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Abstract This study evaluates how statistical and

dynamical downscaling models as well as combined

approach perform in retrieving the space–time variability

of near-surface temperature and rainfall, as well as their

extremes, over the whole Mediterranean region. The

dynamical downscaling model used in this study is the

Weather Research and Forecasting (WRF) model with

varying land-surface models and resolutions (20 and

50 km) and the statistical tool is the Cumulative Distribu-

tion Function-transform (CDF-t). To achieve a spatially

resolved downscaling over the Mediterranean basin, the

European Climate Assessment and Dataset (ECA&D)

gridded dataset is used for calibration and evaluation of the

downscaling models. In the frame of HyMeX and MED-

CORDEX international programs, the downscaling is per-

formed on ERA-I reanalysis over the 1989–2008 period.

The results show that despite local calibration, CDF-t

produces more accurate spatial variability of near-surface

temperature and rainfall with respect to ECA&D than WRF

which solves the three-dimensional equation of conserva-

tion. This first suggests that at 20–50 km resolutions, these

three-dimensional processes only weakly contribute to the

local value of temperature and precipitation with respect to

local one-dimensional processes. Calibration of CDF-t at

each individual grid point is thus sufficient to reproduce

accurately the spatial pattern. A second explanation is the

use of gridded data such as ECA&D which smoothes in

part the horizontal variability after data interpolation and

damps the added value of dynamical downscaling. This

explains partly the absence of added-value of the 2-stage

downscaling approach which combines statistical and

dynamical downscaling models. The temporal variability

of statistically downscaled temperature and rainfall is

finally strongly driven by the temporal variability of its

forcing (here ERA-Interim or WRF simulations). CDF-t is

thus efficient as a bias correction tool but does not show

any added-value regarding the time variability of the

downscaled field. Finally, the quality of the reference

observation dataset is a key issue. Comparison of CDF-t

calibrated with ECA&D dataset and WRF simulations to

local measurements from weather stations not assimilated

in ECA&D, shows that the temporal variability of the

downscaled data with respect to the local observations is

closer to the local measurements than to ECA&D data.

This highlights the strong added-value of dynamical

downscaling which improves the temporal variability of

the atmospheric dynamics with regard to the driving model.

This article highlights the benefits and inconveniences
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emerging from the use of both downscaling techniques for

climate research. Our goal is to contribute to the discussion

on the use of downscaling tools to assess the impact of

climate change on regional scales.

Keywords Mediterranean climate � Seasonal variability �
Climate extremes � Downscaling � HyMeX � CORDEX �
MED-CORDEX

1 Introduction

The Mediterranean basin is characterized by a nearly

enclosed sea surrounded by very urbanized littorals and

mountains, and is a sharp transitional zone between the

semi-arid subtropics and mid-latitude regions. This climate

is characterized by hot, long and dry summers, as also mild

winters during which most rainfalls occur. Köppen (1936)

defined the Mediterranean climate as one in which winter

rainfall is more than three times the summer rainfall. Indeed,

the seasonal variability of the Mediterranean climate is

pronounced. Vautard et al. (2007) showed a direct connec-

tion between the rainfall and the temperature variability on

an inter-annual cycle with generally hot summers preceded

by anomalous dry winters generating severe droughts. Hot

summers and droughts are linked through land surface/

atmosphere feedbacks which play a key role in the seasonal

variability of rainfall and temperature in the Mediterranean

region with geographical specificities around the basin.

They can have significant impact on public health, espe-

cially when combined with severe air pollution. A thor-

oughly studied example is the August 2003 heat wave which

is considered to have caused thousands of deaths in France,

Italy and Spain (e.g. Fischer et al. 2004; Garcıa-Herrera

et al. 2005). In addition to human risks, the prolonged

droughts can result to great ecological disasters and often

they might lead to extensive forest fires of great impact on

air quality (Bussotti and Ferretti 1998; Pace et al. 2005).

The medium to high mountains that surround the Med-

iterranean Sea play a crucial role in steering the air flow and

the Mediterranean Sea acts as a moisture and heat reservoir,

so that energetic mesoscale atmospheric features can evolve

to high-impact weather systems such as heavy precipitation

during fall, cyclogenesis and wind storms during winter.

Indeed, in winter the Mediterranean region is subject to

stratospheric air intrusions in the lower troposphere, often

resulting in extreme weather phenomena, (e.g. Lagouvardos

and Kotroni 2000; Stohl et al. 2000; Zanis et al. 2003) such

as storms and cyclones at times associated with extreme

rainfall. The Mediterranean basin is known to present one of

the highest concentrations of cyclones in the world, espe-

cially in winter (Patterssen 1956). However, the processes,

the intensity and the concentration of cyclogenesis events

differ from area to area (Trigo Isabel et al. 1999), with the

strongest events due to the interaction between the atmo-

spheric flow and the orography (e.g. Atlas and Alps;

Romero et al. 2000; Buzzi et al. 2003; Drobinski et al. 2001,

2005; Guénard et al. 2005). Among the environmental risks,

extreme rainfall associated with floods is one of the greatest

natural hazards in the region. For instance, in Spain 229

deaths by floods are reported between 1995 and 2004, due to

cyclonic weather systems (Llasat-Botija et al. 2007).

The Mediterranean basin is identified as one of the two

main hot-spots of climate change, meaning that its climate

is especially responsive to global change (Giorgi 2006) with

an increase in the interannual variability in addition to a

strong warming and drying. Projections in anthropogenic

scenarios show that global climate models converge and

show evidence of a decrease of annual rainfall associated

with an increase of heat-waves and droughts, expected to

start earlier in the year and last longer, and an increase of

rainfall variability (Giorgi 2006; Beniston et al. 2007;

Giorgi and Lionello 2007).

Regional climate downscaling techniques are increasingly

being utilized to produce regional climate information for

impact and adaptation studies. It is thus critical that the

potentials and limitations of regional climate downscaling-

based information, along with the related uncertainties, are

well understood by the modelling and user communities. It is a

core objective of the World Climate Research Program

(WCRP) endorsed programs CORDEX (COordinated

Downscaling Experiment; Giorgi et al. 2009), MED-COR-

DEX (Ruti et al. 2012) and HyMeX (Hydrological cycle in the

Mediterranean experiment; Drobinski et al. 2009a, b, 2010,

2011). Before downscaling global climate models (GCM) of

anthropogenic scenario projections run in the framework of

the 5th Climate Model Intercomparison Project (CMIP5)

envisaged in the CORDEX, MED-CORDEX and HyMeX

programs, a preliminary assessment of the performance of

regional climate downscaling techniques has to be performed

for the present climate with ERA-Interim (ERA-I) reanalysis

(Uppala et al. 2008) of the European Centre for Medium-

Range Weather Forecasts (ECMWF) as inputs.

In this article, dynamical and statistical downscaling

(DD and SD, respectively) techniques are used. SD consists

in obtaining high-resolution climate data from GCMs or

reanalysis by deriving statistical relationships between

observed small-scale variables (often station level) and

larger scale variables (ERA-I), using either weather typing

(e.g., Huth 2002; Vrac et al. 2007a; Boé and Terray 2008),

regression models (through linear—e.g. Huth 2002; Wilby

et al. 2002; Busuioc et al. 2008; Goubanova et al. 2010—or

non-linear models—e.g. Sailor and Xiangshang 1999;

Cannon and Whitfield 2002; Salameh et al. 2010; Vrac et al.

2007b; Ghosh and Mujumdar 2008), or stochastic weather

generators (e.g., Semenov and Barrow 1997; Wilks and
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Wilby 1999; Yang et al. 2005; Vrac and Naveau 2007; Vrac

et al. 2007c; Carreau and Vrac 2011). Statistical down-

scaling may be used whenever suitable small-scale

observed data are available to derive the statistical rela-

tionships. DD consists in driving a regional climate model

(RCM) by a GCM over an area of interest since decreasing

grid spacing generally improves the realism of the results

(e.g., Mass et al. 2002; Sotillo et al. 2005; Déqué and Somot

2008; Ruti et al. 2008; Salameh et al. 2010; Herrmann et al.

2011).

Different inter-comparisons of downscaling techniques

have been performed between DD models only (e.g. Frei

et al. 2003, 2006; Déqué et al. 2008), between SD models

only (e.g. Harpham and Wilby 2005; Lavaysse et al. 2012)

or including both approaches (e.g. Busuioc et al. 2008;

Brussolo et al. 2009; Quintana Seguı́ et al. 2010). However,

in this latter category, the studies do not combine the two

approaches but only compare the respective quality of the

downscaled data (e.g. Haylock et al. 2008; Schmidli et al.

2006). Vrac et al. (2012) evaluated the respective perfor-

mance of SD and DD and compare the potential the added-

value of applying a SD model to different DD models over

few local weather stations in Southern France. Generally,

most of these inter-comparisons focused on one climate

variable such as temperature (e.g. Spak et al. 2007) or

precipitation (Schmidli et al. 2007) and, in general, eval-

uation or inter-comparison used data from local surface

weather stations (e.g. Salameh et al. 2009; Lavaysse et al.

2012; Vrac et al. 2012). Regarding the specific use of

gridded data for SD, it has been restricted to monthly cli-

matologies (e.g. CRU; see Mitchell and Jones 2005) fil-

tering a significant part of the space–time variability of

near surface temperature and precipitation, thus preventing

any investigation of climate extremes.

Key issues are thus still open regarding joint SD and DD

assessment. Most SD models are calibrated on local

weather stations, even though on-going research aims at

modelling the space-dependence of local weather stations

to improve SD (Vrac et al. 2007d). Therefore, most SD

techniques do not integrate spatial variability information,

so DD technique should be more appropriate to reproduce

the fine scale spatial pattern of climate information (e.g.

given by near-surface temperature and precipitation). In

Vrac et al. (2012), the combined use of SD and DD models

improved the spatial pattern of near-surface temperature,

precipitation and wind speed with respect to SD only,

suggesting the added-value of using DD technique to

provide the fine scale spatial variability to the locally cal-

ibrated DD technique. However, this study only used few

surface weather stations located in Southern France. To

challenge this conclusion, the use of gridded data at high

space–time resolution is relevant.

In this article, we thus use the European daily gridded

dataset of temperature and precipitation from the European

Climate Assessment and Dataset (ECA&D) project (Hay-

lock et al. 2008). The fine spatial resolution (0.25�9 0.25�
in longitude and latitude) and high frequency (daily aver-

ages) allows to compare SD and DD over a domain with a

horizontal resolution similar to that of DD grid (i.e.,

20–50 km resolution). Using the ECA&D database at high

temporal resolution, we can also assess in depth the

respective ability of SD and DD models and joint SD/DD

approach to:

• retrieve accurately the spatial fine scale pattern of

temperature and rainfall

• retrieve accurately the time variability of temperature

and rainfall

• reproduces climate extremes (cold and warm extremes,

extreme precipitations).

This study addresses these issues at the whole Medi-

terranean basin scale but also focuses on sub-regions with

specific climate specificities (arid regions, coastal regions

and mountainous regions). In this paper, we address these

issues using the Weather Research and Forecasting (WRF)

model (Skamarock and Klemp 2008) as the DD model and

the Cumulative Distribution Function-transform (CDF-t) as

SD tool (Michelangeli et al. 2009). We investigate the

impact of WRF configuration, by performing simulations

with two different land surface models and two different

horizontal resolutions (20 and 50 km). Land surface mod-

els basically compute the surface fluxes (sensible and latent

heat fluxes and ground flux) which control partly precipi-

tation triggering, and from which near surface temperature

is derived. Increasing horizontal resolution is expected to

improve WRF skills by producing detailed information on

land-use and topography and by improving the represen-

tation of the fine scale features of the atmospheric circu-

lation. The four WRF integrations provide an ensemble of

simulations on which CDF-t is applied in a SD/DD

approach. This ensemble of downscaled temperature and

precipitation allows to quantify the uncertainty associated

with downscaling.

In the following, Sect. 2 describes the DD and SD

techniques, the observations and the methodology used in

this study. Section 3 introduces the seasonal, the extremes

and the intraseasonal variability of near surface tempera-

ture and rainfall in the Mediterranean region, as observed

by the gridded observations of ECA&D. Section 4 quan-

tifies the ability of DD, SD and SD/DD combined approach

to reproduce the space–time variability of temperature and

precipitation, as well as their extremes. Section 5 discusses

the added-value of each technique with respect to the other

and concludes the study with suggestions for future work.

Precipitation and temperature space–time variability and extremes in the Mediterranean region
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2 Downscaling techniques, observations

and methodology

As part of phase I of MED-CORDEX and HyMeX, the

large-scale driving fields provided as input for statistical

downscaling (SD) and as initial and boundary conditions

for dynamical downscaling (DD) are the 6-hourly meteo-

rological fields from the ERA-I reanalysis which has a

0.75� 9 0.75� horizontal resolution in longitude and lati-

tude, available since the year 1979 (Dee and Uppala 2009).

2.1 Dynamical downscaling (DD)

The model used to downscale ERA-I in the framework of

MED-CORDEX and HyMeX is the version 3.1.1 of the

Weather Research and Forecasting Model (WRF). WRF is

a limited area model, non-hydrostatic, with terrain fol-

lowing eta-coordinate mesoscale modeling system

designed to serve both operational forecasting and atmo-

spheric research needs (Klemp et al. 2007; Skamarock and

Klemp 2008). We use the physical options chosen to per-

form the HyMeX/MED-CORDEX simulations (Lebeaupin

Brossier et al. 2011, 2012a, b, c). These include the WRF

Single-Moment 5-class microphysical parameterization

(Hong et al. 1998, 2004), the new Kain-Fritsch convective

parameterization (Kain 2004), the Dudhia shortwave radi-

ation (Dudhia 1989) and Rapid Radiative Transfer Model

longwave radiation (Mlawer et al. 1997) and the Yonsei

University planetary boundary layer scheme (Noh et al.

2003). Two land surface models (LSM) have been used in

this study, namely the Rapid Update Cycle (RUC) LSM

and the thermal diffusion (DIF) LSM (detailed hereafter).

In the context of HyMeX/MED-CORDEX, ocean/atmo-

sphere coupled simulations have also been performed using

WRF with such configuration (Drobinski et al. 2012; Claud

et al. 2012; Lebeaupin Brossier et al. 2012c).

Initial conditions are provided for January 1st, 1989 and

the time interval for the boundary conditions is 6 h. In the

vertical, 28 unevenly spaced levels are used and the atmo-

sphere top is at 50 hPa (sensitivity tests have been per-

formed with more vertical levels without significant

differences; 28 levels is the optimal choice for climate

simulations with regards to both for CPU time and data

storage). The sea surface temperature is provided by ERA-I.

The geographical data are from 5 minutes resolution United

States Geophysical Survey data. Soil type is based on a

combination of the 10-min 17-category United Nations

Food and Agriculture Organization soil data and U.S. State

Soil Geographic 10-min soil data. A complete set of physics

parameterizations is used Kain and Fritsch for the cumulus

parametrization parametrization (Kain 2004); the YSU PBL

scheme (Hong and Pan 1996); RRTMG for the longwave

and shortwave radiation schemes (Mlawer et al. 1997).

Two land surface models (LSM) have been used in this

study, namely the Rapid Update Cycle (RUC) LSM and the

thermal diffusion (DIF) LSM. The RUC LSM (Smirnova

et al. 1997) resolves heat and moisture transfer in 6 layers

from 0 to 3 m. This scheme accounts for the different

phases of soil surface water, vegetation effects (evaporation

from leaf stomata, solar radiation absorption, heat fluxes

etc.) and canopy water. Initial conditions are required for

soil temperature and moisture. The DIF LSM is based on a

5-layer simple LSM where the energy budget includes

radiation, sensible and latent heat. The last layer goes as

deep as 16 cm, under which an average of temperature is

applied. Vegetation effects are not taken into account and

initial conditions are not required. The initial soil moisture

is fixed to a constant value which is a function of the land-

use and the season. During the simulation, an empirical

coefficient, called soil moisture availability which is a

function of the land use and the season, is applied for latent

heat flux calculation. More details on the schemes can be

found in Skamarock et al. (2008). The WRF simulation has

been relaxed towards the ERA-I large scale fields with a

nudging time of 6 h (Salameh et al. 2010). Four WRF

simulations have been performed over the ERA-I period,

from 1989 to 2008 (recently made available 1979 onwards).

Two simulations have been performed with a horizontal

resolution of 50 km with RUC (hereafter referred as WRF/

RUC 50) and DIF (hereafter referred as WRF/DIF 50) LSM

and two have been performed with a horizontal resolution

of 20 km, also with RUC (hereafter referred as WRF/RUC

20) and DIF (hereafter referred as WRF/DIF 20) LSM.

2.2 Statistical downscaling (SD)

The statistical downscaling used in this study is the

‘‘Cumulative Distribution Function-transform’’ (CDF-t)

method developed by Michelangeli et al. (2009) which was

first applied by Oettli et al. (2011), Lavaysse et al. (2012)

and Vrac et al. (2012) for the downscaling of variables such

as wind, temperature and precipitation. This approach aims

at relating the cumulative distribution function (CDF) of a

climate variable (e.g., wind) at a large scale (i.e. here from

ERA-I reanalysis or WRF simulations) to the CDF of this

variable at a local scale (i.e. at a grid point of the ECA&D

gridded dataset). CDF-t can be seen as a variant of the

quantile–quantile correction method (e.g., Déqué 2007)

that can use either non-parametric (as in Déqué 2007) or

parametric (as in Piani et al. 2010) correspondences

between predictors and predictands quantiles in order to

derive local scale CDFs (i.e., at the stations) based on the

evolutions of the large-scale CDFs between calibration and

evaluation period. Although the CDF-t and quantile–

quantile methods have a similar objective, CDF-t takes into

account the change in the large-scale CDF from the
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calibration to the evaluation period, while quantile–quan-

tile projects the simulated large-scale values onto the his-

torical CDF to compute and match quantiles. In the CDF-t

approach, a mathematical transformation T is applied to the

large-scale CDF to define a new CDF as close as possible

to the CDF measured at the station.

Let FLc and Flc define respectively the CDFs of a given

variable from ERA-I reanalysis or WRF simulations and

from the local observations, both for the calibration period

(L and l indices stand for large-scale and local-scale,

respectively; c index stand for calibration period), then the

transformation T is defined as follows:

TðFLcðxÞÞ ¼ FlcðxÞ; for all x in the domain of the variable:

ð1Þ

Replacing x by FLc
-1(u), where u belongs to [0, 1] we

obtain a representation for T:

TðuÞ ¼ Flc F�1
Lc ðuÞ

� �
ð2Þ

Assuming that the validity of the transformation T stands

for the evaluation period (or any future projection or short-

term forecasts), then given the CDF FLe calculated from

the large-scale fields provided by WRF or ERA-I over the

evaluation period (index e stands for evaluation period), the

CDF-t model will provide the local CDF as follows:

FleðxÞ ¼ TðFLeðxÞÞ ð3Þ

or equivalently,

FleðxÞ ¼ Flc F�1
Lc ðFLeðxÞÞ

� �
;

for any x in the domain of the variable:
ð4Þ

For instance, to run the CDF-t model for an application

of local future climate projections one may use the time

series of historical observations of a variable from a

meteorological station and the same variable from a large-

scale model, interpolated to the location of the station.

Then, for a given past-to-present period (calibration period)

the CDF-t model will adapt the mathematical relation

between the CDF of the model and the CDF of the

observations. Finally, this relation will be applied to the

model interpolated values of future projections. Based on

the CDF Fle determined by CDF-t, the generation of local-

scale values is then performed by applying the quantile–

quantile method between Fle and FLe (and not between Flc

and FLc as in the ‘‘classical’’quantile–quantile approach). In

order to perform an effective downscaling with the CDF-t

model, there is one main assumption: the mathematical

relation generated by the CDF-t model is temporally stable.

It is important to note that the CDF-t has been calibrated

without distinction between the seasons. Indeed, the

ECA&D gridded dataset used to calibrate CDF-t (see Sect.

2.3) provides daily averages on a 25 km resolution grid

affected by some spatial smoothing due to the interpolation

procedure. Tests have shown that for such dataset as a

reference, the uncertainty associated with CDF-t increases

significantly when performing seasonal distinction (the

number of data used for calibration is divided by 4) without

beneficial effect of consideration the seasonality of the

extremes due to rather smoothed spatial and temporal var-

iability of the extremes.

2.3 Observations

The downscaled variables are the distributions of the daily

near-surface temperature and precipitation. To calibrate the

SD model and evaluate the downscaled distributions from

SD and DD techniques, we make use of the European daily

gridded dataset of temperature and precipitation from the

ECA&D project (Klein Tank et al. 2002; Haylock et al.

2008). The ECA&D project integrates data from 57 partic-

ipants for 62 countries, which correspond to 26,061 series of

observations for 12 elements at 4,823 meteorological sta-

tions throughout Europe and the Mediterranean area. The

gridded dataset is produced with a horizontal resolution of

0.25� 9 0.25� in longitude and latitude. Its accuracy

depends on the density of the surface weather stations which

is zero over sea and weak over mountainous regions. Here

only the common period between ERA-I and ECA&D is

used, i.e. 1989–2008.

The ECA&D daily rainfall and temperature dataset has

been evaluated over the Mediterranean region by compar-

ing its field values with station observations (Flaounas et al.

2012a). The ECA&D dataset tends to underestimate the

rainfall extremes while for temperature it shows rather

small biases depending on the region. It has been shown

that the performance of ECA&D depends on the spatial

density of the included station observations. For instance,

Flaounas et al. (2012a) showed that two stations located in

Southern France and not ‘‘assimilated’’ within ECA&D,

one in the mountains and one near the Mediterranean coast

present very different rainfall intra-seasonal variability

despite their proximity (about 50 km). Due to the low

density of the observations included in the ECA&D in this

region, the ECA&D dataset attributes, unrealistically, very

similar variability patterns to the two stations.

2.4 Methodology

The near-surface temperature (temperature at 2 m) and

precipitation fields from the four WRF simulations and

the ERA-I reanalysis are bi-linearly interpolated to the

ECA&D grid points.

Since the WRF model is forced by ERA-I reanalysis over

the period 1989–2008, we split the dataset in two periods for

SD calibration and evaluation: the calibration period

extends between 1989 and 1998 and the evaluation period

Precipitation and temperature space–time variability and extremes in the Mediterranean region
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between 1999 and 2008. The evaluation of SD models is a

challenging task. Ideally, the best we could do is to calibrate

SD models over a given time period and evaluate them on

another time period with climate conditions very different

from those of the calibration period. As we do not dispose of

reliable observed data for a climate very different from the

one used for calibration, the least that we can (should) do is

to cut into two parts the time series that we have at our

disposal. We also split the time series in two randomly

without any different results. At least, this allows to eval-

uate the SDMs on data that were not used during the cali-

bration process. In other words, although the calibration

periods (only 10-year time period) may not cover the

‘‘climatology’’ in the region, we hope that they contain

sufficiently varied situations to capture the main relation-

ships between large and local-scale data within the cali-

brated SD model to be applied in another climate context.

The calibration period is used here to derive the transform

functions T of CDF-t relating the four WRF simulations and

the ERA-I reanalysis with ECA&D time series at each grid

point. The calibration is performed without distinction

between the seasons. The transform functions are used to

produce downscaled CDF of near-surface temperature and

precipitation over the evaluation period. The downscaled

values are then compared to the observations.

Specific processing needs to be applied to the precipi-

tation data since zero rainfall values create a singularity in

the precipitation distribution which can hardly be modeled

by SD. It is also well known that numerical models produce

too many low precipitation events. In the following, daily

rainfall below 1 mm in WRF simulations, ERA-I reanal-

ysis and ECA&D dataset (due to the interpolation of station

observations on a regular grid) are put to zero (non pre-

cipitating day). This is a commonly used approach.

In the following, the assessment of the regional climate

downscaling techniques (WRF and CDF-t) is performed

with respect to the ECA&D observations over the evalua-

tion period (1999–2008) for summer (June to August) and

winter (December to February). Different metrics are used

for this assessment. The 50th quantile is used as an indi-

cator of the ‘‘median’’ climate, while the 5th and 95th

temperature quantiles and the 95th rainfall quantile to

investigate climate extremes (e.g. Frei et al. 2006).

The similarity between the ECA&D data and the corre-

sponding field from ERA-I and downscaling methods (SD,

DD and SD/DD) is quantified with maps of bias allowing a

regional ‘‘view’’ of the models deficiencies and advantages.

It is also quantified in terms of their correlation, centered

root-mean square difference and standard deviation plotted

in Taylor diagrams. A ‘‘zoom’’ over five sub-regions with

different ‘‘climates’’ and various terrain complexities is also

provided. These regions are illustrated in Fig. 1. They are

the Middle East, the western Mediterranean, the eastern

Mediterranean, the northwest Africa and the Alps. Middle

East and North Africa are arid regions, whereas western and

eastern Mediterranean are more influence by mid-latitude

climate. The Alpine region is investigated separately since

it is the highest mountain ridge of the Mediterranean basin.

3 The Mediterranean climate from ECA&D dataset

Figure 2 shows the ECA&D values of the 5th, 50th and 95th

quantile of near-surface temperature for winters and sum-

mers of the period 1999–2008 (evaluation period). In winter,

the western and eastern Mediterranean sub-regions (Fig. 1)

present temperatures between -10 and 15 �C with a median

of about 10 �C. The coldest values are observed in the Alps

with cold extremes below -20 �C and the warmest tem-

peratures are observed in Middle East and North Africa with

warm extremes above 20 �C. In summer, temperatures over

the whole Mediterranean region increase by 15–20 �C with

respect to winter values. The lowest values are observed

over the Alps (cold extremes are about 0 �C) and the

warmest in North Africa (warm extremes exceed 40 �C).

Figure 3 displays the patterns of the 50th and 95th

rainfall quantiles from the ECA&D observations. In winter,

maximum rainfall is mainly observed over the mountain-

ous regions surrounding the Mediterranean Sea due to

forced orographic lifting of moist air advected by strong

marine low-level jets (e.g. Lebeaupin Brossier et al. 2006;

Ducrocq et al. 2008, 2012a, b, c). In summer, strong pre-

cipitation are frequent in the European continental plains

due to thermal convection and along the slope of the major

mountain ridges (e.g. Alps) due to alpine pumping (e.g.

Raymond and Wilkening 1980; Weissmann et al. 2005).

4 Downscaled near-surface temperature and rainfall

4.1 Spatial variability and extremes

Figures 4 and 5 show the temperature bias between the

downscaling methods and the observations for the seasonal

5th, 50th and 95th quantiles for winter and summer,

respectively. The upper rows of Figs. 2a and 3a present the

temperature bias for ERA-I. The bias is weak ranging

between -1 and 1 �C in winter and summer. However, in

summer, a significant warm bias exceeding 3 �C, is

observed over the mountainous regions and Middle East.

During summers the strong local forcing in anti-cyclonic

conditions, combined with less dense observation network,

impacts the quality of the retrieved temperature field.

Concerning the temperature extremes, ERA-I performs

equally well for both warm and cold extremes with at most

2–3 �C absolute bias over very few small areas. The fairly
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good performance of the ERA-I reanalysis is expected

since many ECA&D surface stations are assimilated within

the ECMWF assimilation system. Conversely, DD with

WRF displays larger seasonal bias. Figures 4 and 5 show

significant bias over the whole domain. The temperature

pattern from DD is thus worse than that from ERA-I

reanalysis which is used to drive DD model WRF. In

winter, the WRF/RUC simulations have a warm bias of

approximately 2 �C for the median and both cold and warm

extremes, while the WRF/DIF simulations underestimate

the cold extremes with a significant warm bias of more than

4 �C in Eastern Europe (Fig. 4a). In summer, WRF simu-

lations are extremely sensitive to the LSM (Fig. 5a; 2nd to

5th rows). The use of RUC LSM produces an almost

Fig. 1 The WRF simulation domain and its orography. Hatched
areas illustrate the different regions taken under consideration for the

Taylor diagrams and for the wet and dry spells table: Middle East in

red, east Mediterranean in blue, west Mediterranean in green, Alps in

yellow and North Africa in gray. Dots in magenta represent the

locations of observation stations

Fig. 2 The 5th (left column), 50th (middle column) and 95th (right
column) quantiles of the 2-m temperature for winter (December to

February; upper row) and summer (June to August; lower row) over

1999–2008, for the ECA&D. Note that the color axis differs for

winter and summer (shift by ?20 �C)
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homogeneous warm bias of approximately 3–4 �C over the

whole domain, whereas the use of DIF LSM produces a

cold bias exceeding –4 �C everywhere. Part of the WRF/

DIF cold bias is attributed to the soil moisture availability

which is constant with time and has been set to its winter

climatological value. Such simple LSM is not adapted to

regions where summertime soil water scarcity is frequent

in summer and thus sensible heat flux is considerably

underestimated in these simulations. One can note that the

finer resolution, the lower the near-surface temperature.

This increases the cold bias (in absolute value) and reduces

the warm bias where they exist in the simulations per-

formed with a 50 km resolution grid. The use of SD with

CDF-t plugged into WRF simulations and ERA-I reanal-

ysis, performs significantly better than DD with WRF. The

absolute bias for both winter and summer is lower than

1 �C (Figs. 4b, 5b). Despite the opposite temperature bias

of WRF/DIF and WRF/RUC, a 2-stage downscaling chain,

with CDF-t applied to the WRF simulations seems to

correct the biases produced by WRF only. Such 2-stage

approach applied on specific weather stations in Vrac et al.

(2012) did not systematically improve the downscaled

temperature.

Figure 6 displays the Taylor diagram for the seasonal

mean and extremes of near-surface temperature with

respect to ECA&D, for the five sub-regions shown in

Fig. 1. For all regions, ERA-I as well as DD and SD

perform well with in general correlation exceeding 0.8 and

standard deviation at worst 20 % lower than in ECA&D.

The results are also very similar whatever the quantile. In

detail, ERA-I is at best performing as good as DD with

similar correlation and standard deviation but in most

cases, displays slightly lower performance. SD is always

closer to the ECA&D data. The effect of the horizontal

resolution and land surface model is not so clear for tem-

perature downscaling, except for the Alps. In the Alps, a

finer horizontal resolution improves the spatial correlation

of the downscaled temperature field with respect to the

ECA&D. The effect on standard deviation is however not

systematically beneficial. Regarding the added-value of

combined SD/DD approach, it is non significant for tem-

perature. Using CDF-t to downscale ERA-I reanalysis or

WRF simulations does not produce different skills for

spatial correlation and variability. Regarding the bias dis-

played in Figs. 4b and 5b, this still holds when RUC land

surface model is used. Conversely, using CDF-t with WRF/

DIF even degrades the bias with respect to CDF-t/ERA-I.

Regarding rainfall, Fig. 7 shows the relative bias of

downscaled rainfall and rainfall from ERA-I with respect

to ECA&D rainfall shown in Fig. 3. Figure 7a shows that

ERA-I reanalysis and all WRF simulations (i.e. DD) dis-

play very similar spatial patterns with DD presenting sys-

tematically stronger bias regardless the season and

quantile. During winter, DD produces better downscaled

Fig. 3 The 50th (left column) and 95th (middle column) quantiles of

daily rainfall from ECA&D observations for winter (December to

February) (upper row) and summer (June to August) (lower row) over

1999–2008. The right column displays to number of rainy days

(i.e. positive rainfall) for winter (upper row) and summer (lower row)

from ECA&D observations over 1999–2008. Note that the color axis

differs for Q50 % and Q95 % (shift by ?10 mm)
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rainfall over the Western Mediterranean where it never

exceeds -50 %, than over the Eastern Mediterranean where

it exceeds ?50 %. However, comparing the relative bias to

ECA&D rainfall in Fig. 3, 50 % relative bias corresponds

to about 1 mm daily rainfall bias. Regarding extremes, DD

overestimates rainfall by 50 % and more all over the

Fig. 4 a Difference between

the downscaled and observed

5th quantiles (left colum), 50th

quantiles (middle column) and

95th quantiles (right column)

for the 2-m temperature in

winter for dynamical

downscaling over 1999–2008

(evaluation period) for ERA-I

reanalysis (1st row), WRF/RUC

50 simulation (2nd row), WRF/

DIF 50 simulation (3rd row),

WRF/RUC 20 simulation (4th
row) and WRF/DIF 20

simulation (5th row); b same as

panel a but for statistical

downscaling
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domain except in Middle East where rainfall is underesti-

mated by about -50 %. In summer, ERA-I and DD show

low bias ranging between -20 and 20 % (i.e. less than

0.4 mm in absolute value). The similar performance of all

WRF simulations could be attributed to the use of the same

cumulus and planetary boundary layer parameterizations.

Fig. 5 Same as Fig. 4 but for

summer
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Fig. 6 Taylor diagrams for winter and summer temperature median

and extremes (q5obs, q50obs and q95obs), for ERA-I, DD, SD and

SD/DD, regards to ECA&D in the five sub-regions illustrated in

Fig. 1. Root mean square differences in all figures are plotted with

1 �C of interval. Symbols in red stand for DD and ERA-I, while in

blue for CDF-t. Black dot stands for the ECA&D, X for ERA-I; star
for WRF/RUC50; circle for WRF/DIF50; cross for WRF/RUC20 and

the diamond for WRF/DIF20
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The two parameterizations control temperature and

humidity distribution within the whole atmospheric column,

and rainfall triggering. The Mediterranean domain is also

sufficiently small to produce strong control of the simula-

tions by the boundary conditions (Omrani et al. 2012),

which prevents significant departure from the driving large-

scale field. It plays a similar role as nudging which is also

applied in these simulations in the free troposphere only as

suggested by Lo et al. (2008). Overall, it has been shown

that such a relaxation to the large-scale driving fields is

rather beneficial to the WRF rainfall outputs, compared to

the observations (Lo et al. 2008). Figure 7b shows the

results for SD. The 50th rainfall quantile has a relative bias

ranging between 20 and 40 % in winter and less than

-30 % in summer. Comparing SD and DD, one can first

note that even with strong bias in ERA-I reanalysis and

WRF simulations (between -50 and -100 %), SD provides

an a posteriori correction with results similar whatever the

quality of the inputs.

Figure 8 shows the Taylor diagrams for the seasonal

mean and extremes of rainfall with respect to ECA&D, for

the five sub-regions shown in Fig. 1. The effect of the

horizontal resolution of the DD model is much more

striking for precipitation than for temperature whatever the

rainfall quantile. Higher resolution systematically increases

rainfall standard deviation. It is particularly visible during

winter. However, counter-intuitively higher resolution does

not improve significantly the spatial correlation of the

rainfall pattern. Applying SD clearly improves the spatial

correlation of the downscaled rainfall pattern. This result is

not consistent with that of Vrac et al. (2012). This can have

several plausible causes. A first explanation is that the

large-scale forcing in Vrac et al. (2012) is provided by

ERA-40 reanalysis which has a horizontal resolution of

1.125� compared to 0.75� of ERA-I. So the local weather

stations were located in at most 2–3 grid points of ERA-40

reanalysis. The use of DD at 50 km resolution thus

improves the representation of fine scale structure of the

atmospheric circulation. A second explanation is the use of

local weather stations which retain the full spatial vari-

ability of the atmospheric circulation. Conversely, the use

of gridded data such as ECA&D smoothes in part the

horizontal variability after data interpolation explaining the

weak sensitivity of the horizontal resolution in term of

spatial correlation.

4.2 Temporal variability

Figure 9 displays the Taylor diagrams for the time series of

the spatially average rainfall with respect to ECA&D, for

the five sub-regions shown in Fig. 1. The standard deviation

of the downscaled temperature is very close to that of

ECA&D and the temporal correlation is never below 0.9.

A very interesting feature is that the blue and red markers

which have the same shape (circle, diamond, cross, star) are

aligned on the radii of the circle which correspond to equal

correlation. This means that applying SD to DD affects the

standard deviation of the downscaled temperature but has

no effect on the temporal correlation. This highlights the

fact that the temperature downscaled with SD follows

exactly the time evolution of the large-scale driving field

used as input of SD. Regarding precipitation, the above

discussion and conclusion stands. However, the temporal

correlation of precipitation is much lower than of temper-

ature. It can be as low as 0.2 in arid regions. It can reach

0.6–0.8 in mid-latitude regions. Therefore, Figs. 4, 5, 7 and

9 suggest that CDF-t is an efficient SD tool for bias cor-

rection but it retains the same intra-seasonal variability as

the forcing data (i.e. ERA-I reanalysis or WRF simulations).

5 Discussion and conclusion

This study evaluates how SD, DD and SD/DD combined

approach perform in retrieving the space–time variability

of near-surface temperature and rainfall, as well as their

extremes, over the Mediterranean region. The DD model

used in this study is the Weather Research and Forecasting

(WRF) model with 4 different configurations (varying

land-surface models and resolution). The SD tool is the

Cumulative Distribution Function-transform (CDF-t). To

achieve a spatially resolved downscaling over the Medi-

terranean basin, the ECA&D gridded dataset is used for SD

calibration and evaluation of SD and DD models.

One major added-value of DD suggested in previous

studies is the accurate simulation of the spatial variability

of the near surface temperature and rainfall. Comparatively

SD which is calibrated on grid point (e.g. on surface station

location) should produce better local time series. Our

results invalidate these suggestions which show a much

better correlation with SD than with DD. This first suggests

that at 20–50 km resolutions, the three-dimensional pro-

cesses explicitly resolved with DD only weakly contributes

to the local value of temperature and precipitation with

respect to local one-dimensional processes. Calibration of

SD at each individual grid point is thus sufficient to

reproduce accurately the spatial pattern. A second expla-

nation is the use of gridded data such as ECA&D which

Fig. 7 a Relative difference between the DD and observed 50th

quantiles (1st and 3rd column from left) and 95th quantiles (2nd and

4th column from left) for rainfall in winter (1st and 2nd column from

left) and summer (3rd and 4th column from left) over 1999–2008

(evaluation period) for ERA-I reanalysis (1st row), WRF/RUC 50

simulation (2nd row), WRF/DIF 50 simulation (3rd row), WRF/RUC

20 simulation (4th row) and WRF/DIF 20 simulation (5th row) b as in

a but for SD

c
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smoothes in part the horizontal variability after data

interpolation and damps the added value of dynamical

downscaling. This explains the weak sensitivity of the

horizontal resolution in term of spatial correlation. It also

explains partly the absence of added-value of the 2-stage

downscaling approach which combines SD and DD in

contradiction with Vrac et al. (2012) for instance. This

highlights the limit of this inter-comparison which is trib-

utary of the quality of the reference observations and the

use of a gridded dataset. This point will be discussed

hereafter. Regarding the absence of added-value of SD/DD

combined approach, it can also have other origins. First, at

20 km resolution, WRF can produce local and less ‘‘pre-

dictable’’ atmospheric patterns which can increase the

uncertainty when determining the mathematical function T.

Second, the ERA-I re-analysis is already of ‘‘good quality’’

since it assimilates a large number of observations (some of

which are also assimilated in ECA&D reanalysis). It makes

the correction by CDF-t ‘‘easier’’ and thus more accurate,

notably for temperature. Finally, the resolution of ERA-I is

already fine (0.75�) and at most a factor 4 is applied with

WRF when a 20-km resolution is used, probably damping

the expected added-value of DD.

Regarding, the temporal variability of SD, it is strongly

driven by the temporal variability of its forcing. SD is thus

efficient as a bias correction tool but does not show any

added-value regarding the time variability of the down-

scaled field.

Regarding the quality of the reference observation

dataset, Fig. 10 presents the Taylor diagrams for the time

series of the temperature and rainfall from ERA-I and SD

and DD models with respect to local measurements col-

lected at three Mediterranean stations in the frame of

HyMeX. The locations of these stations are shown in Fig. 1

and correspond to two coastal stations in Israel and France

and one Italian station in the Alps, at an altitude of 1,700

meters. This figure shows that at these stations, ECA&D

data (black dot) can be significantly different from the local

measurements (red dot). As in Fig. 9, SD displays the same

temporal correlation with respect to the observations as its

forcing data (i.e. ERA-I reanalysis or WRF simulations). In

most cases, the temporal correlation of the downscaled data

Fig. 8 Taylor diagrams for

winter and summer rainfall

median and extremes (q50obs

and q95obs), for ERA-I, DD,

SD and SD/DD, regards to

ECA&D in the five sub-regions

illustrated in Fig. 1. Root mean

square differences in all figures

are plotted with 1 mm of

interval. Symbols in red stand

for DD and ERA-I, while in

blue for CDF-t. Black dot stands

for the ECA&D, X for ERA-I;

star for WRF/RUC50; circle for

WRF/DIF50; cross for WRF/

RUC20 and the diamond for

WRF/DIF20
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with respect to the local observations is equal or larger than

when ECA&D data is used as reference. This highlights the

strong added-value of DD if it improves the temporal

variability with respect to ERA-I. In terms of standard

deviation, there is no systematic behavior. However, one

can note that downscaled data with DD can be closer to the

local measurements than with SD, as illustrated for winter

rainfall in Southern France and in the Italian Alps.

Finally, an issue that has been investigated but not

detailed in the article is the local occurrence of different

observed distributions between the calibration and evalu-

ation periods, which does not exist in ERA-I or WRF. This

Fig. 9 Taylor diagrams for winter and summer temperature and

rainfall, for ERA-I, DD, SD and SD/DD regards to ECA&D.

Analyzed time series correspond to the spatial average of all grid

points within the five sub-regions illustrated in Fig. 1. Root mean

square differences in all figures are plotted with 1 mm and 1 �C of

interval. Symbols in red stand for DD and ERA-I, while in blue for

CDF-t. Black dot stands for the ECA&D, X for ERA-I; star for WRF/

RUC50; circle for WRF/DIF50; cross for WRF/RUC20 and the

diamond for WRF/DIF20
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can be due to a modification of the instrumentation system,

a change in the close by environment of the meteorological

sensor, etc. Kolmogorov–Smirnov tests have been per-

formed to check these outliers and they appeared marginal,

even though they might impact on evaluation of the tem-

perature and rainfall distributions locally.

This study demonstrates the added value of a multi-

techniques and multi configurations approach for the

assessment of SD and DD uncertainties, the identification

of the limits and advantages of the downscaling techniques

and a better understanding of the regional climate. It also

highlighted the strong sensitivity of DD with WRF with

respect to the choice of the physical parameterization.

Much work has already investigated to sensitivity of sim-

ulated rainfall with regards to WRF parameterizations but

over other regions (Flaounas et al. 2010; Crétat et al. 2012).

Future work will investigate the sensitivity to physical

parameterizations of temperature and rainfall simulated

with WRF over the Mediterranean basin. It is in part a first

natural step to quantify uncertainties before performing

regional climate downscaling of CMIP5 simulations run in

anthropogenic scenarios. However, this assessment does

not ensure that their performance will be similar, better or

worse when projected in future climate for similar or

specific reasons. Among the similar causes, the evolution

of land use can affect locally the regional climate and its

modeling with both SD and DD. If the large-scale forcing

evolves the SD empirical relationship may fail because of

the lack of similar situations in the recent climate. How-

ever, besides these inherent limitations which are difficult

to anticipate, a natural follow-up of this study is the

application of SD and DD to CMIP5 climate simulations in

the frame of MED-CORDEX and HyMeX. A first evalu-

ation of DD of CMIP5 historical runs has been performed

to evaluate the ability of DD to reproduce the variability of

the Mediterranean cyclones (Flaounas et al. 2012b). Future

work will aim at applying SD and DD to CMIP5 simula-

tions in anthropogenic scenarios.

Acknowledgments We are thankful to the two anonymous referees

who helped to improve the manuscript significantly. We are grateful

to Efrat Morin and the Israeli meteorological service for providing

the Israeli stations measurements, to Guy Delrieu for providing

Fig. 10 Taylor diagrams for winter and summer temperature and

rainfall for ERA-I, ECA&D, DD, SD and SD/DD regards to three

station observations for the period 2003–2008. All datasets are

interpolated to the station locations, shown in Fig. 1. No rainfall has

been reported to the Israeli station during the summer period. Root

mean square differences in all figures are plotted with 1 mm and 1 �C

of interval. Symbols in red stand for DD and ERA-I, while in blue for

CDF-t. Red dot stands for the station observations; black dot stands

for the ECA&D, X for ERA-I; star for WRF/RUC50; circle for WRF/

DIF50; cross for WRF/RUC20 and the diamond for WRF/DIF20

E. Flaounas et al.

123



observations from the French meteorological stations and to the

Ev-K2-CNR Committee which provided measurements from the

Italian stations, collected within the SHARE project thanks to con-

tributions from the Italian National Research Council and the Italian

Ministry of Foreign Affairs. This research has received funding from

ANR MEDUP and McSIM and GIS ‘‘Climat-Environnement-
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