of the his-
torical day considered.

It might happen that the historical series contains several days
with identical precipitation values, e.g., in the range ih 6 kh 6 jh.
This will be mainly the case for the lower precipitation values;
including the many dry days. The perturbation factors may, how-
ever, differ for these days. It therefore has to be decided which fac-
tor is applied to which day. This can be done in a random way or
based on some criteria. Depending on these criteria five quantile-
perturbation downscaling (SD-A) methods have been considered
in this research:

� SD-A-1: a day is randomly selected (among the days in the same
month and with identical precipitation quantile).
� SD-A-2: a day is selected based on four criteria, calculated for

each day in the historical series and the climate model runs.
They account for the precipitation conditions of the previous
and next days in the series. In order of decreasing importance,
these criteria have been taken by the authors as:
C1: the length of the previous dry spell period (if any),
C2: the length of the next dry spell period (if any),
C3: the ratio of the precipitation value for the previous time
step over the value for the current time step, and
C4: the ratio of the precipitation value for the next time step
over the value for the current time step.
Criteria C3 and C4 are only considered when the precipitation
value at the current time step differs from zero.

From the above, it became clear that the four criteria are only
applied in case several days (in the same month) have identical
precipitation value, i.e. QhðihÞ ¼ � � � ¼ Q hðkhÞ ¼ � � � ¼ Q hðjhÞ for
ih 6 kh 6 jh. For each day in the historical series Qh(kh), among the

set of perturbation factors u kg

ng

� �
, where kg

ng
� kh

nh

��� ��� is minimum for

all kh values in the range ih 6 kh 6 jh, one factor is selected based

on the four criteria C1, C2, C3 and C4. Given that each factor u kg

ng

� �
is based on a day in the climate model control run (with precipita-
tion intensity Qc(kg)), the four criteria can be calculated based on
the climate model control run for each factor. The factor is selected
for which the four criteria best match the criteria obtained for the
historical day considered (with precipitation intensity Qh(kh)). The
best matching day is the one that has the smallest absolute differ-
ence between the criteria applied to the historical and control ser-
ies. Criterion C1 has highest priority. If this criterion is not decisive,
C2 will be tested, and so forth. This method avoids that perturba-
tion factors valid for wet periods will be applied to days situated
in dry periods, and vice versa.

Given that identical precipitation quantiles most often relate to
low precipitation conditions (i.e., all the zero precipitation days),
application of the four criteria avoids that a single day in a long
dry spell is perturbed into a wet day; by preference this will be
done just after or before another wet period. In other words:
among all historical days having identical daily precipitation value
the highest perturbation factor is given to the day situated in a per-
iod with wettest conditions. Correspondingly, the lowest perturba-
tion factor, i.e., zero or close to zero, is given to days situated in
driest periods. This assumption is developed from the idea that,
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Fig. 1. Daily precipitation quantiles versus return period for the months of January
and October: comparison of the precipitation results from ECHAM5 run 21 with the
results of SD-A-4.
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Fig. 2. Validation of the 10-min precipitation quantiles versus return period for the
months of January and October: for SD-A-4 applied to the Uccle subperiods 1901–
1930 (reference period) and 1933–1962 (scenario period).
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due to climate change, long dry spells in summer might become
longer (as concluded for the study region by Baguis et al. (2009)).
This is, however, an assumption, which might not completely hold.
Therefore, also other plausible assumptions will be considered
next (cfr. the ensemble downscaling principle discussed in the
introduction). The assumption applied in SD-A-2 can be seen as
an assumption that leads to most dry climate change impacts (lon-
gest dry spells in summer).

� SD-A-3: In this downscaling method, another assumption is
considered. It involves the highest 10-min intensity values for
each day in the historical series. The assumption is made that
among all days having same daily precipitation value, the day
with the highest 10-min peak precipitation intensity should
be given the highest perturbation factor. It leads to most
extreme short duration (10 min) intensity perturbations, and
is based on the observations made by Boukhris and Willems
(2008) that precipitation intensities with lower exceedance
probabilities might have higher perturbation factors, and that
this is more likely for the shorter duration intensities. Boukhris
and Willems (2008) did their analysis based on daily, weekly,
monthly and seasonal time scales. During the summer season,
higher perturbation factors were found for the precipitation
quantiles (derived from regional climate model results) when
comparing daily values with weekly values, when comparing
weekly values with monthly values, etc. When these results
are extrapolated to the sub-daily time scales, it is possible that
10-min precipitation quantiles have higher perturbation factors
in comparison with the daily intensities.

The reduction in perturbation factors from daily to higher time
scales in summer, was explained by Boukhris and Willems (2008)
by the decrease of the number of wet days in that season. In the
quantile-perturbation based method, changes in the number of
wet days are intrinsically accounted for (some days indeed receive
zero perturbation factors, by which wet days are transferred to dry
days).

� SD-A-4: Idem SD-A-3, but in case in the historical series several
days of identical daily precipitation quantile have identical daily
and 10-min precipitation values, highest perturbation factor is
given to the day with the highest previous day precipitation.
This assumption leads to strongest impacts when the downscal-
ing results are applied for sewer or urban drainage flood impact
investigations. Indeed, urban drainage systems typically have
response times to precipitation shorter than 1 day.
� SD-A-5: Idem SD-A-4 but switching the role that daily and 10-

min precipitation intensities play: ranking is done first based on
the 10-min quantiles, and for days with identical 10-min inten-
sity highest perturbation factor is given to the day with the
highest daily precipitation intensity.

The SD-A methods are illustrated in Fig. 1 based on one selected
ECHAM5 run. The figure confirms that the precipitation results
from climate model runs may be strongly biased (in this case over-
estimation in January and underestimation in October). It also
shows how the historical Uccle data are perturbed in a quantile-
based way, assuming that the relative precipitation differences be-
tween the control and scenario runs of the climate model are valid.
Please notice that the ratios between the SD-A-4 and Uccle quan-
tiles are different from the ECHAM5 ratios. This is due to differ-
ences in the periods considered. The ECHAM5 ratios are based on
the periods 1961–1990 and 2071–2100, while the corresponding
perturbation factors are applied to the full available Uccle series
1901–2000, from where the results of the subperiod 1961–1990
are selected for plotting in Fig. 1.
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The statistical downscaling involved in the SD-A methods is
based on the assumption that the relative changes in 10-min inten-
sities are identical to the changes (quantile perturbations) in daily
intensities. Given that this is an important assumption, we vali-
dated this assumption by applying the SD-A methods to subperi-
ods of the 100-year Uccle period. Fig. 2 illustrates this validation
for two subperiods with clear differences in precipitation quan-
tiles. The first subperiod (1901–1930 in Fig. 2) is taken as reference
period, while the second subperiod (1933–1962) is considered as
scenario period. After applying the quantile perturbations to the
first subperiod, the 10-min precipitation intensities match well
Table 1
Overview of the 28 weather types of Lamb. N, E, S, W refers to the wind directions, C
and A to the cyclonic and anticyclonic atmospheric patterns, U to an unclassified
weather type.

Other types Directional – hybrid types

U N CN AN
C NE CNE ANE
A E CE AE

SE CSE ASE
S CS AS
SW CSW ASW
W CW AW
NW CNW ANW

Fig. 3. Proportion of weather types (top), the proportion of wet days per weather type (m
winter (ONDJFM) and summer (AMJJAS), considering daily Uccle precipitation data and
1967–2000.
the observed values of the second subperiod. Same validation has
been done for other subperiods and other SD-A methods. No sys-
tematic under- or overestimations have been found, which confirm
the validity of the downscaling assumption underlying the SD-A
methods.
4. Weather typing based downscaling methods

Weather types have been defined both for the historical condi-
tions at central Belgium (zone in which the Uccle station is located)
based on the ERA40 and for the ECHAM5 climate model pressure
results. This has been done based on the Jenkinson–Collison classi-
fication technique by Demuzere et al. (2009), considering a set of
28 weather types (weather types of Lamb; Jones et al., 1993; see
Table 1). The classification method is automated based on sea level
pressure values at 16 locations in the NorthWest-Atlantic region
centred around the studied location at Uccle (50�480N en 4�200E).
From the 16 pressure values, pressure gradients and vorticity indi-
ces are computed and the weather type determined, following the
Jenkinson–Collison method (Demuzere et al., 2009).

Fig. 3 shows that precipitation statistics clearly vary between
these weather types and that the anticyclonic weather type occurs
most frequently. Among the directional types, SW and W wind
directions have the highest frequencies of occurrence in winter
(ONDJFM), while for summer (AMJJAS) N and NE wind directions
iddle), and the average daily wet day precipitation per weather type (bottom); for
Jenkinson–Collison weather typing based on ERA40 re-analysis data for the period



198 P. Willems, M. Vrac / Journal of Hydrology 402 (2011) 193–205
also occur with high frequencies. Among all the directional types,
the western wind directions (SW, W and NW) are associated with
the highest proportions of wet days. This is valid for both winter
and summer. During winter, the western wind directions also have
highest average wet day precipitation values. During the cyclonic
weather types, for most wind directions, the average wet day pre-
cipitation values are higher those from the non-cyclonic types.
During summer, eastern and northern directions receive – in com-
parison with winter – higher wet day intensities. Wet days are in
this research defined as days with total precipitation amounts
higher than 0.3 mm.

The SD-B (weather typing based) downscaling methods use an
analogue approach per month and per weather type. For each
day in the climate model run a similar day is searched in the
ERA-40 database (only considering days in the same month and
weather type). The 10-min precipitation intensities for that day
in the historical Uccle series are taken as the downscaled precipi-
tation values. Although this can be done continuously for the full
climate model simulation period (1950–2100 for the ECHAM5 runs
considered here), only the results for the reference and future peri-
ods 1961–1990 and 2071–2100 are considered in this paper.

Seven SD-B approaches have been implemented depending on
the method and criteria used to define similar or analogue days
(based on a set of days having the same month and weather type).
The following methods have been considered (Table 1):

� SD-B-1: a random day is selected; this means that no additional
analogue criterion is considered next to the month and the
weather type.
� SD-B-2: one additional analogue criterion is considered, based

on the daily precipitation conditions. Among all days of the
Table 2
Overview of the seven weather typing based downscaling (SD-B) methods. In case of seve
fully random (methods SD-B-1), or based on additional criteria. The main additional criteri
based; methods SD-B-2 and 3 and 4 and 7), the exceedance probability of the daily tempera
based; methods SD-B-5 and 6). For some methods, additional criteria are considered depe
scenario period, the 4 criteria of method SD-A-2, and (for the temp. based methods) whethe
day within a 2� or 5 �C interval. In all methods, the 10-min intensities of the analogue
depending on the temperature change. For methods SB-B-1b and 2b and 3b, the resampling
the same 5 �C temperature interval.

Resampling approach for days with
identical weather type in the same
month:

Random

Prec.
prob.
based

From
reference
period

No 4 criteria
SD-A-2

4 criteria
SD-A-2

From
scenario
period

4 criteria
SD-A-2

Temp.
prob.
based

From
reference
period

No 4 criteria
SD-A-2

Temp.
based

4 criteria
SD-A-2

Closest temp.

Within 2�
Within 5�

No 4
criteria SD-
A-2

Closest temp.

Within 2�
Within 5�
same month and weather type, the day with the closest empir-
ical exceedance probability of precipitation is selected as the
analogue day. The exceedance probability is considered rather
than the precipitation value itself, because precipitation results
of climate models might be biased from historical observations.
Moreover, it is taken into account that the precipitation distri-
bution for the future period might be shifted from the distribu-
tion in the reference period or the historical conditions. Looking
for an analogue day based on the exceedance probability would
not account for that distribution shift. Therefore, for each day in
the future period, the exceedance probability of the precipita-
tion is based on the distribution derived from the reference per-
iod in order to find the analogue day in the Uccle historical
series. In case future climate conditions correspond with posi-
tive precipitation shifts, this would mean that for the future
period more days with high precipitation values will be selected
as analogue days. This approach, however, does not allow gen-
eration of future intensities higher than those in the historical
dataset.

In case there are several days with identical precipitation quan-
tile values, and thus with identical exceedance probabilities, a ran-
dom day will be selected from that set.

� SD-B-3: idem SD-B-2, but further advanced in case there are
several days with identical precipitation quantile values. The
four additional criteria already discussed in method SD-A-2
are then considered.
� SD-B-1b, 2b, 3b: In those three variants, the three previous SD-B

approaches are extended by incorporating temperature infor-
mation. The extension is based on the temperature dependence
ral days with the same weather type in the same month, the resampling can be done
on is based on the exceedance probability of the daily precipitation value (prec. prob.
ture value (temp. prob. based; method SD-B-4), or the temperature value itself (temp.
nding on whether the exceedance probability is calculated based on the reference or
r the analogue day is based on the day with the closest temperature value, or a random
day are kept unchanged, except method SD-B-7 where the intensities are changed
is done based on all days in the same month with the same weather type and within

Additional temperature based resampling criteria:

No additional resampling criteria Additional resampling
based on 5� temp. intervals

No 7% prec. increase
per �C temp. increase

7% prec. increase
per �C temp. increase

SD-B-1 SD-B-1b

SD-B-2 SD-B-2b

SD-B-3 SD-B-3b

SD-B-7

SD-B-4

SD-B-5a

SD-B-5b
SD-B-5c
SD-B-6a

SD-B-6b
SD-B-6c



Fig. 4. Daily precipitation quantiles versus return period for the months of January
and October: comparison of the precipitation results for ECHAM5 run 21 with the
results of SD-B-7.
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Fig. 5. Daily and 10-min precipitation quantiles versus return period for January:
comparison of the Uccle data with the results of SD-B methods for ECHAM5 run 21.
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Fig. 6. Daily precipitation quantiles versus return period for March: comparison of
the Uccle data with the results of SD-B-3b, 6c, 7 for ECHAM5 run 21.
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of the saturation value of precipitable water in the atmosphere
(known as the Clausius–Clapeyron relation: Lenderink and Van
Meijgaard, 2008).

A first temperature-based downscaling method involves any of
the above mentioned techniques, but after extending the clas-
ses from month and weather type to temperature intervals. Five
degrees intervals are considered: (. . .;0], (0;5], (5;10], (10;15],
(15;20], (20;25], (25;. . .)). These downscaling methods are la-
belled SD-B-1b, 2b or 3b depending on whether they follow
the concept of SD-B-1, 2 or 3.
� SD-B-4: This temperature-based downscaling method looks for

the analogue day having the closest temperature quantile (same
method as in SD-B-2 but using temperature quantiles instead of
precipitation quantiles).
� SD-B-5: This method looks for an analogue day (again among all

days in the same month and with the same weather type) hav-
ing the closest temperature value (or a temperature value in a
given range: e.g. 2� or 5�). When different days have the same
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temperature value (or have temperatures in the given range), a
random day is selected. The approach based on the closest tem-
perature is denoted SD-B-5a, while the ones based on tempera-
ture ranges SD-B-5b (2� intervals) and SD-B-5c (5� intervals).
� SD-B-6: Idem SD-B-5, but with an additional criterion to select

the analogue day among different days with the same temper-
ature value (or with temperature values in the same range): the
selection will be based on precipitation exceedance probability,
followed by the 4 criteria as in SD-B-3.
� SD-B-7: Idem SD-B-3, but with the analogue day based on the

closest precipitation exceedance probability rather than the
precipitation quantile (thus eliminating the effect of the precip-
itation distribution shift). This means that the exceedance prob-
ability of the precipitation is based on the distribution derived
from the scenario period rather than the reference period in
order to find the analogue day in the Uccle historical series.
However, to compensate for the eliminated effect of the precip-
itation distribution shift, the Uccle precipitation values of the
analogue day are increased in relation to the increase in tem-
perature. In order to do so, the temperature of each day in the
scenario period is considered; this temperature corresponds to
a given probability (for the same month and weather type).
For the same probability, month and weather type, the corre-
sponding temperature rise from the control to the scenario per-
iod is calculated (temperature quantile based approach) based
on the Clausius–Clapeyron relation. This relation assumes 7%
increase in precipitation per 1 �C temperature increase. Work
by the authors (not shown) confirmed that this also holds for
the historical Uccle data and the ECHAM5 climate model
results.

Methods SD-B-2 and SD-B-3 do make indirect use of the precip-
itation results of the climate model (daily and 10-min intensities).
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Fig. 9. Factor precipitation change versus return period for time scales of 10 min and 1 day (whole year; all 17 runs) based on SD-A-4 and SD-B-7 results.
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Fig. 10. Factor change in precipitation versus time scale and return period (whole year; mean of all 17 runs) based on ECHAM5 runs, SD-B-7, SD-A-3 and SD-A-4 results.
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They make use of the precipitation exceedance probabilities (this
means the relative rankings of the precipitation values) in the
criteria for defining the analogue day. The precipitation values
themselves are, however, never directly used in the weather typing



Fig. 11. Comparison of historical IDF-relationships, with the ECHAM5 simulation results (mean result of control period runs; mean, highest and lowest result of scenario
period runs).
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based methods. This differs from the quantile-perturbation based
methods. For an overview of all downscaling methods applied,
the reader is referred to Table 2.

Figs. 4 and 5 illustrate (same example as Fig. 1) through the
comparison between the SD-B based downscaled climate model
control run and the historical Uccle data, the (good) quality of
the downscaling procedure. After comparison of the SD-B based
downscaled climate model scenario run with the SD-B based
downscaled control run, the climate change effects could be
evaluated.

5. Comparison and evaluation of downscaling results

The proposed downscaling methods have been implemented
based on the results of each of the 17 ECHAM5 runs. The quantile
perturbations derived from these runs were, for the SD-A meth-
ods, applied to the full historical Uccle series (1901–2000) of
10-min precipitation intensities. For the SD-B methods, analogue
days were defined for each day in the ECHAM5 series, selected
from the Uccle historical subseries 1967–2000. The latter period
had to be restricted to the period of re-analysis data available
for weather type classification. The downscaling results for the
reference subperiod 1961–1990 are hereafter analyzed in order
to evaluate and compare the different downscaling methods
and results. The historical observations for that subperiod are ta-
ken as reference data, while the perturbed series represent future
conditions for 2071–2100. Comparisons are made of the precipi-
tation changes (from the reference to the future period) at time
scales of 10 min, 30 min, 1 h, 6 h, 1 day, 3 days, 7 days, 15 days
and 30 days, and as a function of return period. This means that
changes in precipitation/duration/frequency (IDF) relationships
are studied. Special focus is given to the high precipitation ex-
tremes (given their importance in hydrological climate change
impact investigations).

Fig. 5 shows for the reference period and one selected month
the comparison of daily and 10-min precipitation quantiles be-
tween different SD-B methods. While interpreting these results,
distinction should be made between the methods SD-B-1, 2 and
3, which do not make use of temperature information, and the
other methods, which do. In the latter set of methods, methods
SD-B-4, 5 and 6 are entirely based on resampling (but temperature
used as parameter in the resampling procedure), while method SD-
B-7 combines resampling with precipitation intensity increase due
to temperature rise. From the analysis shown in Fig. 5, but ex-
tended to the whole range of time scales between 10 min and
15 days, and to all 17 ensemble runs, it becomes clear that method
SD-B-7 outperforms the other SD-B methods. As illustrated in
Fig. 6, this is because method SD-B-7 allows precipitation quantiles
to be higher than the highest historical observation. Fig. 6 more-
over makes clear that one should avoid too many resampling clas-
ses. In case the resampling is based on classes per month, per
weather type and also per temperature interval (i.e., SD-B-3b in
Fig. 6), the number of historical days in each class becomes too lim-
ited, hence limiting the sampling variability.

Next to the intercomparison between the methods SD-B, the cli-
mate change effects have been compared with those of the meth-
ods SD-A, and with the direct ECHAM5 precipitation outputs. Fig. 7
shows the changes in daily precipitation quantiles (minimum,
mean and maximum change for all 17 ensemble runs) versus re-
turn period. The figure indicates that the methods SD-B-1, 2 and
3 have low quantile perturbations when compared with the EC-
HAM5 results and the SD-A methods. This suggests that changes
in atmospheric circulation patterns do not fully explain the
changes in precipitation quantiles (as we expect from the climate
model precipitation results). When the change in temperature is
incorporated, the changes in precipitation quantiles become stron-
ger and similar to the ECAHM5 runs and SD-A quantile perturba-
tions. When interpreting Fig. 7, one has to be aware, however,
that the SD-B based precipitation changes do not need to be close
to the ones derived from the ECHAM5 precipitation results. They
indeed correspond to different approaches: dynamic versus statis-
tical downscaling. However, the lower precipitation changes com-
pared to the ECHAM5 and SD-A results combined with the findings
that precipitation change depends on temperature, suggests that
the weather typing methods improve the quality of the downscal-
ing if they are advanced by incorporating temperature dependence
in the precipitation change. When the different SD-A methods are
compared, method SD-A-5 underestimates the ECHAM5 based pre-
cipitation changes, while method SD-A-4 slightly outperforms the
other SD-A methods.

In Fig. 8, changes in daily and 15-day precipitation quantiles are
compared between the ECHAM5 runs and the SD-B-7 method, for
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all empirical return periods higher than 1 year. Same comparison is
shown in Fig. 9 for 10-min and daily precipitation quantiles be-
tween SD-A-4 and SD-B-7. Although the quantile perturbations of
the different method differ, Figs. 7–9 show that they cover a similar
range.

When the dependency between quantile perturbations and
time scale is further analyzed (Fig. 10), it is shown that the meth-
ods SD-A and SD-B-7 lead to perturbations which for time scales
smaller than 1 day are equal or slightly higher than the ones for
the daily time scale. The increase is more significant for the higher
return periods.

Figs. 11 and 12 extend the analysis to the comparison of the
changes in IDF-relationships. Precipitation extremes extracted
from the ECHAM5-runs systematically underestimate the
Fig. 13. Change in IDF-relationships based on mean,

Fig. 12. Comparison of historical IDF-relationships with SD-B-7 downscaling results (me
runs).
corresponding values obtained from the historical IDF-relation-
ships at Uccle (based on the 10-min precipitation intensities for
the period 1967–1993, and published in Willems, 2000; Fig. 11).
The underestimations are strongest for the daily time scale and
reduce towards the larger time scales. After application of the SD
methods, the precipitation bias is almost completely removed
(Fig. 12). The SD methods, moreover, obtain unbiased precipitation
statistics for time scales smaller than 1 day.

Next to the mean of the downscaling results based on the con-
trol runs, Figs. 11 and 12 also show the shifts in precipitation quan-
tiles between the control and scenario runs (mean, highest and
lowest of the 17 ensemble runs). After application of these shifts
(based on the SD-B-7 method) to the historical IDF-curves,
Fig. 13 shows that the intensity versus duration curve of a 1-month
highest and lowest SD-B-7 downscaling result.

an result of control period runs; mean, highest and lowest result of scenario period
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return period after shifting for the highest change comes close to
the intensity versus duration curve of a 1.5-month return period.
This means that for such highest change in precipitation design
quantiles, a 1.5-month return period design value becomes a 1-
month return period. In a similar way, a 2-year return period be-
comes approximately 1-year; a 100-year return period becomes a
10-year value. Note that all calculations in this paper are for the fu-
ture scenario period 2071–2100.

These results are of direct use in urban drainage engineering.
IDF-relationships are indeed most commonly used to obtain pre-
cipitation statistics to support the design of sewer systems. From
the analysis of Fig. 13, it can be concluded that when a sewer sys-
tem is currently designed (avoiding sewer surcharge, or flooding)
for a 2-year return period, sewer surcharge or flooding might occur
approximately twice more frequently for the same system design.
It also would mean that – to get identical surcharge or flood safety
levels – design storms have to be adjusted, or design storms with
lower return periods have to be used for the design (assuming of
course that no other changes, i.e., land use or water management
and planning, need to be accounted for).
6. Conclusions

Methods for statistical downscaling (from daily down to 10-min
time scales) of precipitation series and statistics have been tested
based on ECHAM5 global climate model results and ground station
data at Uccle (Belgium). Quantile-perturbation based methods,
which make direct use of the precipitation results of the climate
model, have been compared with weather typing based methods.
It was found that the changes in weather type frequencies cannot
entirely explain the changes in precipitation intensities. Therefore,
the weather typing method was advanced after implementation of
additional increases in precipitation intensities depending on tem-
perature changes (based on the Clausius–Clapeyron relation).
When this method is applied to obtain statistically downscaled
short-duration (down to 10 min) precipitation intensities from
the daily climate model simulation results of atmospheric pressure
and temperature, changes in precipitation intensities become sim-
ilar to the changes derived from the direct use of the climate model
precipitation results. The underestimation in the precipitation
changes for the weather typing method thus could be removed
by the temperature correction. After this correction, both down-
scaling procedures lead to close results.

The downscaling procedures are useful for urban water engi-
neering design and flood risk estimation applications. The results
for Uccle show that precipitation design statistics need to be re-
vised or future changes in return periods taken into account. For
the climate scenario with highest increase in summer precipitation
extremes by 2071–2100 (among the 17 ECHAM5 ensemble runs,
based on method SD-B-7, but similar for SD-A-4), the precipitation
intensities for a return period of 2 years have to be increased by
27% (shifting of the IDF-curve by a factor 1.27). For the same sce-
nario, precipitation intensities for a return period of 10 years have
to be increased by 50%. This means that a 2-year return period de-
sign rainfall would occur twice that often by 2071–2100: the re-
turn period of that design value would decrease from 2 years to
about 1 year. For the same case, a 5-year return period would re-
duce to about 2.5 years. Given that most urban drainage systems
are currently designed for return periods of street flooding in this
range, sewer system floods would occur – for the most pessimistic
of the 17 ensemble runs considered – about twice that often in the
future.

When considering these ‘‘pessimistic’’ impact results, water
engineers also have to be aware of the high uncertainties in the fu-
ture projections and related impacts. Indeed, impacts range from
approximately zero precipitation change up to the ‘‘pessimistic’’
changes given above. The impact ranges would further widen if
more climate models, including regional ones, would be consid-
ered. The ensemble modelling approach based on a large set of cli-
mate model simulations, however, only covers part of the total
uncertainty. This paper confirmed that the choice of the downscal-
ing methods introduces additional uncertainty. Therefore, the
authors recommend extending the ensemble approach incorporat-
ing a range of potential downscaling methods. Some of the down-
scaling methods outperform others, as was shown in this paper
based on comparisons with historical data and after evaluation of
the consistency of the precipitation changes as function of time
scale and return period. The ‘‘best’’ methods (SD-A-4 and SD-B-7
in this research) would form a reduced ensemble that can be ap-
plied in hydrological impact investigations. The range of hydrolog-
ical impact results then would provide information on the scenario
uncertainties due to the use of different climate models, different
greenhouse gas emission scenarios, and (discussed in this paper)
different downscaling procedures and related assumptions.
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