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Abstract
The potential natural vegetation (PNV) distribution is required for several studies in
environmental sciences. Most of the available databases are quite subjective or depend on
vegetation models. We have built a new high-resolution world-wide PNV map using a
objective statistical methodology based on multinomial logistic models. Our method appears
as a fast and robust alternative in vegetation modelling, independent of any vegetation model.
In comparison with other databases, our method provides a realistic PNV distribution in
agreement with respect to BIOME 6000 data. Among several advantages, the use of
probabilities allows us to estimate the uncertainty, bringing some confidence in the modelled
PNV, or to highlight the regions needing some data to improve the PNV modelling. Despite
our PNV map being highly dependent on the distribution of data points, it is easily updatable
as soon as additional data are available and provides very useful additional information for
further applications.

Keywords: statistical model, potential vegetation, multinomial logistic regression, biomes,
world, climate

S Online supplementary data available from stacks.iop.org/ERL/7/044019/mmedia

1. Introduction

The ‘potential natural vegetation’ (PNV) can be seen as
the natural vegetation, i.e., in equilibrium with climate,
that would exist at a given location non-impacted by
human activities. A global PNV distribution is required for
many purposes in environmental sciences. Examples include
estimating historical changes of land-use (Ramankutty and
Foley 1999), the impact of atmospheric CO2 concentration
on vegetation (Cha 1997, Notaro et al 2005), the response of

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

vegetation to climate changes (Ni et al 2006, Notaro 2008)
or palaeovegetation distributions (Crucifix et al 2005, Woillez
et al 2011).

Most of these studies refer to the global PNV map
derived by Ramankutty and Foley (1999) (hereafter ‘RF99’)
from remotely-sensed observations and corrected in human-
impacted regions using the vegetation model BIOME3
(Haxeltine and Prentice 1996). Other applications (e.g.,
palaeovegetation modelling) directly use vegetation models
to simulate a PNV distribution. These two methods include
biases and uncertainties from vegetation models.

In this context, Levavasseur et al (2012) (hereafter
‘L12’) described a new methodology to statistically model
a high-resolution PNV distribution over Europe, entirely
based on vegetation and climatological data. Their approach
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consists in using a multinomial logistic regression (MLR).
MLR builds statistical relationships between vegetation data
and climatological variables independently from models and
without any subjective corrections. These relationships allow
one to model the occurrence probabilities of each PNV
type. L12 show good results over Europe in comparison
with the map from RF99 or the PNV simulated by the
vegetation model BIOME4 (Kaplan et al 2003). Moreover,
the use of occurrence probabilities provides useful additional
information as PNV fractions or uncertainty index.

In the present work we extend the L12 method to model
a high-resolution gridded world-wide PNV distribution. We
summarize the L12 framework and highlight the adaptations
and updates that we performed in section 2. Then, we
compare the global PNV modelled by MLR to the RF99
map (section 3.3) and to the PNV distribution simulated by
the vegetation model BIOME4 over the globe (section 3.2).
Discussions and conclusions follow in section 4.

2. Method

2.1. The multinomial logistic regression (MLR)

To predict PNV types distribution, L12 used a multinomial
logistic regression (MLR, Hosmer and Lemeshow 2000, Hilbe
2009). MLR builds statistical relationships between a nominal
explained variable (called the predictand, the vegetation type
in our case) and continuous explanatory variables (called
the predictors, the climatic variables). Those relationships
allow one to estimate the occurrence probability of the
nominal explained variable (Y , the PNV types in our case),
taking into account p numerical explanatory variables (Xk, the
climatological variables):

log
(

P(Yi = j)

P(Yi = r)

)
= β0,j +

p∑
k=1

βk,jX
∗

i,k, ∀ j 6= r, (1)

where X∗i,k =
Xi,k−µk
σk

are the standardized predictors, with µk

the mean of the kth predictor and σk its standard deviation.
P(Yi = j) is the occurrence probability of the jth PNV type
and i is the grid-cell. β0,j is the intercept for the jth PNV type
and βk,j is the regression coefficient for the kth predictor and
the jth PNV type. p is the number of predictors.

The predictors are standardized to obtain comparable
regression coefficients (βk,j) without units. According to
their weights, the predictors will be ranked and selected in
section 2.4.

Equation (1) is based on a reference category r: the desert
vegetation in our case (defined in section 2.2.2). We obtain
j − 1 relationships and the occurrence probabilities of the
reference PNV type can be deduced in each grid-cell i with∑m

j=1P(Yi = j) = 1 (considering m PNV types including r).
MLR is performed with the R package ‘VGAM’ (Yee and
Wild 1996, Yee 2010a, 2010b) and parameters are estimated
through likelihood maximization.

2.2. Vegetation data

2.2.1. The BIOME 6000 database. As predictand for MLR,
we use the BIOME 6000 database (Prentice and Jolly 2000,
Harrison et al 2001, Bigelow et al 2003, Pickett et al 2004)
from the Global Palaeovegetation Mapping Project3 for the
modern period (i.e., 0 ka). BIOME 6000 compiles pollen and
plant macrofossil data that are heterogeneously distributed
over the world. Most data points are concentrated in the
northern hemisphere between 30◦N and 70◦N, and no data
point covers South America or India. Our region of interest is
the globe without Antarctica, from 180◦W to 180◦E and from
60◦S to 90◦N, as shown in figure 1(a).

BIOME 6000 data points are expressed in biomes
following a ‘biomization’ method described in Prentice
et al (1996). A biome includes characteristic vegetation
types deduced from pollen under similar climatic conditions.
BIOME 6000 can be classified into eight ‘megabiomes’:
boreal forest, desert, tundra, grassland and dry shrubland,
savanna and dry woodland, temperate forest, tropical forest
and warm-temperate forest.

According to the authors of the database, some BIOME
6000 data points appear inconsistent in mountain areas
due to pollen transport (Guiot 2012). For instance, the
Alps or Pyrenees are essentially dominated by temperate
forest pollens, even at high altitude. To correct for such
discrepancies, we reclassify some BIOME 6000 data points
using the growing degree day at 5 ◦C (GDD5) limits from
Prentice et al (1992) (see figure 1(a)). Annual GDD5
corresponds to the sum of daily temperatures above 5 ◦C
during a year. As no gridded dataset of daily temperature
covers the world with a fine enough spatial resolution, we first
compute a global GDD5 climatology from the NCEP/NCAR4

air temperature at the surface reanalysis daily time-series
(between 1961 and 1990) on a 2.5◦ grid (Kalnay et al 1996).
Then, we apply a statistical downscaling method based on the
use of a Generalized Additive Model (GAM, Vrac et al 2007)
to obtain a global GDD5 (cf appendix A) at a resolution of
10′ (i.e., 1/6◦ in longitude and latitude, the final resolution of
our map). This procedure reclassified 221 BIOME 6000 data
points (i.e., 3.6% of the 6091 points) essentially localized on
mountains (Alps, Himalaya, Rocky Mountains) and in boreal
regions (Alaska, the coast of Labrador and Siberia).

2.2.2. ‘True’ deserts. We define true deserts as sterile land
areas without vegetation producing pollens. Consequently,
no BIOME 6000 data point covers desert regions such
as the Sahara or the Greenland ice-sheet. The desert
megabiome from BIOME 6000 refers more specifically to
desert vegetation dominated by sparse steppe forb and grass
(Prentice et al 1996) instead of ‘true’ desert. Accordingly,

3 BIOME 6000 database version 4.2 available on www.bridge.bris.ac.uk/
resources/Databases/BIOMES data/.
4 The National Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) reanalysis data are
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from
their web site at www.esrl.noaa.gov/psd/.
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Figure 1. BIOME 6000 data (a), the added points for cold and warm deserts (b) (see section 2.2.1) and the PNV predicted by MLR in each
training point (c). In legend, ‘Bo’ stands for boreal forests, ‘DVeg’ for desert vegetation, ‘Gr’ for grasslands and dry shrublands, ‘Sav’ for
savannas and dry woodlands, ‘Te’ for temperate forests, ‘Tr’ for tropical forests, ‘Tun’ for tundra, ‘WTe’ for warm-temperate forests,
‘WDes’ for warm deserts and ‘CDes’ for cold deserts.

we rename the desert megabiome from BIOME 6000 into a
separated desert vegetation megabiome.

In order to represent real deserts, we build two new
‘pseudo-megabiomes’ (warm and cold deserts) from the

3
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Table 1. List of the 43 potential predictors. The predictors selected for logistic regressions in table 2 are in bold letters.

No Name Abbreviation Unit Sources/references

1 Winter air temperature at the surface TEMP.DJF ◦C CRU—New et al (2002)
2 Spring air temperature at the surface TEMP.MAM — —
3 Summer air temperature at the surface TEMP.JJA — —
4 Fall air temperature at the surface TEMP.SON — —

5 Winter diurnal cycle temperature range DTEMP.DJF ◦C CRU—New et al (2002)
6 Spring diurnal cycle temperature range DTEMP.MAM — —
7 Summer diurnal cycle temperature range DTEMP.JJA — —
8 Fall diurnal cycle temperature range DTEMP.SON — —

9 Winter total precipitation PREC.DJF mm CRU—New et al (2002)
10 Spring total precipitation PREC.MAM — —
11 Summer total precipitation PREC.JJA — —
12 Fall total precipitation PREC.SON — —

13 Winter wet days frequency WET.DJF days CRU—New et al (2002)
14 Spring wet days frequency WET.MAM — —
15 Summer wet days frequency WET.JJA — —
16 Fall wet days frequency WET.SON — —

17 Winter frost days frequency FROST.DJF days CRU—New et al (2002)
18 Spring frost days frequency FROST.MAM — —
19 Summer frost days frequency FROST.JJA — —
20 Fall frost days frequency FROST.SON — —

21 Winter sunshine duration SUN.DJF % CRU—New et al (2002)
22 Spring sunshine duration SUN.MAM — —
23 Summer sunshine duration SUN.JJA — —
24 Fall sunshine duration SUN.SON — —

25 Winter relative humidity RH.DJF % CRU—New et al (2002)
26 Spring relative humidity RH.MAM — —
27 Summer relative humidity RH.JJA — —
28 Fall relative humidity RH.SON — —

29 Winter wind speed/intensity at 10 m WND.DJF m s−1 CRU—New et al (2002)
30 Spring wind speed/intensity at 10 m WND.MAM — —
31 Summer wind speed/intensity at 10 m WND.JJA — —
32 Fall wind speed/intensity at 10 m WND.SON — —

33 Winter total cloudiness CLOUD.DJF % CRU—New et al (2002)
34 Spring total cloudiness CLOUD.MAM — —
35 Summer total cloudiness CLOUD.JJA — —
36 Fall total cloudiness CLOUD.SON — —

37 Winter growing degree day at 5 ◦C GDD.DJF ◦C days NCEP/NCAR—Kalnay et al (1996)
38 Spring growing degree day at 5 ◦C GDD.MAM — —
39 Summer growing degree day at 5 ◦C GDD.JJA — —
40 Fall growing degree day at 5 ◦C GDD.SON — —

41 Topography TOPO m NGDC—Amante and Eakins (2009)
42 East–west topographic gradient GTEW % —
43 North–south topographic gradient GTNS — —

IGBP-DIS land cover map5 (Loveland and Belward 1997).
This dataset derived 17 land cover types from remotely-sensed
observations between 1992 and 1993. Assuming a limited
human-induced desertification, we manually add training data
points as follows (see figure 1(b)):

• To reflect cold deserts, 100 points have been randomly
evenly distributed over the Greenland ice-sheet and where
Loveland and Belward (1997) shows polar, rock or ice
deserts. 100 points are enough to homogeneously cover
cold desert regions.

5 International Geosphere–Biosphere Programme Data and Information
System, data set available on-line: http://daac.ornl.gov/.

• Over the globe, the total warm desert area is approximately
five times larger than the total cold desert area. To be
consistent and reflect warm deserts, 500 data points have
been distributed in the same way as where Loveland and
Belward (1997) shows warm deserts.

2.3. The explanatory variables

We deal with the same climatological and geographical
variables as used in L12 but with the downscaled GDD5
described in section 2.2.1 and appendix A. Table 1 lists the
43 potential predictors divided into two groups, the ‘climatic’
predictors and the ‘geographical’ ones.
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• Climatological variables are taken from the Climate
Research Unit (CRU) database6 (New et al 2002) available
at a regular spatial resolution of 10′. For each grid-point the
dataset counts twelve monthly means (from 1961 to 1990)
and each variable is divided into four ‘seasonal’ predictors
by averaging data over the three corresponding months
(e.g., ‘TEMP.DJF’ stands for winter temperature).

• Geographical variables are computed from the high-
resolution gridded dataset ETOPO7 at 10′ resolution
(Amante and Eakins 2009) from the National Geophysical
Data Center (NGDC).

2.4. Model selection

To avoid modelling any vegetation in a desert region and
interfering with the model selection, we run three logistic
regressions:

(i) Cold deserts are modelled by a first binary logistic
regression. The explained variable is a binary vector
indicating whether the data point is a cold desert or not.

(ii) Warm deserts are modelled by a second binary
logistic regression in each grid-cell without cold deserts. The
explained variable is a binary vector indicating whether the
data point is a warm desert or not.

(iii) Finally, a multinomial logistic regression models the
eight megabiomes for each grid-cell with no deserts. For this
step, the explained variables are the BIOME 6000 data points.

Taking into account the 43 predictors (table 1) leads
to an excessively complex statistical model, reducing
its predictive performance by over-fitting. Moreover, a
high correlation could exist between predictors, providing
redundant information (Levavasseur et al 2012). To avert
these issues, we select the model with the most appropriate
combination of predictors. It would be too computationally
intensive to test all possible combinations of predictors (i.e.,
243) for each logistic regression. Therefore, we use the
following procedure:

(i) We run a calibration with all 43 standardized predictors
(X∗i,k in equation (1)) for each logistic regression. We
select predictors carrying more than 5% of the overall
information/variability for each megabiome (which could
be different depending on the megabiome) according to
their regression coefficients (βk,j in equation (1)): five
predictors for warm deserts, four for cold deserts and 15
predictors for the eight megabiomes.

(ii) Each possible combination among the pre-selected
predictors has been tested, plus the ‘null-model’
corresponding to a model with only the intercepts (β0,j
in equation (1), i.e., all regression coefficients βk,j are 0).

(iii) For each logistic regression, we select the best predictors
set according to the Bayesian Information Criterion

6 CRU databases CL 2.0 and CL 1.0 for cloudiness are available on www.
cru.uea.ac.uk/cru/data/hrg/.
7 Computerized digital images and associated databases are available from
the National Geophysical Data Center, National Oceanic and Atmospheric
Administration, US Department of Commerce, www.ngdc.noaa.gov/.

(BIC) described in appendix B. This index balances
between the goodness-of-fit and the complexity (i.e.,
the number of parameters and predictors) of the tested
model.

3. Results

3.1. Comparison MLR versus BIOME 6000

Table 2 summarizes the best model, i.e., with the smallest
BIC, for each logistic regression. MLR models the occurrence
probability of each vegetation type. For each grid-cell
with no warm or cold desert modelled by the two binary
logistic regressions, we take the megabiome with the
maximum occurrence probability modelled by the third
logistic regression as the dominant megabiome.

Figure 1(c) shows the predicted megabiomes by MLR in
each training point location. In comparison with figures 1(a)
and (b), the PNV modelled by MLR locally differs where
BIOME 6000 shows several megabiomes at the same location
or under-represents a megabiome in a region. For instance,
MLR models grasslands and dry shrublands in the east of the
Caspian Sea instead of desert vegetation in BIOME 6000;
it replaces the boreal forests of the US Rocky Mountains
by savanna or grasslands. The climatic signal provided
by the predictors could be another cause of differences
between both maps. Added desert points in the north and
west of the Sahara are respectively replaced by desert
vegetation and grasslands with MLR because of a fall
relative humidity significantly lower in these regions (not
shown).

Nevertheless, we note a good agreement between maps:
69.5% of BIOME 6000 data points (i.e., without the deserts)
are correctly represented by MLR. Moreover, to quantify the
quality of our modelling, we compute three other statistical
indices excluding the added points for deserts: the kappa
coefficient (κ), a pseudo-R2 and the global Brier score (BS
defined in appendix B). According to the classical scaling
of the R2 and the κ coefficient used in vegetation studies
(e.g., Monserud and Leemans 1992), a pseudo-R2 of 0.57
and a κ of 0.64 confirm a global good agreement with
BIOME 6000 data. A BS of 0.41, far from 8 (the maximum
value indicating bad agreement), attests the accuracy of the
occurrence probabilities and of the PNV modelled by MLR.

3.2. Comparison MLR versus BIOME4

To ascertain our method, we directly confront the modelled
PNV by MLR with the simulated vegetation from a vegetation
model. The BIOME4 model (Haxeltine and Prentice 1996,
Kaplan et al 2003) is driven by temperature, sunshine
and precipitation monthly climatologies from the CRU
database (described in section 2.3). To be consistent with the
period represented by CRU climatologies (around 1980), the
atmospheric CO2 concentration is set for 360 ppm (Lüthi et al
2008). BIOME 4 has a biome scale easily translatable into our
megabiomes following Harrison and Prentice (2003).
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Table 2. The selected predictors after all possible combinations for each logistic regression described in section 2.4: the binary logistic
regression for cold deserts (column ‘CDes’), the binary logistic regression for warm deserts (column ‘WDes’), and the multinomial logistic
regression for BIOME 6000 megabiomes (without the reference category ‘DVeg’—last seven columns). For each megabiome, the predictors
are ranked according to their regression coefficients with: their names (first line), their values (second line) and their weights in per cent
(third line). The predictors and megabiomes abbreviations are respectively set from table 1 and the legend of figure 1.

Predictors
ranking

Added deserts megabiomes BIOME 6000 megabiomes

CDes WDes Bo Gr Sav Te Tr Tun WTe

1 TEMP.MAM TEMP.MAM GDD.MAM TEMP.SON GDD.JJA TEMP.MAM TEMP.DJF TEMP.SON TEMP.DJF
20.1 4.4 6.9 6.5 9.2 9.7 74.0 6.4 16.1
43.5% 50.7% 16.2% 24.8% 17.5% 18.5% 32.3% 15.3% 30.0%

2 TEMP.DJF RH.SON TEMP.MAM TEMP.DJF TEMP.DJF TEMP.JJA TEMP.MAM GDD.MAM TEMP.MAM
19.3 1.8 5.1 4.0 8.6 9.6 51.3 5.7 5.9
41.7% 21.0% 12.1% 15.5% 16.2% 18.2% 22.4% 13.7% 10.9%

3 FROST.MAM FROST.SON TEMP.JJA GDD.JJA TEMP.JJA GDD.JJA GDD.MAM FROST.SON TEMP.SON
4.9 1.3 5.1 3.6 7.5 8.7 35.2 5.2 5.6
10.7% 15.4% 11.9% 13.7% 14.2% 16.5% 15.4% 12.4% 10.4%

4 DTEMP.MAM GDD.DJF FROST.SON FROST.SON FROST.SON TEMP.DJF GDD.DJF GDD.DJF GDD.JJA
1.9 1.1 5.0 2.1 6.9 5.5 24.9 4.1 5.5
4.1% 12.9% 11.8% 8.1% 13.1% 10.5% 10.9% 9.8% 10.2%

5 SUN.SON GDD.DJF TEMP.SON GDD.MAM TEMP.SON SUN.SON GDD.DJF
4.6 1.9 6.6 5.2 13.8 3.6 4.6
10.7% 7.3% 12.4% 9.9% 6.0% 8.6% 8.6%

6 GDD.DJF SUN.SON TEMP.MAM SUN.SON FROST.SON TEMP.DJF GDD.MAM
3.5 1.7 5.5 4.0 10.9 3.3 4.3
8.2% 6.7% 10.4% 7.7% 4.8% 8.0% 8.0%

7 FROST.DJF PREC.DJF SUN.SON PREC.DJF TEMP.JJA GDD.JJA TEMP.JJA
3.2 1.7 3.0 2.8 6.2 3.2 3.5
7.6% 6.4% 5.6% 5.2% 2.7% 7.7% 6.5%

8 TEMP.SON FROST.DJF FROST.DJF FROST.DJF FROST.DJF TEMP.MAM SUN.SON
2.9 1.4 2.1 1.9 4.0 3.0 2.5
6.8% 5.4% 4.0% 3.6% 1.8% 7.1% 4.6%

9 PREC.DJF GDD.MAM GDD.MAM TEMP.SON SUN.SON FROST.DJF PREC.DJF
2.4 1.3 1.5 1.8 3.3 2.5 2.2
5.6% 5.0% 2.8% 3.5% 1.5% 6.1% 4.1%

10 GDD.JJA TEMP.MAM PREC.DJF FROST.SON GDD.JJA PREC.DJF FROST.SON
2.3 0.8 1.0 1.6 3.0 2.2 1.3
5.4% 3.2% 1.9% 3.1% 1.3% 5.2% 2.4%

11 TEMP.DJF TEMP.JJA WND.MAM GDD.DJF PREC.DJF TEMP.JJA FROST.DJF
0.9 0.4 0.5 1.1 1.7 2.0 1.1
2.1% 1.6% 1.0% 2.1% 0.8% 4.7% 2.1%

12 DTEMP.SON DTEMP.SON DTEMP.SON DTEMP.SON WND.MAM DTEMP.SON WND.MAM
0.5 0.4 0.4 0.4 0.7 0.5 0.9
1.1% 1.5% 0.7% 0.8% 0.3% 1.2% 1.7%

13 WND.MAM WND.MAM GDD.DJF WND.MAM DTEMP.SON WND.MAM DTEMP.SON
0.2 0.2 0.1 0.2 0.1 0.1 0.3
0.5% 0.8% 0.1% 0.4% 0.0% 0.3% 0.5%

Figures 2(a) and (b) respectively show the modelled PNV
by MLR in each grid-cell of our map (at 10′ resolution)
and the simulated PNV distribution by BIOME4. Both maps
show large similarities especially concerning the distribution
of tundra, temperate and boreal forests at high latitudes. Note
that our BIOME 4 simulation does not show warm-temperate
forests around Mediterranean Sea, in southeastern China and
USA and in eastern Australia. Modelling warm-temperate
forests by MLR in these regions is in agreement with BIOME
6000 database (see figure 1(a) and Levavasseur et al 2012)
and with older published BIOME simulations (Prentice et al
1992, 1996, Harrison and Prentice 2003, Tang et al 2009).

Nevertheless, some mountain areas are not well defined
(e.g., tundra and boreal forests of Tian Mountains are replaced
by desert vegetation) or even disappear (e.g., the Andes
or US Rockies) with MLR. Differences appears in the
western US, where MLR models a drier vegetation than
BIOME4. Moreover, MLR models larger warm deserts than
BIOME4.

Although both methods are based on CRU climatologies,
BIOME4 computes some mechanistic processes (i.e., physiol-
ogy, competitiveness or productivity) which may induce some
of the difference.

6
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Figure 2. PNV distribution predicted by MLR (a) with the same biome scale as for figure 1(c). PNV distribution simulated by BIOME4
driven by CRU climatologies (b) with the same biome scale as for MLR grouping desert vegetation, warm desert and cold desert into the
desert megabiome (‘Des’). The RF99 database (c) with its own vegetation types, where ‘TrE’ is set for tropical evergreen
forests/woodlands, ‘TrD’ for tropical deciduous forests/Woodlands, ‘TeBE’ for temperate broadleaf evergreen forests/woodlands, ‘TeNE’
for temperate needleleaf evergreen forests/woodlands, ‘TeD’ for temperate deciduous forests/woodlands, ‘BoE’ for boreal evergreen
forests/woodlands, ‘BoD’ for boreal deciduous forests/woodlands, ‘Mix’ for evergreen/deciduous mixed forests, ‘Sav’ for savannas,
‘Gr/Stp’ for grasslands/steppe, ‘DSh’ for dense shrublands, ‘OSh’ for open shrublands, ‘Tun’ for tundra, ‘WDes’ for warm deserts and
‘CDes’ for polar/rock/ice deserts.
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3.3. Comparison MLR versus RF99

In this section, we compare the modelled PNV distribution by
MLR (figure 2(a)) to the RF99 map (figure 2(c)). Defining a
correspondence between vegetation types from both databases
highly depends on the region, e.g., mixed forests from RF99
have to be considered in BIOME 6000 as temperate forests
in Europe and as boreal forest in Siberia (Levavasseur et al
2012). The PNV types from RF99 are deduced from real
observed vegetation and are fundamentally different from a
biome scale. Consequently, we choose to keep each map in its
original scale (i.e., 9 megabiomes for MLR and 15 PNV types
for RF99).

Both maps reveal a similar PNV distribution with tundra,
temperate and boreal forests at high latitudes. In eastern
Europe, the observed grasslands by RF99 are probably the
result of deforestation (Kaplan et al 2009). Several global
dynamical vegetation models simulate large areas of boreal
forest in this region under preindustrial climatic conditions
(Sitch et al 2003, Woillez et al 2011). The temperate forests
modelled by MLR appear to be more likely in equilibrium
with a warmer modern climate, as simulated by BIOME4
(figure 2(b)).

Nevertheless, MLR does not capture the impact of
topography in the western US; RF99 shows a probably better
distribution of shrublands, tundra and boreal forests in this
mountain area. In equatorial regions, some tropical forests in
RF99 are replaced by warm-temperate forests by MLR. The
edges of warm deserts are also in disagreement depending on
the region. RF99 sees tropical forests in India, while MLR
modelled warm desert and savanna. In contrast, the Sahara
does not reach the west and north African coast with MLR,
which models grasslands and desert vegetation.

4. Conclusions and discussion

We compared in this paper several potential natural vegetation
(PNV) distributions over the globe based on different
methods:

• The PNV map from Ramankutty and Foley (1999) (RF99)
built from remotely-sensed data (Loveland et al 2000)
and from the vegetation model BIOME3 (Haxeltine and
Prentice 1996).
• PNV simulated by the vegetation model BIOME4 (Kaplan

et al 2003) driven by the CRU climatologies.
• A new high-resolution global PNV map built from

multinomial logistic models.

Obvious similarities appear between reconstructions,
especially with the establishment of tundra, temperate and
boreal forests at high latitudes.

The vegetation model BIOME4 is partly calibrated to
represent BIOME 6000 data (Kaplan et al 2003). The κ

coefficient computed between BIOME4 and BIOME 6000
(appendix B) is of 0.43 over the world, while MLR obtains
a κ of 0.64 (section 3.1). Despite including no physical
or mechanistic processes, MLR obtains a realistic PNV

distribution closer to BIOME 6000 data. A κ coefficient
computed between RF99 and BIOME 6000 is not possible
given the different biomes vegetation types. The RF99 map
appears more heterogeneous than MLR. Some of these
local details are disputable and correspond more to current
observed vegetation rather than potential vegetation. For
example, RF99 sees the Landes forests (in the region of
Landes in France) which have been mainly planted by
humans. MLR sees also a dominance of forests, but with large
uncertainty.

Indeed, MLR does not only provide a vegetation
distribution, since we obtain an occurrence probability by
megabiome. Occurrence probabilities allows us to estimate
the uncertainty of the modelled PNV distribution, taking
into account the megabiome with second highest occurrence
probability. This second dominant megabiome often appears
in agreement in regions where the first dominant megabiome
is different from other databases. The percentage of agreement
with BIOME 6000 increases from 69.5% (see section 3.1) to
89.9%, taking into account the second dominant megabiome.
In agreement with RF99 or BIOME4, the map of the second
dominant megabiome modelled by MLR (not shown) shows
tundra and boreal forests in northeastern Europe (section 3.3),
tropical forest in equatorial region and cold desert in Andes
capturing the effect of local-scale topography through the
high-resolution CRU climatologies. An uncertainty index UI
can also be computed from the difference between the two
highest occurrence probabilities (figure 3):

UI =
1− (p1 − p2)

p1
(2)

where px is the occurrence probability and x the rank of the
probability ranging from 1 (the highest probability) to m (the
lowest probability) with m the number of megabiomes.

A first dominant megabiome with a probability close to
the probability of the second dominant megabiome has an
uncertainty close to 1 and vice versa. This index appears very
useful in bringing some confidence in the PNV modelled by
MLR and pointing out the limits of our method:

• This uncertainty index allows us to target the regions
needing some data to improve the PNV distribution, such
as in South America. Indeed, the main limit of the MLR
method lies in the training data (BIOME 6000 in this
case). The modelled PNV by MLR highly depends on the
abundance and geographical distribution of data points.
If a megabiome is absent or over/under-represented, this
will have a significant impact on the modelled PNV
by MLR. Nevertheless, a calibration of MLR over the
globe provides a geographical robustness to the statistical
model. The PNV predicted by MLR in regions with no
or less BIOME 6000 data appears consistent with climatic
patterns (e.g., MLR shows similarities with modern biome
reconstructions from Marchant et al 2009 in several
regions of South America).

• This index highlights the regions where the modelled
vegetation is to be taken with caution (as in western
US) because the climatic signal alone is not sufficient

8
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Figure 3. The uncertainty index of the maximum occurrence probability predicted by MLR: 1 means ‘high uncertainty’ and 0 means ‘no
uncertainty’.

to distinguish a dominant megabiome. The role of fires,
herbivory or soil properties has been clearly identified for
vegetation (e.g., Sankaran et al 2005 for savannas) and
could be included as predictors in our statistical model.

Like any database, the disadvantages of our statistical
approach should be discussed to better constrain its
application. The ‘vegetation–climate’ relationship estimated
by MLR from BIOME 6000 modern data is implicitly
constrained by an atmospheric CO2 concentration of about
360 ppm. As a prospect, exporting this relationship in
different climatic conditions leads to a distribution ignoring
the crucial effect of CO2 on vegetation (Harrison and
Prentice 2003, Woillez et al 2011). Moreover, MLR do
not simulate soil–vegetation–atmosphere interactions such as
photosynthesis, growth and competitiveness of plants, which
may be more constant at the biome level. Vegetation models
allow us to provide characteristics of vegetation as leaf area
index (LAI) or net primary productivity (NPP). Statistical
modelling of vegetation is an interesting and complementary
alternative to process-based vegetation models.

Finally, the PNV modelled by MLR cannot claim to be
fully independent of human influences. MLR is mainly based
on climatological data between 1961 and 1990, impacted by
human activities through climate change. Moreover, BIOME
6000 data includes modern data referring to samples dated
within the past thousand years (most of pollen samples falls
within the past 500 years (Bigelow et al 2003)). Man has
intensively used lands for thousands of years (for example, in
ancient Greece, during the Western agricultural revolution in
the Middle Ages or more recently with the Green Revolution
between 1960 and 1980). To warrant the ‘potential’ feature
of the modelled vegetation by MLR, it could be relevant
to calibrate MLR on BIOME 6000 data from the Holocene
(−6 ka). At this period, the land-use was limited to a few
scattered subtropical farm households (e.g., in China or South
America).

For details about these last remarks, the method and the
used data, we refer the reader to Levavasseur et al (2012). All

final data (megabiomes and occurrence probabilities) are in an
attached supplementary NetCDF file (available at stacks.iop.
org/ERL/7/044019/mmedia).

To conclude, for the modern period, BIOME 6000 can
be confidently considered as reference data collected in areas
with less possible human activity, although ensuring data
not impacted by humans is difficult. Accounting all our
observations and statistical indices, MLR models the most
realistic PNV on the regions covered by BIOME 6000. Over
the rest of the world, MLR models a vegetation distribution
consistent with climatic signal. The MLR method is a fast
and robust alternative in vegetation modelling with several
advantages. The modelled PNV map is (i) directly and only
based on vegetation (BIOME 6000) and climatological (CRU)
data; (ii) not subjective and independent of any vegetation
model; (iii) easily updatable as soon as additional data is made
available.
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Appendix A. Growing degree day at 5 ◦C
downscaling

As GDD5 is built from temperatures, we choose to apply
the statistical downscaling method developed by Vrac et al
(2007) for temperature downscaling and based on the use of
a Generalized Additive Model (GAM, Hastie and Tibshirani
1990). GAM models statistical relationships between local-
scale observations over Europe: the high-resolution GDD5
climatology built from the ECA&D times-series (Haylock
et al 2008); and global variables: the topography from
ETOPO2 (Amante and Eakins 2009), the temperature
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from CRU (New et al 2002), and the GDD5 built from
NCEP/NCAR (see section 2.2.1). GAM represents the
expectation of an explained variable Y (the predictand, i.e.,
the GDD5 from ECA&D in our case) by a sum of nonlinear
functions fk, conditionally on explanatory variables (the
predictors, i.e., the topography, the temperature and the GDD5
from NCEP/NCAR) Xk (Hastie and Tibshirani 1990):

E(Yi|Xk,k=1···n) =

n∑
k=1

fk(Xi,k)+ ε, (A.1)

where ε is the residual or error, n is the number of
predictors and i is the grid-cell. To use GAM, we need to
define the distribution family of the explained variable. For
simplicity, Vrac et al (2007) assumed that temperature has
a Gaussian distribution so we assume that GDD5 too, which
implies a zero-mean Gaussian error ε (Hastie and Tibshirani
1990). Then, we define the nonlinear functions as cubic
regression splines (piecewise by third-degree polynomials).
Finally, any SDM needs a calibration/projection procedure.
The calibration is the fitting process of the splines over Europe
in our case. Afterwards, we project over the world to predict a
high-resolution global GDD5 climatology.

Instead of a simple bilinear interpolation of the
NCEP/NCAR GDD5, we use GAM to geographically
extrapolate the characteristics of the ECA&D GDD5 over
Europe to the world. For more details we refer the reader
to Vrac et al (2007) and Martin et al (2012). We perform
this analysis within the statistical programming environment
R (R Development Core Team 2011) and its ‘mgcv’ package
(Wood 2006).

Appendix B. Statistical indices used for model
selection

The Bayesian Information Criterion (BIC). The BIC
(equation (B.1)) is a particular form of the Akaike Information
Criterion (Sakamoto et al 1986), developed by Schwarz
(1978) and defined by:

BIC = −2× LL+ P× log(n) (B.1)

where n corresponds to the number of BIOME 6000 data
points (n = 6091), P is the number of parameters in the fitted
model (P = n × (m − 1)) and LL is the log-likelihood of
the fitted model. This criterion measures the goodness-of-fit
between the statistical model and the data, balancing the risk
of over-fitting. The BIC includes a penalty term depending on
the sample size (n) and on the dimension of the model (P).
The smaller the BIC, the better the model.

Pseudo-R2. The R2 is a classical statistical index in ordinary
least squares regression that is often used as a goodness-of-fit
measure. In logistic regression, an equivalent statistic to R2

does not exist. However, to evaluate the goodness-of-fit of
logistic models, several ‘pseudo-R2’ (ranging from 0 to 1)
have been proposed. Among the different approaches, the
McFadden’s pseudo-R2 is often used for its simplicity of
calculation (equation (B.2)) and interpretation. It is defined

by (Menard 2000, Shtatland et al 2002):

R2
= 1−

LL
LLnull

(B.2)

where LL is the log-likelihood of the selected model (i.e.,
with selected predictors) and LLnull the log-likelihood for
the null-model (i.e., with intercept only). The ratio of
log-likelihoods suggests the level of improvement over the
null-model offered by the involved predictors. A small ratio
of likelihoods indicates that the full model is far better than
the null-model. In terms of pseudo-R2, the closer the R2 is to
1, the better the agreement with data is.

The kappa statistic. The κ coefficient measures the quality
of the agreement (Cohen 1960, Fleiss et al 1969) between
the modelled PNV by MLR in each BIOME 6000 location
(figure 1(b)) and the BIOME 6000 data (figure 1(a)). This
index can take values between 0 and 1 and is based on a simple
counting of matching and non-matching points in a matrix
used to represent errors in assigning classes (see appendix A
of Levavasseur et al (2011)). The closer the κ coefficient is
to 1, the better the agreement with data is. The kappa statistic
is often used for spatial comparison of categorical variables,
such as vegetation (Monserud and Leemans 1992).

The Brier score. The Brier score was developed by Brier 1950
to assess the accuracy of probabilistic forecasts. As MLR
provides probabilities of occurrence of different megabiomes,
this score is well adapted here. It measures the average
squared deviation between predicted probabilities for a set
of events and their binary outcomes (0 if the event does not
happen and 1 if it happens). For a multinomial variable, the
Brier score is defined by:

BS =
1
n

m∑
j=1

n∑
i=1

(pi,j − oi,j)
2
∈ [0; m] (B.3)

where n is the number of BIOME 6000 data points and m
is the number of megabiomes. pi,j corresponds to the predict
probability of the jth megabiomes at the ith point/location and
oi,j is the corresponding binary outcome for this point. The
Brier score can take values between 0 and m. A lower score
represents higher accuracy of the prediction. The Brier score
can also be reduced in two other ways:

• Taking into account all m megabiomes by grid-
cell/location, we obtain a map of Brier scores:

BS(i) =
m∑

j=1

(pj − oj)
2
∈ [0; m]. (B.4)

• Taking into account all n grid-cells/locations by
megabiome, we obtain m Brier scores (i.e., for each j
megabiome):

BS(j) =
1
n

n∑
i=1

(pi − oi)
2
∈ [0; 1]. (B.5)
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