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ABSTRACT

The comparison of circulation patterns (CPs) obtained from reanalysis data to those from general circu-

lation model (GCM) simulations is a frequent task for model validation, downscaling of GCM simulations, or

other climate change–related studies. Here, the authors suggest a set of measures to quantify the differences

between CPs. A combination of clustering using Gaussian mixture models with a set of related difference

measures allows for taking cluster size and shape information into account and thus provides more in-

formation than the Euclidean distances between cluster centroids. The characteristics of the various distance

measures are illustrated with a simple simulated example. Subsequently, a five-component Gaussian mixture

to define circulation patterns for the North Atlantic region from reanalysis data and GCM simulations is

used. CPs are obtained independently for the NCEP–NCAR reanalysis and the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), as well as for twentieth-century simu-

lations from 14 GCMs of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report

(AR4) database. After discussing the difference of CPs based on spherical and nonspherical clusters for the

reanalysis datasets, the authors give a detailed evaluation of the cluster configuration for two GCMs relative to

NCEP–NCAR. Finally, as an illustration, the capability of reproducing the NCEP–NCAR probability density

function (pdf) defining the Greenland anticyclone CP is evaluated for all 14 GCMs, considering that the size and

shape of the underlying pdfs complement the commonly used Euclidean distance of CPs’ mean values.

1. Introduction

Certain states of the atmospheric circulation are

thought to be more prominent than others, they recur

more frequently and/or persist longer (e.g., Michelangeli

et al. 1995). These states are usually defined on variables

such as sea level pressure (SLP), geopotential heights,

and/or wind fields (e.g., Simonnet and Plaut 2001; Moron

et al. 2008). A finite sets of these states, called circulation

patterns (CPs) or circulation regimes (Stephenson et al.

2004; Philipp et al. 2007), have become attractive for

a discrete description of the complex atmospheric system.

In particular, in synoptic meteorology, CPs (sometimes

called weather types) can be used in forecasting as they

can be related to local weather (e.g., Yarnal 1993); or they

can be defined on a combination of large-scale circulation

indices and meteorological surface conditions. For a dis-

crimination of the terms weather types and CPs we refer

to Philipp et al. (2007).

Early classifications of large-scale atmospheric circu-

lation are the Lamb weather types for the British Isles

(Lamb 1972), the European Großwetterlagen (Hess and

Brezowsky 1977), or the Schüepp classification (Schüepp

1978) for Switzerland. These classifications have been

obtained in a subjective manner by examining and man-

ually classifying the synoptic situation. Since then, other,

so called objective, weather-typing schemes have been

developed, based on automated clustering of circulation
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variables (e.g., Jones et al. 1993; Bárdossy 1994; Plaut and

Simonnet 2001, hereafter referred to as PS01; Jacobeit

et al. 2003). These methods consider two states (or in-

stances of observations on a grid) of the atmospheric cir-

culation as similar if they are close according to a certain

metric. Days with similar circulation are assigned to the

same CP. A CP can then be regarded as a set of elements

confined in a volume in the multidimensional state space

spanned by the gridded values. The assumption under-

lying the CP hypothesis is based on the existence of a finite

and typically small number of such volumes in state space.

In a probabilistic framework, these CPs are local maxima

in the state space probability density function (pdf; e.g.,

Michelangeli et al. 1995; Stephenson et al. 2004).

A wide range of clustering methods is known to define

CPs in an objective way. They can be subdivided into

two main categories: the first one is based on probabilistic

models describing the density of observations in a state

space using pdfs, and the second is based on distances of

pairs of observations used to partition the state space into

multiple regions (clusters). Due to the absence of an ex-

plicitly defined model, the latter approaches are some-

times referred to as heuristic or model-free methods

(Bock 1996). Some popular methods in this category are

as follows: the iterative relocation method (or k means,

e.g., MacQueen 1967), based on minimizing the intra-

cluster variance around k centroids (or mean patterns) by

exchanging cluster members, a powerful extension using

simulated annealing has been suggested as well (e.g.,

Hannachi and Legras 1995; Philipp et al. 2007); hier-

archical agglomerative clustering (HAC; Ward 1963;

Casola and Wallace 2007), starting off from one cluster

per observation, at each step, the two closest clusters are

merged until a desired number of clusters is reached; and

self-organized maps (SOMs; Kohonen 1998; Wehrens

and Buydens 2007; Leloup et al. 2008), a clustering ap-

proach based on artificial neural networks (ANN) and

providing additionally a two-dimensional topography re-

lating the resulting cluster centroids. The latter can be very

useful in special applications, for example, for the estima-

tion of a probability density function (Brajard et al. 2008).

The other category, the probabilistic models (Bock

1996), provide a different approach to cluster analysis.

A mixture of pdfs is used to represent the distribution

of elements among the different clusters, for example,

Gaussian pdfs in the Gaussian mixture model (GMM)

approach (Fraley and Raftery 2002). It directly imple-

ments the idea that the probability density of atmospheric

states is a multimodal pdf or can be approximated with

a superposition of Gaussian pdfs (Branstator and Selten

2009). These models can be considered as a formalization

and generalization of some heuristic methods as k means

and HAC. With a suitably chosen covariance structure

(Banfield and Raftery 1993), the cluster boundaries are

not necessarily limited to spheres in multidimensional

space, as is the case for k means. They have been used for

atmospheric circulation clustering in various previous

works (Haines and Hannachi 1995; Hannachi 1997, 2007;

Smyth et al. 1999). GMMs showed better CP results (i.e.,

producing more consistent CPs across various levels and

being more sensitive to day-to-day variations in pattern

frequencies) over the eastern United States in compari-

son to HAC (Vrac et al. 2007a) and also provided useful

CPs for precipitation downscaling (Vrac et al. 2007b).

The model-based and model-free approaches mentioned

here, as well as many other clustering methods, are dis-

cussed, for example, in a very general manner by Duda

et al. (2001) and with a focus on circulation patterns by

Huth (1996). Applications other than atmospheric cir-

culation clustering utilize data mining strategies; such as

customer consumption behaviors, image analysis, and

Internet usage.

Recently, weather types and CPs have become an im-

portant concept for climate change studies and related

impact assessments, such as the description of the cli-

matology of severe storms in Virginia (Davis et al. 1993),

the investigation of the causes of extreme weather events

in Europe (Yiou and Nogaj 2004), or the description of

the North Atlantic Oscillation (e.g., Michelangeli et al.

1995). The climate change context also brings along the

need for a quantification of differences in CPs; for ex-

ample, for the validation of general circulation models

(GCMs) (e.g., Huth 2000), the downscaling of GCM

outputs (e.g., Conway and Jones 1998; Wilby et al. 1998;

Fowler et al. 2007; Maraun et al. 2010), or the inves-

tigation of teleconnection patterns (e.g., Cassou 2008).

The aim of this article is to propose and demonstrate the

application of a novel set of measures to quantify differ-

ences in CPs. These measures are based on a probabilistic

description of the clusters in the state space of atmo-

spheric circulation, as provided by GMMs. This cluster-

ing method has the following characteristics: 1) the size

and shape of the clusters are explicitly modeled and can

directly be taken into account by the quantitative differ-

ence measures, 2) clusters are not limited to spheres in the

state space but can take ellipsoidal shapes with various

sizes and orientations, and 3) the estimation of the un-

certainty of classification is straightforward. The pro-

posed measures yield scalar values for CP differences

and are thus particularly useful for studies comprising

a large set of GCMs where a detailed individual com-

parison of CPs is not feasible anymore.

These difference measures are used in this study for

two purposes: 1) to compare CPs based on spherical and

nonspherical clusters, both obtained from reanalysis

data, and 2) to compare CPs from GCM simulations to
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reanalysis CPs. We base the discussion on five CPs for

the North Atlantic region obtained from reanalysis SLP

anomalies by PS01. Using PS01 as a reference has

mainly practical reasons: 1) PS01 is one of the few ref-

erences using actually SLP, most other works use geo-

potential heights, a quantity which is not available for all

the GCM considered in this study, and 2) the goal of this

paper is to present and exemplify a set of distance

measures, and five CPs are convenient to work with. The

discussion of an optimal number of CPs for the North

Atlantic region is beyond the scope of this paper. To

reproduce the results from PS01, we restrict the GMM

to five spherical clusters. This restriction is then relaxed

and nonspherical clusters will be obtained for the re-

analysis data and the GCM simulations. The GMM’s

covariance structure defining the shape of the clusters is

chosen by means of the Bayesian Information Criterion

(BIC). However, for the reasons mentioned above, we

keep the number of CPs equal to five.

The two sets of reanalysis data and the 14 GCMs’

twentieth-century simulations used in this study are

described in section 2. The clustering procedure using

GMMs is subsequently presented in section 3. Spherical

and nonspherical reanalysis CPs are presented and

compared on the basis of population histograms in sec-

tion 4. Subsequently, in section 5, the set of quantitative

difference measures for pdfs is introduced and illustrated

using a two-dimensional example. Section 6 repeats the

comparison of reanalysis patterns now using the pdf-

based measure instead of the population histograms.

Furthermore, CPs are defined for the GCM simulations,

and their configuration in state space is compared to the

National Centers for Environmental Prediction (NCEP)–

National Center for Atmospheric Research (NCAR)

reanalysis. The last part of this section focuses on the

Greenland anticyclone (GA) CP and confronts all GCM

simulations to this particular NCEP–NCAR CP.

2. Data

The North Atlantic is a well-studied region with re-

spect to weather types or circulation regimes, (e.g.,

Vautard 1990; Michelangeli et al. 1995; PS01; Hewitson

and Crane 2002; Jacobeit et al. 2003; Philipp et al. 2007;

Cassou 2008; Casado et al. 2009) to name but a few. Many

studies focus on geopotential heights, mostly at 500 hPa

(e.g., Vautard 1990; Casado et al. 2009), and others study

SLP (e.g., PS01; Hewitson and Crane 2002; Jacobeit et al.

2003; Philipp et al. 2007). Since daily data of geopoten-

tial heights are not available in all the GCMs consid-

ered, we choose SLP for this comparative study. We

use two reanalysis products, the 40-yr European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis project (ERA-40, available online at http://

www.ecmwf.int; Uppala et al. 2005) and NCEP–NCAR

reanalysis project (available online at http://www.cdc.

noaa.gov/data/reanalysis; Kalnay et al. 1996). Addition-

ally, we consider twentieth-century runs (20C3M) from

14 coupled ocean–atmosphere GCMs available via the

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4) Coupled Model In-

tercomparison Project phase three (CMIP3) database

(Meehl et al. 2007), which offers references for the

models at its Web site (available online at http://www-

pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_

documentation.php). The model list is given in Table 1,

including their short names used here and their atmo-

spheric and oceanic resolutions. All datasets are inter-

polated [two-dimensional (2D) linear interpolation] onto

the regular NCEP–NCAR grid with a zonal and meridi-

onal resolution of 2.58. The analysis is carried out in the

North Atlantic region defined as (2608, 408E) 3 (308,

708N), and thus comprising 41 3 13 5 533 grid points. We

furthermore restrict the dataset to the winter months

[November–March (NDJFM)] of the years 1975–2000.

The SLP anomalies are obtained as differences to a spline-

smoothed mean annual cycle for every grid point, calcu-

lated by averaging over the 26 yr used.

To avoid an overrepresentation of highly correlated

dimensions, it is advantageous to reduce dimensionality

using a principal component analysis (PCA; Davis and

Kalkstein 1990; Huth 1996). PCA (Preisendorfer 1988;

Jolliffe 2002; Hannachi et al. 2007) is applied to one con-

catenated dataset, comprising the two sets of reanalysis

data and the 14 model simulations. This procedure en-

sures that we have one common basis of principal com-

ponents (PCs) for all datasets in which the variability of

all models is well represented. In the following, we use

a projection of the data onto the first 10 PCs, retaining

at least 85% of the total variability. The fractions for

the individual models do vary around this value with

L’Institut Pierre-Simon Laplace Coupled Model, ver-

sion 4 (IPSL CM4; 88%) at the upper end and the

Commonwealth Scientific and Industrial Research Or-

ganisation Mark version 3.5 (CSIRO Mk3.5; 82%) at

the lower end. We thus reduce the dimension of the

problem from 533 highly correlated to 10 uncorrelated

dimensions. Furthermore, being a linear combination of

the gridded values, the transformed variables tend to be

closer to a Gaussian distribution than the original values

themselves (Stephenson et al. 2004).

3. Clustering with Gaussian mixture models

The underlying assumption for GMMs is that the

elements of one cluster are distributed according to a
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multivariate normal distribution. The distribution of

the complete set of observations, that is, elements of

all clusters, can then be described using a weighted

sum, or mixture, of multivariate Gaussian distributions

(Pearson 1894):

p(x) 5�
G

k51
t

k
f (x; m

k
, s

k
), (1)

with f(x; mk, sk) denoting a normal pdf with expectation

mk and covariance matrix sk. The coefficient tk gives the

probability that an arbitrary observation comes from the

component k out of G components. The model param-

eters u 5 (tk, mk, sk) can be estimated from the data.

Instead of prescribing the covariance matrices (Haines

and Hannachi 1995; Hannachi 1997) or estimating all

its free parameters (Smyth et al. 1999; Hannachi and

O’Neil 2001; Hannachi 2007), parsimonious parame-

terizations of sk can be used to facilitate estimation. A

flexible and easily interpretable set of those parame-

terizations includes spherical clusters of equal or dif-

ferent size (sk 5 ak1), an ellipsoidal cluster with the

principal axis parallel to the basis vectors (sk diagonal),

or ellipsoidal clusters of equal or different size and ori-

entation, see Table 2 (Banfield and Raftery 1993; Fraley

and Raftery 2007). Given a set of observations xi, i 5

1, . . . , N, the parameters mk, sk, and tk, as well as the

class membership for the xi can be estimated via a

maximum-likelihood technique using an expectation–

maximization (EM) algorithm (Dempster et al. 1977).

Observations xi are associated to the mixture compo-

nent k with the largest associated probability

p
k
(x

i
) 5 t

k
f (x

i
; m

k
, s

k
) �

G

j51
t

j
f (x

i
; m

j
, s

j
).

,
(2)

This allows a quantification of the uncertainty of clas-

sification of xi via the sum of probabilities for being

associated to the other clusters:

p
k
(x

i
) 5 �

j 6¼k
p

j
(x

i
) 5 1� p

k
(x

i
). (3)

If all components are well separated, the probability

[Eq. (2)] for all elements and their associated clusters

will be close to one and thus the uncertainty [Eq. (3)]

close to zero. In less optimal situations with overlapping

clusters, the probability of association [Eq. (2)] will be

small but pj(xi) . 1/G will always hold. Thus, for the

uncertainty in Eq. (3), it follows that p
j
(x

i
) , (G� 1)/G.

In general, mixture models are not limited to Gaussian

distributions. In the univariate case, mixtures of arbi-

trary distributions can yield useful models, for example,

Gamma and generalized Pareto (GP) distributions for

precipitation modeling (Vrac and Naveau 2007) or

Gaussian and GP distributions for finance data (Carreau

TABLE 1. Reanalyses and IPCC model abbreviations with their original names and their oceanic and atmospheric resolution. The common

data period is 1975–2000.

Abbreviation Description

Atmospheric

resolution

Oceanic

resolution

Reanalyses

ERA-40 ERA-40 reanalysis T159L60 —

NCEP NCEP–NCAR reanalysis T62L28 —

IPCC models

cccma_cgcm3_1 Canadian Centre for Climate

Modelling and Analysis (CCCma)

Coupled General Circulation Model,

version 3.1 (CGCM3.1, T47)

T47L31 1.88 3 1.88L29

cnrm_cm3 CNRM CM3.0 T63L45 28 3 28L31

csiro_mk3_0 CSIRO Mk3.0 T63L18 1.875 3 0.848L31

csiro_mk3_5 CSIRO Mk3.5 T63L18 1.875 3 0.848L31

gfdl_cm2_0 Geophysical Fluid Dynamics Laboratory

Climate (GFDL) Model version 2.0 (CM2.0)

2.58 3 28L24 18 3 18L50

gfdl_cm2_1 GFDL CM2.1 2.58 3 28L24 18 3 18L50

ingv_echam4 INGV ECHAM4 T106L19 28 3 28L31

inmcm3_0 INM-CM3.0 58 3 48L21 2.58 3 28L33

ipsl_cm4 IPSL CM4 2.58 3 3.758L19 28 3 28L31

miroc3_2_hires MIROC3.2(hires) T106L56 0.288 3 0.18758L47

miroc3_2_medres MIROC3.2(medres) T42L20 1.48 3 0.58L43

miub_echo_g MIUBECHOG 3.758 3 3.758L19 2.88 3 2.88L20

mpi_echam5 MPI ECHAM5 T63L31 1.58 3 1.58L40

mri_cgcm2_3_2a MRI CGCM2.3.2a T42L30 2.58 3 28L23

6576 J O U R N A L O F C L I M A T E VOLUME 23



and Bengio 2009). For clustering in a multidimensional

space, parsimoniously parameterized forms of the pdfs

are convenient, and thus in practical applications mul-

tivariate normal distributions are frequently preferred.

The number of components G as well as the type of

parameterization of the covariance matrices can be in-

ferred using BIC (Schwarz 1978):

BIC 5�2 logL(ujx
1
. . . x

N
) 1 m log(N), (4)

with L(u) being the likelihood of the Gaussian mixture

model with parameters u given the observations xi, m

being the number of parameters [depending on the

number of components G and on the complexity of the

parameterization of sk, see (Fraley and Raftery 2007)],

and N being the size of the dataset.

This offers a consistent and transparent way of de-

termining the number of components, as no external

measure has to be considered, as is the case, for example,

in Philipp et al. (2007). As mentioned earlier, the goal of

this study is to introduce and exemplify the pdf-based

difference measures, and to not loose focus, we restrict

ourselves to five clusters as in the SLP-based study

of PS01. The BIC is used, however, to choose one of

the 10 different parameterizations of the covariance ma-

trix (Table 2). Other methods of selecting the number

of components include, for example, cross validation

(Smyth et al. 1999; Hannachi and O’Neil 2001). Recent

results indicate, however, that the number of clusters is

mostly a fragile quantity and depends not only on the

clustering algorithm but also on the time span of the

underlying data (Christiansen 2006).

4. North Atlantic circulation patterns

In a first step, we aim at reproducing the five CPs from

PS01 defined with k means on daily SLP anomalies in

the North Atlantic region. We adopt their naming con-

vention and denote CPs as Atlantic Ridge (AR), Block-

ing (BL), GA, Western Blocking (WBL), and Zonal

(ZO). To be compatible with their k-means approach,

we restrict the GMM to five spherical clusters. In a sec-

ond step, we allow for nonspherical clusters and use the

covariance structure that yields the smallest BIC value.

Population histograms are a first attempt to discuss the

resulting differences to the spherical clusters. In sections

6b and 6c, the NCEP–NCAR nonspherical CPs will

serve as a frame of reference for evaluating CPs from

GCM simulations.

a. Reanalysis circulation patterns with spherical and
nonspherical clusters

Mean values (centroid or composite patterns) of the

five GMM spherical components obtained for NCEP–

NCAR reanalysis are shown in the top row of Fig. 1. Color

shading denotes SLP anomalies and absolute values are

given as contour lines. The centroids compare well to the

corresponding result of PS01, depicted in their Fig. 4.

Visual association yields from left to right: AR, BL, GA,

WBL, and ZO.

Using ERA-40, similar CPs can be obtained based on

spherical clusters; the centroids are shown in the second

row of Fig. 1. Three centroids can be visually well iden-

tified with AR (first column), BL (second column), and

ZO (last column) from NCEP–NCAR or PS01 CPs. One

of the two remaining patterns can be interpreted as

GA with the cyclone shifted northward (third column).

The centroid in the fourth column shows a strong anti-

cyclone east of Greenland, similar to GA, but with the

associated cyclone being too weak and slightly shifted

westward. If to be interpreted within the frame set by

NCEP–NCAR, it can be compared to WBL with the

anticyclone shifted northward (as previously discussed

for GA) and the associated cyclone westward. However,

it remains as the pattern that is the most difficult to as-

sociate to any of the NCEP–NCAR centroids.

Next, we remove the constraint leading to spherical

clusters and use the BIC to choose among the 10 pa-

rameterizations for the covariance matrices. For both,

NCEP–NCAR and ERA-40, ellipsoidal clusters with

equal size and orientation (EEE, in Table 2) yield the

lowest BIC (NCEP–NCAR: 263 226, ERA40: 263 916)

and a significant improvement on the spherical cluster

variant (VII, in Table 2; NCEP–NCAR: 267 762, ERA40:

268 664). It is worth noting that the number of parame-

ters for the five covariance matrices increases from 5 to 55

in this case. The resulting centroids are shown in Fig. 1 in

the third and fourth row, respectively. For the EEE

model type, the covariance matrices are identical for all

clusters and describe an ellipsoid in 10-dimensional space

TABLE 2. Possible parameterizations of covariance matrices for

the Gaussian mixture models (Banfield and Raftery 1993; Fraley

and Raftery 2007).

Abbreviation Parameterization

EII Spherical, equal volume

VII Spherical, varying volume

EEI Diagonal, equal volume, and shape

VEI Diagonal, equal shape

EVI Diagonal, equal volume

VVI Diagonal, varying volume, and shape

EEE Ellipsoidal, equal covariance matrix

EEV Ellipsoidal, equal volume, and shape

VEV Ellipsoidal, equal shape

VVV Ellipsoidal, unconstrained
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(10 PCs). Its longest axis is about 8 times longer than its

smallest. The axes are not parallel to the coordinate sys-

tem (as for diagonal models) but are linear combinations

of the 10 PCs. We thus refrain from a more detailed

discussion of the covariance structure here.

The first centroids (Fig. 1, third and fourth row, first

column) of NCEP–NCAR and ERA-40 show a pattern

very similar to the AR with a large cyclonic structure

extending farther west and south, pushing the anticy-

clone southward. While the second centroid (second

column) for ERA-40 is almost identical to its spherical

counterpart, the NCEP–NCAR centroid shows a quite

different cyclonic structure extending westward, pushing

the blocking anticyclone to the south, leading to a more

ZO-like pattern. In the third column, the centroids re-

sulting from nonspherical clusters are both similar to the

corresponding NCEP–NCAR spherical GA. An in-

teresting observation can be made in the fourth column:

the patterns from the nonspherical clusters are different

from their spherical counterparts in both cases. They do,

however, resemble the PS01 WBL centroid more than the

spherical NCEP–NCAR result does. The two are fur-

thermore almost identical. The last column shows the

patterns that are similar to ZO. For NCEP–NCAR, as

well as for ERA-40, the contrast of the associated south–

north SLP anomaly gradient is not as expressed as for the

spherical patterns in the first two rows.

For spherical, as well as for nonspherical clusters, one

could expect results being close for the two reanalysis

datasets. There are, however, differences in resolution

and parameterization of the reanalyses products’ at-

mospheric models, as well as in their data assimilation

schemes (e.g., Dell’Aquila et al. 2005). ERA-40 and

NCEP–NCAR are found to differ the most where their

observational data basis is sparse (Sterl 2004). The re-

sulting disparities in state space are strong enough to

yield different cluster mean patterns for the two data-

sets. The susceptibility of the clustering result to these

state space disparities is supposedly increased by 1) clus-

ters that are not well separated in space and 2) a sub-

optimal cluster number.

For nonspherical clusters, visual differences in the mean

patterns are in general smaller and affect mainly BL. This

could be an indication that those clusters are more robust

against the differences in state space configuration.

It is interesting to observe that the population of the

individual clusters, that is, their number of elements, is

very different for spherical and nonspherical clusters.

Figure 2 shows the population per CP for the two re-

analysis datasets for spherical and nonspherical clusters.

In the spherical case, the population is roughly evenly

distributed among the clusters (Fig. 2, first and second

panel). For nonspherical clusters, more than 60% of the

total population (NCEP–NCAR: 70%, ERA-40: 61%)

are associated to ZO. Two implications of this uneven

distribution are as follows: 1) ZO contains more elements

than in the spherical case and thus the centroid is calcu-

lated across a larger variety of elements leading to the

less-pronounced cyclone/anticyclone contrast in Fig. 1

(third and fourth row, fifths column), and 2) as EEE

FIG. 1. Mean values (centroids) of CPs obtained from clustering NCEP–NCAR and ERA-40 SLP anomalies using (first and second row)

spherical clusters and (third and fourth row) nonspherical clusters. The CPs are visually associated to the result from PS01 and thus named

from left to right AR, BL, GA, WBL, and ZO. SLP anomalies are color coded and absolute values are given as contour lines, both in hPa.
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allows only for one covariance matrix common for all

clusters the dominant ZO population is likely to de-

termine its structure. This might lead to suboptimal

model pdfs for low-populated clusters—for example, in

the sense that state space regions with a considerable

probability density according to the model pdf are ba-

sically empty because of a low population of that cluster

in that region, which is a problem that we get back to in

section 6a. It is evident from Fig. 2 that the nonspherical

CPs are not constituted with the same elements as in

the spherical case, they must be mixtures of multiple

spherical CPs. Otherwise, such a difference in CP pop-

ulation would not be possible.

b. Comparing spherical and nonspherical clusters

An intuitive and straightforward way to study the

relationship between nonspherical and spherical clus-

ters is a histogram with each nonspherical CP’s pop-

ulation broken down into the contributions from the

spherical clusters, as shown in Fig. 3. This representation

allows for the evaluation of the composition of the

nonspherical clusters in terms of contribution from the

spherical clusters. The nonspherical AR consists mainly

of the same elements also constituting AR for NCEP–

NCAR; ERA-40 has also contributions from spherical

GA and ZO. NCEP–NCAR’s nonspherical BL has

a strong component from spherical ZO, which is also

visible in its centroid pattern (Fig. 1, third row, first

column). Furthermore, spherical WBL and AR con-

tribute more to nonspherical BL than the spherical BL.

This is different for ERA-40. Here, the spherical BL

makes up the dominant contribution to nonspherical

BL, visible in very similar centroid patterns (Fig. 1).

Nonspherical GA for NCEP–NCAR is basically con-

stituted by its spherical counterpart. For ERA-40, this

CP has a stronger contribution from spherical WBL that

is consistent with the corresponding centroid patterns in

Fig. 1. Nonspherical WBL is again dominated by its

spherical counterpart in both cases with major contri-

butions from spherical GA for NCEP–NCAR and

spherical BL and AR for ERA-40. For ZO, we find for

both reanalysis datasets a broad mixture of all five

spherical CPs, this explains why the SLP anomaly con-

trast between the cyclonic and the anticyclonic structure

is low.

In a more general context, this type of analysis can be

regarded as a discrete estimation of overlap or similarity

of the spherical and nonspherical clusters. If those two

variants share a lot of elements, as, for example, the

NCEP–NCAR nonspherical and spherical AR, their

overlap in terms of pdf is large. On the other hand, the

FIG. 2. (first and second grouping) Population of spherical and

(third and fourth grouping) nonspherical patterns for the reanalysis

datasets.

FIG. 3. Histogram for the nonspherical CPs showing their pop-

ulation by contributions from the spherical clusters for (top)

NCEP–NCAR and (bottom) ERA-40. The contribution is mea-

sured relatively to the nonspherical CPs’ total population.
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NCEP–NCAR nonspherical BL shares almost no ele-

ments with its spherical counterpart and has thus, in

terms of the associated pdfs, a small overlap or a large

distance. In case of Gaussian mixture model clustering,

where clusters are described with a pdf, these heuristic

estimates of similarity and distance can be replaced with

more sophisticated measures presented in the following

section.

5. Quantifying differences in circulation patterns

So far, visual differences in the CPs’ mean values have

been discussed, as well as the differences quantified by

means of counting elements of two classification ap-

proaches. In the following, we make use of a probabi-

listic description of CPs by means of pdfs. CPs from

different datasets can now be compared using difference

or similarity measures for pdfs accounting for more than

the Euclidean distance between CPs’ mean values. A set

of those difference measures is introduced and exem-

plified with a simulated example. These measures are

then used to quantify differences between CPs from

NCEP–NCAR reanalysis and IPCC model simulations.

The CPs are defined by clusters represented by the pdfs

in the GMMs.

a. Distance measures based on probabilistic models

Apart from a visual comparison of mean values (cen-

troid patterns), a popular quantitative difference measure

is the Euclidean distance in the multidimensional space

d
Eucl

(P, Q) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m

P
� m

Q
)t(m

P
� m

Q
)

q
, (5)

where mP and mQ denote the mean values of CPs P and

Q. This measure can be used to quantify a difference,

however, it includes only first-moment information,

disregarding the higher moments describing size, shape,

or orientation of the whole clusters (i.e., the CP). Strictly

speaking, the Euclidean distance [Eq. (5)] does not define

a distance for pdfs. This is the case for most of the mea-

sures introduced in the following. Nevertheless, we will

use the terms distance and difference measure synony-

mously in the following to refer to a quantification of

dissimilarities or differences between CPs or pdfs.

As a first generalization, we introduce the Mahalanobis

distance (Mahalanobis 1936), designed for normal distri-

butions with identical covariance matrices. It thus includes

second-order information. The Mahalanobis distance is

given by

d
Maha

(P, Q) 5 (m
P
�m

Q
)ts�1

P (m
P
� m

Q
), (6)

with sP denoting the covariance matrix associated with

the reference CP P. It reduces to the square of the Eu-

clidean distance for sP 5 1, compare Eq. (5). For an

ellipsoidal reference CP (i.e., the covariance matrix

defines an ellipsoid), the Mahalanobis distance gives

lower weights to distances along a major axis of the el-

lipsoid than to those along a minor axis. Figs. 4a and 4b

exemplify this property. Equation (6) is symmetric and

fulfils the criteria of a distance only for identical co-

variance matrices (sP 5 sQ). Otherwise it depends on

the choice of the reference pdf. Equation (6) can be

straightforwardly symmetrized as dMaha,sym(P, Q) 5

dMaha(P, Q) 1 dMaha(Q, P).

Another popular approach for quantifying differences

in pdfs is the Kullback–Leibler divergence [KL, also

called information discrimination (Kullback 1987), rel-

ative entropy, or I coefficient] defined as

d
KL

(P, Q) 5 I(PjQ) 5

ð
R

log
q(x)

p(x)

� �
q(x) dx. (7)

It measures the difference between a reference pdf p(x)

(the truth) defining CP P and another pdf q(x) (the

model) defining CP Q. The KL is a noncommutative that

is a nonsymmetric measure and, as such, is not a distance

in the mathematical sense. It is related to entropy measures

from information theory, for example, mutual information

and Shanon entropy (Kullback and Leibler 1951). For two

normal distributions with identical covariance matrices,

the KL reduces to (1/2)dMaha, compare Eq. (A1).

A symmetrized version of the KL, also called J co-

efficient, can be formulated as

d
J
(P, Q) 5 J(P, Q) 5 I(PjQ) 1 I(QjP). (8)

If the pdfs defining CPs P and Q are identical, the KL

and the J coefficient yield zero. Both increase with di-

verging P and Q. In some special cases, for example, two

normal distributions with identical covariance matrix

and appropriate symmetries as in Figs. 4b and 4d, we

have I(PjQ) 5 I(QjP) and therefore J(P, Q) 5 2I(P, Q).

A conceptually different approach to quantify differ-

ences or similarities in pdfs is based on the Hellinger

coefficient (Hellinger 1909)

d
(s)
Hell(P, Q) 5

ð
R

q(x)sp(x)(1�s) dx, (9)

with a parameter 0 , s , 1. Choosing s 5 1/2 yields a

symmetric measure with values between zero (p and q

have disjoint supports) and one (p and q are identical).

Roughly speaking, it can be thought of as a measure of

overlap of the two distributions. The definition given in
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Eq. (9) is in fact a measure of similarity. In some cases, it

is useful to use the complement, which defines a measure

of difference consistent with the other measures.

Other than the Euclidean and Mahalanobis distances,

the integral equations for the KL [Eq. (7)] and the

Hellinger coefficient [Eq. (9)] are in general difficult to

compute. In the case of multivariate normal distribu-

tions, closed form solutions exist (Bock and Diday 2000)

and are given in the appendix. Table 3 gives a summary

of the main features of these different measures.

b. Exemplifying the distance measures

We exemplify the measures introduced above using

two 2D Gaussian pdfs: one static pdf q, centered at the

origin, and another pdf p with varying location (thus

a varying mean) and with different orientation and

shape given by the covariance matrix sp. Figure 4 shows

the ellipses containing 90% of the mass of the distribu-

tions. The four panels depict four different situations

to point out various characteristics of the difference

measures introduced above. The bars at the side give the

corresponding values for the Euclidean and Mahalanobis

distance, the KL divergence, and the J and Hellinger

coefficients. The Mahalanobis distance [Eq. (6)] is di-

vided by two; thus, for identical covariance matrices, we

obtain the same value as for KL. Similarly, we divide the

J coefficient by two; under certain conditions of symmetry,

it thus equals the KL, compare Figs. 4b and 4d. Note that

the comparison of the absolute values between various

distance measures is in general not meaningful. However,

keeping the above-mentioned relations into account, in-

formation can be gained from their intercomparison in

particular situations.

In Figs. 4a–c, the centers of the two distributions do

not change, but the orientation and shape of pdf p (dark

gray) does change. The Euclidean distance thus remains

the same, unlike the Mahalanobis distance, which takes

the shape of the covariance matrix into account. It in-

creases from panel (a) to panel (b) because the line

connecting the two centers does not run any more along

the major axis of the covariance matrix of p but along

a direction of smaller spatial extend. In panel (b), the

FIG. 4. Exemplifying the Euclidean and Mahalanobis distance, the Kullback–Leibler divergence, the J coefficient,

and the Hellinger similarity coefficients with two-dimensional normal pdfs. The values of the Mahalanobis distance

and J coefficient are divided by 2 for easier comparison with the Kullback–Leibler divergence. The reference pdf p

for the Mahalanobis distance and the KL divergence is the pdf with varying position and shape (dark gray), see

Eq. (7). The bars on the right side of each panel show the values of the four measures. Recall that the Hellinger

coefficient is a similarity measure and reacts contrariwise to changes in the pdfs. (a),(c) Two different asymmetric

situations (dKL 6¼ dJ) with pdf p varying in shape. (b),(d) Two different symmetric situations (dKL 5 dJ) with pdf p

changing the location. The dashed lines give the symmetry axes.

15 DECEMBER 2010 R U S T E T A L . 6581



Kullback–Leibler and J coefficient (divided by two) are

the same because of the symmetry along the dashed line.

In panel (c), a change in the shape of pdf p breaks this

symmetry, now KL and J coefficient yield different

values. Panel (d) shows two concentric distributions and,

thus, the value of the Euclidean and Mahalanobis dis-

tances are zero. The covariance matrices, however, have

different orientation and, therefore, the KL and J co-

efficient yield nonzero values, and the Hellinger co-

efficient is smaller than 1, indicating differences in the

pdfs. Here, the values for KL and J coefficient are

equal—again, because of symmetry—and small com-

pared to panel (a) and (b) because of the identical mean

values. The Hellinger coefficient has strongly increased

compared to the previous three panels, indicating that

important regions of the pdfs overlap.

This example demonstrates that the Mahalanobis

distance, KL, J coefficient, and Hellinger coefficient

yield information about the relative position, shape, and

orientation of the pdfs that is complementary to the

Euclidean distance. An R package called gaussDiff, al-

lowing for the calculation of the different measures, has

been developed for this study.1 It is freely available on

the Comprehensive R Archive Network (CRAN) Web

page (available online at http://cran.r-project.org/).

6. Quantitative comparison of CPs in the North
Atlantic region

We first get back to a comparison of spherical and

nonspherical CPs from the two reanalysis datasets and

augment the discussion in section 4b, which was solely

based on population histograms. Now, we obtain CPs for

the 14 GCM simulations using GMM with nonspherical

clusters. For two selected GCMs, we evaluate the clus-

ter configuration in state space in detail by comparison

to NCEP–NCAR reanalysis. Finally, a difference to

NCEP–NCAR GA is computed and compared for CPs

from all 14 GCMs.

a. Comparing spherical and nonspherical clusters
based on pdfs

Instead of counting elements of spherical clusters

contributing to nonspherical clusters, as in section 4b, we

use the Hellinger measure [Eq. (9)] to assess cluster

similarities. Figure 5 shows the similarity coefficients of

the nonspherical clusters (abscissa) with their spherical

counterparts (gray shadings). Figure 5 can be qualita-

tively compared with Fig. 3, which was based on evalu-

ating counts of cluster memberships. Although in both

cases the ordinate spans the range from zero to one, the

absolute values of the two figures are not to be directly

confronted. Their relative magnitudes give comparable

information about the cluster configuration.

A Hellinger coefficient of 0.6 (Fig. 5, top) indicates

that the pdf of NCEP–NCAR’s nonspherical AR shares

a large fraction of mass with its spherical counterpart,

being in line with the large relative contribution of

spherical AR to nonspherical AR shown in Fig. 3 (top).

Hellinger coefficients around 0.2–0.3 can be observed

for the similarity of the other spherical pdfs with non-

spherical AR, while the bar plot in Fig. 3 shows almost no

relative contribution of the other spherical CPs to non-

spherical AR. There is thus a small overlap of the pdfs,

but no or only a very small number of elements are

present in these areas of overlap because of a small

overall cluster population. The count-based measure

does not therefore show a relative contribution. The sit-

uation is more difficult for BL. The count-based measure

in Fig. 3 shows almost no contribution of spherical BL to

its nonspherical counterpart, instead a large contribu-

tion of ZO. In fact, the mean pattern (centroid) in Fig. 1

(third row, second column) also exhibits strong zonal

characteristics. On the other hand, the similarity coeffi-

cients in Fig. 5 (top) indicate that spherical BL and

nonspherical BL share a large fraction of their mass. Two

facts can help to explain this seemingly contradictory

result: 1) the pdf of the spherical BL has a small variance

(the smallest of all five CPs), and its mass is thus con-

centrated in a small region of the state space; and 2) as

mentioned earlier, parts of the nonspherical cluster must

TABLE 3. The various distance measures suggested for pdf-based clusters and their main characteristics.

Measure Notation Range Symmetric Characteristics

Euclidean dEucl [0, ‘) Yes Distance of means only

Mahalanobis dMaha [0, ‘) No Difference in means with metric depending

on one covariance matrix

KL dKL [0, ‘) No Takes both covariance matrices into account,

reduces to Mahalanobis for sp 5 sq

J coefficient dJ [0, ‘) Yes Symmetrized KL, 2dJ 5 dKL for certain

symmetric conditions

Hellinger (s 5 0.5) dHell [0, 1] Yes Similarity measures, ‘‘overlap’’

1 R is a language and environment for statistical computing and

graphics (R Development Core Team 2004).
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be sparsely populated because of a small cluster pop-

ulation but cover a significant part of the small spherical

BL pdf’s mass. This leads to a large Hellinger coefficient

despite low counts of common elements. For GA, WBL,

and particularly ZO, correspondence between Fig. 3 (top)

and Fig. 5 (top) is more explicit (not in absolute numbers

but in relative magnitudes).

Similarly for ERA-40, the Hellinger coefficients in

Fig. 5 (bottom) indicate a common pdf mass where the

count-based measure is small or even zero. This is again

striking for AR and BL and likely to be due to sparse

population. For GA, the count-based measure (Fig. 3,

bottom) and the set of similarity coefficients (Fig. 5,

bottom) compare well in their relative magnitudes. The

nonspherical WBL shows a low relative contribution of

the spherical ZO in the count-based measure, while the

corresponding similarity coefficient indicates a relatively

large fraction of mass shared by the two pdfs. The pdf of

nonspherical WBL thus extends toward the spherical ZO,

but this area is sparsely populated. For the highly popu-

lated nonspherical ZO, the count-based measure and the

Hellinger similarity coefficient correspond well in relative

magnitude.

This comparison of a count-based and a pdf-based

measure clearly shows the limitations of discussing pop-

ulation (or probability) densities in a high dimensional

space when it is sparsely populated.

b. Comparison of GCM CPs with NCEP

In a similar way, we obtain CPs from the GCMs using

five nonspherical clusters with the covariance structure

chosen again by the BIC (Table 4). Six GCMs share the

ellipsoidal clusters of EEE with the reanalysis data. Six

others show a diagonal parameterization, that is, ellip-

soidal clusters with axes parallel to the coordinate sys-

tem (PCs) with either equal volume and shape (EEI),

variable volume but equal shape (VEI), or equal volume

but variable shape (EVI). In case the principal axes of

the ellipsoidal clusters are not parallel to the coordinate

system, more parameters are needed for their parame-

terization. This is the case for the Max Planck Institute

(MPI) ECHAM5 (EEV), whose clusters are best de-

scribed with ellipsoids of equal size and orientation but

different shape. An additional variation of cluster size is

required for the IPSL CM4 (VEV).

FIG. 5. Comparison of spherical and nonspherical clusters for

(top) NCEP–NCAR and (bottom) ERA-40 using the Hellinger

similarity measure.

TABLE 4. Covariance structure with minimum BIC for the

14 GCMs using five clusters. The abbreviation for the covariance

structures are given in Table 2.

GCM Covariance structure

CCCMA CGCM3.1, T47 VEI

CNRM CM3.0 EEE

CSIRO Mk3.0 EEE

CSIRO Mk3.5 VEI

GFDL CM2.0 EEE

GFDL CM2.1 EEE

INGV ECHAM4 VEI

INM-CM3.0 EEE

IPSL CM4 VEV

MIROC3.2(hires) EEI

MIROC3.2(medres) EVI

MIUBECHOG VEI

MPI ECHAM5 EEV

MRI CGCM2.3.2a EEE
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The GCM mean patterns for the five CPs are shown in

Fig. 6 for the Centre National de Recherches Météo-

rologiques Coupled Global Climate Model, version 3

(CNRM CM3.0; top) and the Model for Interdisciplin-

ary Research on Climate 3.2, high-resolution version

[MIROC3.2(hires); (bottom)] and in Fig. S1 (available as

supplemental material at the Journals Online Web site:

http://dx.doi.org/10.1175/2010JCLI3432.s1) for the other

12 GCMs. A priori, the resulting clusters are not related

to the NCEP–NCAR (or PS01) CPs and are thus enu-

merated as CP1 to CP5. Visual inspection shows, how-

ever, resemblance to NCEP–NCAR CPs in many cases.

We set a frame of reference by studying the internal

configuration of the NCEP–NCAR CPs; Fig. 7 gives the

corresponding Hellinger similarity coefficient for the CPs

with themselves. Both AR and BL have a strong similar-

ity coefficient with ZO. GA and WBL are both rather

different from the other three CPs and GA from WBL.

These relationships have to be kept in mind when using

these five CPs in the following as a frame of reference. In

particular, the Hellinger coefficient between two different

CPs does not exceed 0.6; we thus consider larger values as

an indication of large overlap in the present setting.

Figure 8 shows the Hellinger similarity as a bar plot

for CNRM CM3.0 and MIROC3.2(hires) CPs arranged

in the same order as in Fig. 6.2

1) CNRM CM3.0

The bar plot for CP1 shows qualitatively much the

same characteristics as the corresponding plot for

NCEP–NCAR ZO in Fig. 7. The similarity coefficient of

CP1 with ZO is not equal to 1 and the coefficients with

AR and BL are slightly lower. Compared to NCEP–

NCAR ZO, this pdf is thus shifted away from AR, BL,

and ZO while its similarity with GA and WBL is about

the same. CP2’s similarity coefficients qualitatively

compare well to NCEP–NCAR BL in Fig. 7. The co-

efficient of CP1 with BL is not 1 but about 0.5, indicating

that the CP1 pdf has a significant part of its mass shifted

away from NCEP–NCAR BL. It also moved away from

AR and GA. The similarity coefficients of CP2 with

WBL and ZO are about the same as for NCEP–NCAR

BL. The plot for CP3 is almost identical to the corre-

sponding one for NCEP–NCAR GA. This pdf is thus

not only in its mean value very similar to NCEP–NCAR

FIG. 6. Mean values (centroids) of CPs obtained from clustering (top) CNRM CM3.0 and (bottom) MIROC3.2(hires) simulations’ SLP

anomalies using nonspherical clusters. SLP anomalies are color coded and absolute values are given as contour lines, both in hPa. Anomaly

values above 22 hPa have been cut off for reasons of visibility. This does occur only in CP4 of CNRM CM3.0 (first row, fourth column).

FIG. 7. Hellinger similarity measure for the five nonspherical

NCEP–NCAR CPs with themselves.

2 The corresponding bar plots for the CPs of the other 12 GCM

simulations are depicted in Fig. S2 (available as supplemental

material at the Journals Online Web site: http://dx.doi.org/10.1175/

2010JCLI3432.s2).
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GA (Fig. 6, first row, third column) but also in shape and

size. Outstanding is CP4, which shows five extremely

small Hellinger coefficients. It is thus not close to any of

the NCEP–NCAR CPs. The centroid’s dominating an-

ticyclone shows anomalies significantly above those

from all other GCM and reanalysis CPs (Fig. S1). Con-

sisting of only 26 elements, this cluster forms a small

‘‘island’’ outside the usual range of the state space. CP5

shows a bar plot qualitatively similar to NCEP–NCAR’s

ZO. Coefficients are, however, smaller. The coefficient

measuring similarity of CP5 with ZO is smaller than the

similarity of CP1 with ZO, indicating that the pdf of CP5

shares less mass with ZO than the pdf of CP1.

2) MIROC3.2(HIRES)

The bar plot for CP1 is similar to the plot corresponding

to NCEP–NCAR AR, with the coefficient for CP1 with

AR itself attaining only 0.6. The mean pattern (Fig. 6,

second row, fist column) reflects this strong similarity. CP2

and CP3 show a similar sequence of Hellinger coefficients

as NCEP–NCAR GA, with CP2 having a slightly larger

similarity with ZO. Both patterns (Fig. 6, second row,

second and third column) are visually also similar to GA.

The Hellinger coefficient of CP2 with CP3 is 0.54 (not

shown); thus, despite their similarities, both pdfs have

mass that they do not share. The bar plots for CP4 and

CP5 strongly resemble the plots of NCEP–NCAR WBL

and ZO, respectively. Only CP4’s WBL coefficient and

CP5’s ZO coefficient are slightly smaller than 1.

In summary, specific CPs can be reproduced reason-

ably well by some GCMs, not only with respect to their

mean pattern, but also regarding their defining pdfs.

MIROC3.2 medium resolution [MIROC3.2(medres)],

for example, reproduces well AR, GA, WBL, and ZO,

while the pdf defining NCEP–NCAR BL is better

reproduced for CNRM CM3.0. Such an in-depth anal-

ysis of the CPs’ configuration can be used to investigate

particular state space regions and identify discrepancies

to reanalysis data; we thus believe that this pdf-based

analysis can be helpful for climate modelers.

c. Comparing a specific CP across many GCMs

If a specific CP is to be compared across a large set of

GCMs, the above-presented detailed analysis is not feasi-

ble. Instead, we suggest calculating a difference measure

between the desired reanalysis CP and the closest GCM

CP. The NCEP–NCAR nonspherical GA (Fig. 1, third

row, third column) is most isolated from its accompanying

CPs, as can be seen from the Hellinger similarity measure

calculated for the five CPs with themselves, Fig. 7. It is

less prone to be mixed with other accompanying CPs

and hence particularly suitable for a comparison with its

GCM counterparts. We use the GCM CP with the lowest

difference to NCEP–NCAR GA measured by the J co-

efficient for comparison.3 In Figs. 6 and S1, this CP corre-

sponds to CP4 for the Istituto Nazionale di Geofisica e

Vulcanologia (Italy) (INGV) ECHAM4, the Institute

of Numerical Mathematics Coupled Model, version 3.0

FIG. 8. Hellinger similarity coefficient calculated for the five nonspherical CPs (abscissa)

from (top) CNRM CM3.0 and (bottom) MIROC3.2(hires) simulations with all nonspherical

NCEP–NCAR CPs (gray shading).

3 Other difference measures would be feasible as well, depend-

ing on the intention. Here, we focus on the difference between the

two pdfs, taking their two shapes into account. A choice based on

the Euclidean distance, for example, would focus on the centroids.
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(INM-CM3.0), the Meteorological Institute of the Uni-

versity of Bonn, ECHO-G Model (MIUB ECHO-G),

and to CP3 for all other GCMs. The J coefficient values

are shown in Fig. 9 (top) with the two reanalysis datasets

and the GCMs on the abscissa, sorted in the ascending

order of the J coefficient. NCEP–NCAR is included for

reference, yielding a zero J coefficient. Very close to

zero is the distance of ERA-40 GA to its NCEP–NCAR

counterpart, defining the value for the J coefficient for

which CPs can still be considered as equal. Next are

MIROC3.2(hires), CNRM CM3.0, and INM-CM3.0 with

an almost identical J coefficient. GCMs yielding larger

J coefficients can be read off from the abscissa in Fig. 9.

The Meteorological Research Institute (MRI) Coupled

General Circulation Model, version 2.3.2a (CGCM2.3.2a)

centroid (Fig. S1, row 13, third column), for example,

seems visually quite close to the NCEP–NCAR GA

(Fig. 1, third row, third column), corroborated also by its

Euclidean distance (Fig. 9, bottom); however, it exhibits

the largest J coefficient of all 14 GCMs and, thus, the

largest distance in terms of pdfs. On the other hand, the

MIUBECHOG centroid (Fig. S1, row 12, fourth column)

visually appears quite different from NCEP–NCAR GA

and shows a large Euclidean distance but a moderate J

coefficient. Although their centroids are not as similar,

they share a large volume in state space.

The aim of such a comparison across many GCMs is

to find one or a few GCMs that are in a certain region of the

state space—defined by a CP pdf—very similar to rean-

alysis data. We expect this to be useful for studies that are

sensitive to the model behavior in a particular state space

region, such as the downscaling of precipitation or the

analysis of central European heat waves related to the

blocking pattern (Yiou and Nogaj 2004). As can be seen

by comparing the top and bottom panel of Fig. 9, the

conventional Euclidean distance does not yield the same

result. This is in general the case when pdfs’ extensions

(defined by their variances) are not negligible compared to

the differences in the mean values. When comparing CPs

from reanalysis and GCMs, one should expect that the

mean values are close and the clusters’ extensions play

a role.

7. Summary and conclusions

Many objective algorithms for clustering atmospheric

circulation define CPs by grouping elements into a clus-

ter. The CPs are then usually represented using the

average or composite pattern of all cluster members.

Higher-order information, such as cluster size or shape

in a multidimensional space, is frequently disregarded.

For Gaussian mixture models clusters are not limited to

spherical shapes, and taking this shape information into

account can yield valuable information about the con-

figuration of clusters—either within one dataset or be-

tween datasets. Clusters from different datasets can be

compared as demonstrated here for the case of reanalysis

data and GCM simulations. We defined CPs on the basis

of multivariate normal probability distribution functions

and the size and shape information of each CP is con-

tained in covariance matrices. Focus of this study was

on a set of difference measures, such as the Mahalanobis

distance, the Kullback–Leibler divergence, the J coefficient,

or the Hellinger similarity coefficient to exploit this infor-

mation for the comparison of CPs. With a simple simulated

example, we demonstrated that these measures have the

potential to add useful complementary information to the

commonly used Euclidean distance of mean states.

The Gaussian mixture models were used to define five

CPs in the North Atlantic region for NCEP–NCAR and

FIG. 9. (left) Euclidean distance and (right) J coefficients of GCM CPs with NCEP–NCAR

nonspherical GA. Chosen are the GCM CPs with the minimum J coefficient with NCEP–

NCAR GA. GCMs are ordered at the abscissa with increasing J coefficient.

6586 J O U R N A L O F C L I M A T E VOLUME 23



ERA-40 reanalyses. Initially, spherical clusters were

employed to reproduce results obtained with k-means

by PS01. The restriction to spherical clusters was removed

and the covariance structure was selected on the basis of

the BIC. Differences in the mean patterns from the re-

analysis products are visible mostly for the CPs based on

spherical clusters. The disparities in state space that are

expected for ERA-40 and NCEP–NCAR are large

enough to yield different cluster mean patterns for the two

reanalysis products. Reasons for the susceptibility of

cluster means to disparities in ERA-40 and NCEP–NCAR

are supposed to be 1) not well-separated clusters and 2)

a suboptimal cluster number. Although the CPs’ mean

patterns based on ellipsoidal clusters show similarities

to the mean patterns of the spherical clusters, differ-

ences in clustering are evident. The population is much

more unevenly distributed among clusters for the non-

spherical solution. Furthermore, the relationships be-

tween nonspherical and spherical CPs were studied with

conditional population histograms and the Hellinger

similarity measure. Although the count-based population

histograms should roughly approximate the Hellinger

coefficient, differences are visible and are most likely

to be the result of a sparse distribution of elements in

a high dimensional space. This demonstrates also the

limits of clustering and cluster configuration analysis in

many dimensions.

In the same way, five CPs have been defined for

twentieth-century simulations from 14 GCMs. CPs of two

of the 14 GCMs are analyzed by means of the Hellinger

similarity coefficient in the frame of reference set by

NCEP–NCAR. The capability of a GCM to reproduce

certain CPs is very dependent on the CP itself. In other

words, for certain regions of the state space, GCMs re-

produce the reanalysis pdf of states reasonably well.

Which regions are well reproduced depends on the GCM.

None of the GCMs studied here shows a good agreement

with all five NCEP–NCAR CPs. MIROC3.2(hires) re-

produces four CPs reasonably well.

Within the state space of NCEP–NCAR, the GA CP

was found to be the most isolated, that is, its pdf showed

the smallest similarity coefficient with the other pdfs. We

considered it as particularly suitable for a simple com-

parison with GCM CPs. For every GCM, the CP closest

to NCEP–NCAR GA had been chosen by means of the J

coefficient. The resulting distance between the GCM CP

and NCEP–NCAR GA is calculated and compared for all

14 GCMs. The MIROC3.2(hires), the CNRM CM3.0, and

the INM-CM3.0 yield CPs with the smallest distance to

NCEP–NCAR GA. This ranking is different if only the

CPs’ mean patterns are compared using the Euclidean

distance, emphasizing again the complementary informa-

tion provided by the pdf-based difference measures.

We have mentioned the uncertainty of classification

but have not addressed the GMM parameter uncertainty,

that is, the uncertainty of mean patterns and covariance

matrices. Although the uncertainties due to unknown

cluster numbers and covariance structures are likely to be

larger, this question should be investigated. More impor-

tantly, with respect to cluster comparison, is the question

of significant cluster difference. The GMM approach is

particularly suitable for the construction of a statistical

test based on a parametric bootstrap approach. Devel-

opment of such a test, as well as the investigation of other

atmospheric fields than SLP, is left for future work.

With Gaussian mixture models and a suitable differ-

ence measure, CPs can be considered as volumes in state

space that can differ in more than their mean states. An

interpretation of their covariance structure in terms of

the basis functions (PCs) can give hints on their spatial

extension. Alternatively, reanalysis CPs can be used as

a frame of reference for a detailed investigation of CP

configuration. We consider this detailed analysis of the

state space configuration by means of pdfs and the use

of pdf-based distance measures as source of valuable in-

formation for climate modelers. Other than the evalua-

tion of GCMs or a quantification of the separation of CPs

(clusters) within one set of reanalysis or GCM data, the

measures can be used in other climate change–related

studies—for example, for obtaining weights for a model

averaging in a Bayesian framework; for selecting appro-

priate GCMs for a CP-based downscaling scheme; to

track and test for temporal changes in CPs, for example,

from twentieth-century runs to future scenarios; or to

investigate changes resulting from different external

forcings of the GCMs.
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APPENDIX

Closed Form for Gaussian Distributions

The KL divergence Eq. (7) for two m-dimensional

normal distributions p and q is given by

d
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with 1 being the identity matrix in m dimensions, and

k�ks�1 denoting the Mahalanobis distance, Eq. (6) (Bock

and Diday 2000). The J coefficient can be calculated from

this result using Eq. (8). For the Hellinger coefficient

[Eq. (9)], we get in the case of two m-dimensional normal

distributions p and q (Bock and Diday 2000):
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Bárdossy, A., 1994: Downscaling from GCMs to local climate

through stochastic linkages. Climate Change, Uncertainty and

Decision Making, G. Paoli, Ed., Institute for Risk Research,

33–46.

Bock, H.-H., 1996: Probabilistic models in cluster analysis. Comp.

Stat. Data Anal., 23, 5–28.

——, and E. Diday, 2000: Dissimilarity measures for probability

distributions. Analysis of Symbolic Data, Springer, 153–165.

Brajard, J., F. Badran, M. Crépon, and S. Thiria, 2008: Validation

of model simulations with respect to in situ observations by the

use of probabilistic estimations. Proc. IEEE Int. Joint Conf. on

Neural Networks, Hong Kong, China, Institute of Electrical

and Electronics Engineers, 3015–3019.

Branstator, G., and F. Selten, 2009: ‘‘Modes of variability’’ and

climate change. J. Climate, 22, 2639–2658.

Carreau, J., and Y. Bengio, 2009: A hybrid Pareto model for asym-

metric fat-tailed data: The univariate case. Extremes, 12, 53–76.

Casado, M. J., M. A. Pastor, and F. J. Doblas-Reyes, 2009: Euro-

Atlantic circulation types and modes of variability in winter.

Theor. Appl. Climatol., 96, 17–29.

Casola, J., and J. Wallace, 2007: Identifying weather regimes in the

wintertime 500-hPa geopotential height field for the Pacific–

North American sector using a limited-contour clustering

technique. J. Appl. Meteor. Climatol., 46, 1619–1630.

Cassou, C., 2008: Intraseasonal interaction between the Madden–

Julian Oscillation and the North Atlantic Oscillation. Nature,

455, 523–527.

Christiansen, B., 2006: Atmospheric circulation regimes: Can cluster

analysis provide the number? J. Climate, 20, 2229–2250.

Conway, D., and P. D. Jones, 1998: The use of weather types and air

flow indices for GCM downscaling. J. Hydrol., 212–213, 348–361.

Davis, R. E., and L. S. Kalkstein, 1990: Development of an auto-

mated spatial synoptic climatological classification. Int. J.

Climatol., 10, 769–794.

——, R. Dolan, and G. Demme, 1993: Synoptic climatology of

Atlantic coast northeasters. Int. J. Climatol., 13, 171–189.

Dell’Aquila, A., V. Lucarini, P. M. Ruti, and S. Calmanti, 2005:

Hayashi spectra of the Northern Hemisphere midlatitude at-

mospheric variability in the NCEP–NCAR and ECMWF re-

analyses. Climate Dyn., 25, 639–652.

Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977: Maximum

likelihood from incomplete data via the EM algorithm. J. Roy.

Stat. Soc., 39B, 1–38.

Duda, R. O., P. E. Hart, and D. G. Stork, 2001: Pattern Classifi-

cation. 2nd ed. Wiley, 654 pp.

Fowler, H. J., S. Blenkinsop, and C. Tebaldib, 2007: Linking cli-

mate change modeling to impacts studies: Recent advances in

downscaling techniques for hydrological modeling. Int. J.

Climatol., 27, 1547–1578.

Fraley, C., and A. E. Raftery, 2002: Model-based clustering, dis-

criminant analysis, and density estimation. J. Amer. Stat. As-

soc., 97, 611–631.

——, and ——, 2007: Model-based methods of classification:

Using the mclust software in chemometrics. J. Stat. Software, 18.

[Available online at http://www.doaj.org/doaj?func=abstract&

id=218544.]

Haines, K., and A. Hannachi, 1995: Weather regimes in the Pacific

from a GCM. J. Atmos. Sci., 52, 2444–2462.

Hannachi, A., 1997: Low-frequency variability in a GCM: Three-

dimensional flow regimes and their dynamics. J. Climate, 10,

1357–1379.

——, 2007: Tropospheric planetary wave and mixture modeling:

Two preferred regimes and a regime shift. J. Atmos. Sci., 64,

3521–3541.

——, and B. Legras, 1995: Simulated annealing and weather re-

gimes classification. Tellus, 47A, 955–973.

——, and A. O’Neil, 2001: Atmospheric multiple equilibria and

non-gaussian behaviour in model simulations. Quart. J. Roy.

Meteor. Soc., 127, 939–958.

——, I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthog-

onal functions and related techniques in atmospheric science:

A review. J. Climatol., 27, 1119–1152.

Hellinger, E., 1909: Neue Begründung der Theorie quadratischer

Formen von unendlich vielen Veränderlichen. J. Für Math.,

136, 210–271.

Hess, P., and H. Brezowsky, 1977: Katalog der Großwetterlagen

Europas (1861–1976). Selbstverlag des Deutschen Wetter-

dienstes Bd. 15, Berichte des Deutschen Wetterdienstes, Offen-

bach am Main, 85 pp.

Hewitson, B., and R. G. Crane, 2002: Self-organizing maps: Ap-

plications to synoptic climatology. Climate Res., 22, 13–26.

Huth, R., 1996: An intercomparison of computer-assisted circula-

tion classification methods. Int. J. Climatol., 16, 893–922.

——, 2000: A circulation classification scheme applicable in GCM

studies. Theor. Appl. Climatol., 67, 1–18.

Jacobeit, J., H. Wanner, J. Luterbacher, C. Beck, A. Philipp, and

K. Sturm, 2003: Atmospheric circulation variability in the North

Atlantic European area since the mid-seventeenth century.

Climate Dyn., 20, 341–352.

Jolliffe, I. T., 2002: Principal Component Analysis. 2nd ed.,

Springer Series in Statistics, Springer, 487 pp.

Jones, P. D., M. Hulme, and K. R. Briffa, 1993: A comparison of

Lamb circulation types with an objective classification scheme.

Int. J. Climatol., 13, 655–663.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

Kohonen, T., 1998: The self-organizing map. Neurocomputing,

21, 1–6.

6588 J O U R N A L O F C L I M A T E VOLUME 23



Kullback, S., 1987: The Kullback–Leibler distance. Amer. Stat., 41,

340–341.

——, and R. A. Leibler, 1951: On information and sufficiency. Ann.

Math. Stat., 22, 79–86.

Lamb, H. H., 1972: British Isles weather types and a register of daily

sequence of circulation patterns, 1861–1971. Geophysical

Memoir 116, HMSO, 85 pp.

Leloup, J., M. Lengaigne, and J.-P. Boulanger, 2008: Twentieth-

century ENSO characteristics in the IPCC database. Climate

Dyn., 30, 277–291.

MacQueen, J., 1967: Some methods for classification and analysis

of multivariate observations. Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, Vol. 1,

University of California Press, 281–297.

Mahalanobis, P. C., 1936: On the generalized distance in statistics.

Proc. Nat. Inst. Sci. India, 2, 49–55.

Maraun, D., and Coauthors, 2010: Precipitation downscaling under

climate change: Recent developments to bridge the gap between

dynamical models and the end user. Rev. Geophys., 48, RG3003,

doi:10.1029/2009RG000314.

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney,

J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The

WCRP CMIP3 multimodel dataset: A new era in climate

change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

Michelangeli, P. A., R. Vautard, and B. Legras, 1995: Weather

regimes: Recurrence and quasi-stationarity. J. Atmos. Sci., 52,
1237–1256.

Moron, V., A. W. Robertson, M. N. Ward, and O. Ndiaye, 2008:

Weather types and rainfall over Senegal. Part I: Observational

analysis. J. Climate, 21, 266–287.

Pearson, K., 1894: Contributions to the theory of mathematical

evolution: Part I: On the dissection of asymmetrical frequency

curves. Philos. Trans. Roy. Soc. London, A185, 71–85.

Philipp, A., P. M. Della-Marta, J. Jacobeit, D. R. Fereday,

P. D. Jones, A. Moberg, and H. Wanner, 2007: Long-term

variability of daily North Atlantic–European pressure pat-

terns since 1850 classified by simulated annealing clustering.

J. Climate, 20, 4065–4095.

Plaut, G., and E. Simonnet, 2001: Large-scale circulation classifi-

cation, weather regimes, and local climate over France, the

Alps, and Western Europe. Climate Res., 17, 303–324.

Preisendorfer, R. W., 1988: Principal Component Analysis in Me-

teorology and Oceanography. Elsevier, 426 pp.

R Development Core Team, cited 2004: R: A language and envi-

ronment for statistical computing. [Available online at http://

www.R-project.org.]
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