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[1] Climate change is expected to significantly impact global food production, and it is
important to understand the potential geographic distribution of yield losses and the
means to alleviate them. This study presents a new global crop model, PEGASUS 1.0
(Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition
to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer
application on crop yield for maize, soybean, and spring wheat. PEGASUS combines
carbon dynamics for crops with a surface energy and soil water balance model. It also
benefits from the recent development of a suite of global data sets and analyses that
serve as model inputs or as calibration data. These include data on crop planting and
harvesting dates, crop‐specific irrigated areas, a global analysis of yield gaps, and
harvested area and yield of major crops. Model results for present‐day climate and farm
management compare reasonably well with global data. Simulated planting and harvesting
dates are within the range of crop calendar observations in more than 75% of the total
crop‐harvested areas. Correlation of simulated and observed crop yields indicates a
weighted coefficient of determination, with the weighting based on crop‐harvested area,
of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes
in temperature and precipitation as predicted by global climate models for the 2050s
lead to a global yield reduction if planting and harvesting dates remain unchanged.
However, adapting planting dates and cultivar choices increases yield in temperate regions
and avoids 7–18% of global losses.

Citation: Deryng, D., W. J. Sacks, C. C. Barford, and N. Ramankutty (2011), Simulating the effects of climate and agricultural
management practices on global crop yield, Global Biogeochem. Cycles, 25, GB2006, doi:10.1029/2009GB003765.

1. Introduction

[2] Global food production will need to keep increasing in
order to meet future demand, which is expected to rise due
to economic development and population growth in devel-
oping countries [Von Braun, 2007]. World population is
anticipated to stabilize around 10 billion people by 2100;
however, a shift toward more meat consumptive diets in
emerging economic countries adds further pressure on
global cereal supplies [Keyzer et al., 2002; Lutz et al., 2001].
In addition, the growing interest in biofuels contributes to
increased demand for the production of crops like soybean
and maize [Von Braun, 2007].
[3] During the past 50 years, technological progress in

farm management contributed to a large increase in global
crop yield, which enabled production to satisfy demand on a

global average. While global harvested area remained
steady, global crop production expanded considerably as a
result of large increases in chemical fertilizer and pesticide
use, expansion of irrigated areas, and development of high
yielding crop varieties [Cassman, 1999; Food and Agriculture
Organization (FAO), 2009; Tilman et al., 2001].
[4] Nevertheless, challenges remain for the future. First of

all, it is uncertain whether more productive cultivars can
continuously be developed in the future [Tilman et al.,
2002]. Second, energy resources to produce fertilizer, as
well as land and water resources, are limited and might limit
future agricultural production [Foley et al., 2007; Harris
and Kennedy, 1999; Lotze‐Campen et al., 2008; Postel,
1998]. Finally, climate change represents a major concern
for future food production, particularly in developing
regions where more frequent droughts and floods are antic-
ipated [Lobell et al., 2008; Nelson et al., 2009; Parry et al.,
2005; Rosenzweig and Parry, 1994; Von Braun, 2007].
[5] Identifying the best adaptation strategies for farming is

necessary in order to mitigate risks induced by climate
change. Indeed, with a changing climate, farmers will have
to adapt current production practices to cope with more
frequent climate hazards and to new climate trends. These
adaptations include changing crop varieties in order to take
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advantage of a longer growing season in high latitudes,
shifting sowing dates, and adjusting various water, fertilizer,
and pest management options [Howden et al., 2007]. As an
example, Kucharik [2008] showed that maize yield in some
states of the United States increased by more than 20% in
the last 25 years on account of earlier planting and other
associated management changes.
[6] To date, a few global studies have attempted to assess

the future of world food production in the context of climate
change. Various modeling techniques have been used from
detailed process‐based models to more general statistical
analyses and empirical models. Leemans and Solomon
[1993] combined a simple water balance model with the
Agro‐Ecological Zones (AEZ) methodology [FAO, 1978] to
quantify the potential effect of climate change on rain‐fed
crop yield and its geographic distribution. Fischer et al.
[2002a] further expanded this empirical approach with the
Global Agro‐Ecological Zones (GAEZ), which includes
more recent data on land resources and irrigated agriculture.
[7] Statistical models have been developed by analyzing

historical relationships between climate and crop yield
[Lobell and Asner, 2003; Lobell and Field, 2007; Lobell
et al., 2008; Schlenker and Roberts, 2009]. While this
method is easily applicable at the global scale, uncertainties
remain large due to inherent errors from the input data sets.
Furthermore, these studies do not include a process‐based
understanding of the system, and therefore make a major
assumption that present‐day statistical relationships between
crop yields and climate will hold true in the future.
[8] Rosenzweig and Parry [1994], and then Parry et al.

[1999, 2005], used a set of detailed process‐based models
to evaluate global consequences of various climate change
scenarios on world food production. These models include
detailed crop management options and crop physiology
characteristics, but necessitate substantial amounts of data
to calibrate the model to a particular location. Consequently,
these models were applied to a limited number of sites
around the world and the results were aggregated in order to
present general conclusions at the global scale.
[9] Using a more complex process‐based methodology,

Agro‐IBIS [Kucharik and Brye, 2003], and ORCHIDEE‐
STICS [Gervois et al., 2004; de Noblet‐Ducoudré et al.,
2004] successfully implemented detailed crop modeling
frameworks into global vegetation models. These models
were applied in large‐scale analyses over the United States
using Agro‐IBIS [Kucharik and Brye, 2003] and over
western Europe using ORCHIDEE‐STICS [Gervois et al.,
2008], but have not been expanded to the global scale.
The complexity of the model (Agro‐IBIS) or the lack of
global data (ORCHIDEE‐STICS) make it difficult to apply
these models at the global scale.
[10] Only recently have global ecosystem models begun

to consider agroecosystems [Scholze et al., 2005]. Lately,
three global‐scale crop models have been published. First,
Osborne et al. [2007] focus mainly on the interaction
between crop and climate by integrating the crop model
GLAM into the land surface component of a global climate
model; it does not explicitly include detailed agricultural
management practices. Second, the Lund‐Potsdam‐Jena
managed Land (LPJmL) model [Bondeau et al., 2007]
extends the LPJ‐Dynamic global vegetation model that
simulates biophysical and biogeochemical processes associ-

ated with global carbon and water cycles. This model uses a
crop functional type (CFT) strategy in order to simulate
yields of the 13 most important crop types in the world.
Third, the DayCent model, which was primarily developed to
study the biogeochemical cycling of nutrients in agroeco-
systems, simulates global crop production of four leading
crops: wheat, maize, rice, and soybean [Stehfest et al., 2007].
Both LPJmL and DayCent carefully represent biophysical
and biogeochemical processes, and include a few farm
management practices. LPJmL explicitly simulates planting
decisions for some CFTs, and DayCent calculates optimum
planting dates according to climate. In addition, both models
include the effect of irrigation and fertilizer application.
DayCent explicitly simulates nutrient cycling to represent the
effect of nitrogen fertilizer and manure application, while
LPJmL scales maximum leaf area index depending on fer-
tilizer application, but only for two CFTs. Nevertheless,
representation of planting/harvesting dates, fertilizer appli-
cation; this was likely due to the lack of accurate and spatially
explicit input data available at the time of development of
those models.
[11] The purpose of this paper is to present a new global

crop yield model, PEGASUS 1.0 (Predicting Ecosystem
Goods And Services Using Scenarios) that explicitly simu-
lates crop phenology and the influence of irrigation and
fertilizer use. This new model benefits from the recent
development of a suite of global data sets that form valuable
model inputs or are suitable for model calibration. In par-
ticular, we use new global data sets of crop planting and
harvesting dates [Sacks et al., 2010], annual harvested areas
of irrigated crops [Portmann et al., 2010], national data on
chemical fertilizer application rate by crop [International
Fertilizer Industry Association (IFA), 2002], the global
distribution of crop‐harvested areas and yields [Monfreda
et al., 2008], and a recent analysis of the global distribu-
tion of yield gaps [Licker et al., 2010]. We developed
algorithms to simulate planting and cultivar choice decisions
as functions of simple climate variables. Thus, PEGASUS
has the ability to simulate the effect of climate change on
planting decisions and implicitly represents crop cultivar
choices at the global scale. In addition, PEGASUS is
capable of simulating the impact of future scenarios of
irrigation and chemical fertilizer use on crop yields. PEG-
ASUS is calibrated against a recently developed global data
set of crop yields [Monfreda et al., 2008].
[12] This paper presents a detailed description of the

model in section 2, the calibration method in section 3, and
the model evaluation against present‐day data in section 4.
Finally, a simple climate sensitivity analysis illustrates the
effect of changes in temperature and precipitation on global
crop yields in section 5.

2. Model Description

[13] PEGASUS combines a light use efficiency (LUE)
model to estimate daily photosynthesis and annual net pri-
mary production (NPP) [Haxeltine and Prentice, 1996] with
a surface energy and soil water budget model [Foley, 1994;
Gerten et al., 2004; Ramankutty et al., 2002]. In addition,
the model uses a dynamic allocation scheme to assign
daily biomass production to the different organs of the
crop [Penning de Vries et al., 1989]. Thus, crop yield is
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eventually derived from the amount of carbon contained in
the storage organs at harvesting date. In this study, we focus
on three crops: maize, soybeans, and spring wheat.
[14] The model is driven by daily climate data of temper-

ature, precipitation, and potential sunshine hours. Daily data
come from linear interpolation of the CRU monthly clima-
tology of the global land surface at 10′ latitude/longitude
resolution, developed by New et al. [2002]. In addition to
climate data, the model uses ISRIC‐WISE soil data on
available water capacity [Batjes, 2006]. Finally, simulations
for present‐day crop yield use the MIRCA2000 data set on
global irrigated cropland area [Portmann et al., 2010] and the
IFA data on national rate of fertilizer application [IFA, 2002].
These fertilizer data exclude countries that do not apply
much fertilizer. Hence, we assumed that countries without
fertilizer data have a fertilizer application rate of zero. This
study also uses the M3 crops data [Monfreda et al., 2008].
Soil, irrigation, crop yield and crop‐harvested area were all
originally developed at 5′ latitude × 5′ longitude resolution.
We therefore aggregated these data to 10′ latitude × 10′
longitude resolution in order to match the input climate
data. Fertilizer data consist of national averages, thus one
unique value was used for all cultivated pixels within
each nation. Table 1 describes the specific data sets used in
this study.

2.1. Daily Biomass Production

[15] The LUE model assumes photosynthesis in unstressed
conditions is proportional to incoming solar radiation. Addi-
tionally, temperature, soil moisture availability, and nutrient
availability can limit daily net biomass production (P). P is
expressed in mol C m−2 s−1 as

P ¼ "APARfT fW fN ð1Þ

where " (mol C mol quanta−1) is the light use efficiency
coefficient. We tuned this parameter by calibrating PEGA-
SUS‐simulated yield to actual crop yield data (section 3).
APAR (mol quanta m−2 s−1) represents the daily average
absorbed photosynthetically active radiation and is expressed
using Beer‐Lambert’s law for light interception on a sur-
face [Foley, 1994], which is a function of the crop leaf area
index (LAI):

LAI ¼ Cl � SLA ð2Þ

where Cl is the carbon content in leaves (kg C m−2), and SLA
(m2 kg C−1) is the specific leaf area (Table 2). fT, fW, and fN
are three limiting factors varying between 0 (high stress)
and 1 (no stress) of daily mean temperature, daily soil
moisture, and soil nutrient status, respectively.
[16] Other limiting factors such as pests and diseases, air

pollution, soil erosion, level of mechanization and farmer‐
style of management are not taken into consideration. This
simple global crop model is based on three major assump-
tions. First, we assume soil nutrient content has a predom-
inant effect on crop yield relatively to these other limiting
factors. Second, as no crop specific data on manure appli-
cation exists at the global scale, we assume chemical fer-
tilizer inputs dominate over manure application. As a result,
the nutrient stress factor (fN) depends solely on chemical

fertilizer application. Third, we assume a positive correla-
tion between the rate of chemical fertilizer application and
other limiting factors; that is, places with high rate of
chemical fertilizer applications should have higher level
of mechanization and higher use of chemical pesticides.
Thus, fN encompasses a variety of farm management prac-
tices, mainly driven by chemical fertilizer application (see
section 2.4). Although irrigation intensity is also linked to
the level of mechanization, we use an independent water
stress factor ( fW) as the availability of crop specific spatial
data on irrigated cropland areas are available, whereas
global data on the rate of chemical fertilizer application for
specific crops exist only as national averages.

2.2. Temperature Limitation

[17] The temperature stress factor (fT) is defined separately
for each crop type according to the crop’s temperature
requirements [Kucharik and Brye, 2003] (Figure 1a). Site‐
specific crop models usually apply a function with a narrow
temperature range adapted to each crop cultivar [Sharpley
and Williams, 1990]. Indeed, optimum and extreme tem-
perature requirements of a specific crop vary across the
world since farmers tend to select cultivars to maximize
yield according to local climate conditions [Penning de Vries
et al., 1989]. However, PEGASUS uses a stress function
with a wider temperature range where yields are optimum in
order to reproduce global patterns better (i.e., our stress
function is an envelope of the individual stress functions
of each cultivar).

2.3. Water Limitation and Irrigation

[18] The water stress factor (fW) is a function of the
potential plant water uptake rate Up [Campbell and Norman,
2000], which is a nonlinear function of the ratio of the
soil water SW to the soil available water capacity (AWC)
(Figure 1b). Potential plant water uptake is high as long as
soil water exceeds half of the soil available water capa-
city, but it decreases rapidly below this threshold. The cal-
culation of daily soil moisture follows a simple two‐layer
bucket approach, driven by the Priestley‐Taylor equation
to estimate potential evapotranspiration (PET). A more
detailed description of the surface energy and water budget
calculation is given by Gerten et al. [2004]; Ramankutty
et al. [2002].
[19] We used global maps of crop‐specific irrigated area

from the global data set of Monthly Irrigated and Rainfed
Crop Areas around the year 2000 (MIRCA2000 [Portmann
et al., 2010]). We estimated the fraction of irrigated versus
rain‐fed crop areas using global maps of crop‐specific har-
vested area [Monfreda et al., 2008], and we ensured that soil
is sufficiently moist to avoid water stress in irrigated land
(Figure 1b). Thus, the resulting water stress function of a
given pixel ( fW) is a linear combination of potential water
uptake rate in irrigated and rain‐fed condition:

fW ¼ Ai

Ah
max 0:9;Up

� �þ 1� Ai

Ah

� �
Up ð3Þ

where Ai and Ah correspond to crop‐irrigated area and har-
vested area, respectively, and Up is the potential plant water
uptake rate shown in Figure 1b.
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[20] Another way to simulate both irrigated and rain‐fed
production consists of simulating irrigated and rain‐fed
systems separately and then combining the resulting yields
using the map of irrigated areas. However, we found that
using this alternative method did not change the results
much. Thus, we used the linear combination of potential
water uptake rates to simplify the computations. Soil water
is computed daily assuming daily water application in irri-
gated land as necessary to avoid water stress. However,
irrigation in PEGASUS does not take into account differ-
ences in irrigation efficiency due to different types of irri-
gation infrastructure.

2.4. Nutrient Limitation and Fertilizer Application

[21] The nutrient stress factor (fN) was determined after
analyzing the correlation between national rates of chemical
fertilizer application (nitrogen, phosphorus and potassium)
from IFA [2002] and yield gap fraction data at 10′ latitude ×
10′ longitude resolution from Licker et al. [2010].
[22] Licker et al. [2010] performed a spatial analysis of

potential yield achievable according to specific soil moisture
and temperature conditions for 18 crops in the world. They
defined 100 climate zones and estimated potential yield by
selecting the 90th percentile yield from distributions of
yields within each climate zone. They then created maps of
potential yield based on knowledge of the climate zone each

pixel belonged to and they used the spatial data on actual
yield to estimate yield gap spatially, so that

fYield Gap � 1� Yactual
Ypotential

ð4Þ

where fYield Gap is the yield gap fraction, Yactual is the actual
yield, and Ypotential is the potential yield. Licker et al. [2010]
attributed the yield gap to a combination of management
factors. The most important of these are probably irrigation
and fertilization. We assumed that, in irrigated croplands, the
yield gap could be attributed entirely to nutrient limitation, so

fYield Gap;irr ¼ 1� Yactual
YNopt

ð5Þ

where YNopt is the yield achievable without nutrient limita-
tion. We further assumed that the yield gap could be ex-
pressed equivalently in terms of a ratio of daily biomass
production rates rather than a ratio of yields

fYield Gap;irr ¼ 1� P
PNopt

¼ 1� fN ð6Þ

where PNopt is the daily biomass production rate with no
nutrient limitation (i.e., fN = 1), but with the same values of ",
APAR, fT and fW as for P.

Table 1. Minimum Data Requirements to Run PEGASUS and Description of the Specific Data Sets Used in This Study

Data Set Variable Name Spatial Reference Temporal Reference Source

Climate data (CRU) temperature, precipitation,
fraction of sunshine hours

10′ lat × 10′ lon monthly average
1961–1990

New et al. [2002]

Soil data (ISRIC‐WISE) Available water capacity
(top 50 cm, top 20 cm,
50–150 cm soil columns)

10′ lat × 10′ lon
(original is 5′ lat × 5′ lon)

‐ Batjes [2006]

Irrigation data (MIRCA 2000) Annual irrigated harvested area 10′ lat × 10′ lon
(original is 5′ lat × 5′ lon)

2000 Portmann et al. [2010]

Fertilizer data total chemical fertilizer application national average mid‐1990s IFA [2002]
M3‐crops data Yield, Harvested area ′ lat × 10′ lon

(original is 5′ lat × 5′ lon)
average for 1998–2002 Monfreda et al. [2008]

Global crop calendar planting dates, harvesting dates 10′ lat × 10′ lon 1990s and early 2000s Sacks et al. [2010]

Table 2. Crop Parameters and Valuesa

Maize Spring wheat Soybean

Albedo 0.20 0.21 0.23
Specific leaf area SLA (m2 kg C−1) 50 45 56
Light use efficiency "

(mol C m−2 s−1 APAR)
0.033 0.027 0.010

Economic fraction EF 0.70 0.85 0.70
Dry fraction DF 0.89 0.89 0.90
Nutrients stress factor fN fN = 1 − (0.4574–0.0010 × F ) fN = 1 − (0.4782–0.0015 × F ) fN = 1
Temperature at planting in temperature‐

limited regions (°C)
No snow: Tplant = − 5.3 +

1.5Tamean Snow: Tplant = 16°C
Tplant = 10°C Tplant = 9 + 0.9Tamean

P/PET at planting in moisture‐limited
regions

P/PET = 0.6 P/PET = 0.7 P/PET = 1.2

Planting date in non‐climate‐limited
regions

DOYplant = 130 (NH)/320 (SH) DOYplant = 70 (NH)/180 (SH) DOYplant = 70 (NH)/320 (SH)

Base temperature Tb (°C) 8 0 10
Maximum temperature Tmax (°C) 30 26 30
Total GDD requirements (°Cday) 2033 × (1 − e−aGDD/1295) 2023 × (1 − e−aGDD/2630) 2728 × (1 − e−aGDD/2295)
Minimum GDD threshold (°Cday) 683 1449 975
Fraction of total GDD to emerge 0.03 0.03 0.05

aF is the rate of fertilizer application (kg Ha−1), Tamean is the annual mean temperature, Tplant is the temperature at planting, P/PET is the ratio of
precipitation to potential evapotranspiration, DOYplant is the planting date, GDD stands for growing degree day, and aGDD is the annual growing
degree day. NH and SH correspond to Northern and Southern Hemispheres, respectively.
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[23] Finally, we assumed that fN is proportional to the
fertilizer application rate (F ), so that

fYield Gap;irr ¼ 1� fN ¼ a� b� F ð7Þ

We then estimated the coefficients a and b by performing a
linear regression of fYield Gap,irr on F , and derived an
expression for fN as a function of F from equation (7). In
order to estimate fN, we selected “irrigated” pixels as those
with more than 20% of the cropland area under irrigation,
assuming negligible water stress in these places, i.e., the
yield gap being mainly driven by nutrient limitation. Note
that we choose this particular threshold in order to have
enough data points to perform the regression analysis. As
only national average data of chemical fertilizer application
are available, we calculated weighted national average yield
gap fractions for these irrigated pixels in each country, with
the weighting based on crop‐irrigated areas given by the
MIRCA2000 data set [Portmann et al., 2010]. Figure 2 shows
the resulting linear regressions between national yield gap
fraction and the rate of chemical fertilizer application. The
functional forms for fN are given in Table 2.
[24] While the analysis for maize and spring wheat

revealed statistical relationships, the analysis for soybean did
not display any relationship. Soybean differs from maize and
spring wheat as it fixes nitrogen directly from the atmo-
sphere, thereby not requiring substantial nitrogen input to the
soil [Salvagiotti et al., 2008]. Nevertheless, it still needs
adequate soil concentrations of phosphorus and potassium.
Even when our analysis considered all three chemicals, no
relationship emerged given the small number of countries
growing fertilized soybean in more than 20% irrigated
cropland areas. Another major issue arising from the absence

of a nutrient stress factor for soybean simulations is related
to our assumption that fN comprises indirectly the effect of
a number of other management practices (section 2.1). Future
efforts to improve PEGASUS will need to consider more
carefully the role of those various management practices
on soybean yield.

2.5. Planting and Cultivar Choice Decisions

[25] Planting and harvesting dates are necessary inputs to
the crop model. We investigated the relationship between
crop calendars and climate data in order to simulate planting
and harvesting dates (the difference between the two
reflecting cultivar choice) according to simple climatic
variables. Sacks et al. [2010] recently developed a global
crop calendar data set consisting of both the mean and a
range of planting and harvesting dates at national and sub-
national levels compiled from the U.S. Department of
Agriculture (USDA) and FAO. We used the mean dates to
perform this analysis and computed weighted averages of
climate and any other relevant variables for each of the
political regions, with the weighting based on global maps of
crop‐harvested areas from Monfreda et al. [2008]. Table 2
presents a summary of the algorithm for planting and har-
vesting decisions for the three crops.
2.5.1. Planting Dates
[26] Although planting decisions may also be influenced

by other factors such as labor and tractor availability, we
assume that climate is generally a strong determinant of
planting dates in many regions. For instance, in temperate
regions, planting occurs when temperature is at least suf-
ficiently warm to protect crops from frost. Similarly, in
tropical regions with distinct wet and dry periods, planting
usually occurs at the start of the rainy season [Sacks et al.,
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Figure 1. (a) Temperature‐stress factors associated with each crop type [Kucharik and Brye, 2003].
(b) Potential plant water uptake index expressed as a function of the soil available water fraction (ratio of
soil available water to field capacity) [Campbell and Norman, 2000]. In irrigated cropland, the potential
water uptake index is always above 0.9.
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2010]. Therefore, we distinguish two main climate‐limited
regions: temperature‐limited regions and non–temperature‐
limited but soil moisture‐limited regions (hereafter referred
to as moisture‐limited regions for simplicity). We hypoth-
esize that temperature is the strongest determinant of
planting decision in temperature‐limited regions, while soil
moisture is more influential in moisture‐limited regions.
[27] Following Leemans and Solomon [1993] and the

GAEZ methodology [Fischer et al., 2002b], the growing
period of a crop is based on temperature, precipitation, and
potential evapotranspiration (PET). By this definition, a
region is temperature‐limited if the minimum monthly mean
temperature is less than 5 for at least one month. Similarly, a
region is moisture‐limited if daily precipitation falls below
half of PET for more than 30 days in the year. Note that
these simple criteria are based on empirical findings of what
monthly mean temperature or rainfall has to be in order for a
place to temperature or moisture limited. Finally, for non–
climate‐limited regions, we assumed that planting occurs on
one predominant day independent of climate, although this
day varies by crop and hemisphere.
[28] We assumed planting date is mainly determined by

temperature in temperature‐limited regions. However, tem-
perature at planting is likely not uniform globally; instead, it
is likely that warmer regions can afford to wait a little longer
and plant at warmer temperatures, while colder regions will
plant earlier at colder temperatures. We empirically identi-
fied this relationship between temperature at planting and
annual mean temperature through a regression analysis
(Figure 3). Whenever the coefficient of determination (R2)
was lower than 0.6, we simply used the modal value of
temperature at planting, using a bin size of 1. We also con-

sidered the influence of winter snow on planting dates. Snow
accumulation can delay planting since farmers have to wait
until the soil is dry enough to drive tractors in the fields. We
analyzed patterns of temperature at planting in regions where
annual snowpack is greater than zero, separately from other
temperature‐limited regions. However, empirically, we were
able to make this distinction only for maize, which is an
important crop in both regions with and without winter snow.
In temperature‐limited regions, soybean is mainly grown in
places that do not experience winter snow, while spring
wheat is mostly grown in places with winter snow, providing
few samples for a robust statistical analysis. In moisture‐
limited regions, we determined the appropriate planting time
by selecting the modal value of the ratio of precipitation to
PET at planting, using a bin size of 0.1(Figure 3). Finally,
in non–climate‐limited regions, we chose the modal value
of planting date by considering histograms of planting dates,
using a bin size of 1 day (figure not shown).
2.5.2. Harvest Dates
[29] The length of the growing period of a crop depends

on the thermal time accumulation, which is also designated
as growing degree days (GDD). Crop models traditionally
use GDD accumulation in order to predict harvesting dates:
each crop needs a specific GDD amount to reach physio-
logical maturity, and harvest occurs when this requirement
is met. The equation to calculate total GDD is

GDDTb ¼
XN
i¼1

maxð0;minðTi; TmaxÞ � TbÞ ð8Þ

where Ti is the daily mean temperature at day i, Tb is
the base temperature, Tmax is the maximum temperature

Figure 2. Scatterplots of national average yield gap fractions in irrigated areas versus total chemical fer-
tilizer application. We calculated weighted average yield gap fractions by selecting only pixels where
more than 20% of the crop‐harvested area is irrigated, using global maps of yield gap fraction [Licker
et al., 2010], irrigated areas [Portmann et al., 2010], and harvested area [Monfreda et al., 2008] for
each crop. The spatial weighting to derive the national averages was based on crop‐irrigated areas. We
used national rate of total chemical fertilizer application from IFA [2002]. Areas of circles represent crop‐
irrigated area. Note that the yield gap fraction reaches a maximum threshold when total fertilizer appli-
cation equals zero, so that fN is always greater than a minimum threshold.
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Figure 3. Scatterplots of average temperature at planting versus annual mean temperature in temperature‐
limited regions (a) for maize (regions without winter snow only) and (b) for soybean. Distributions of the
average temperature at planting in temperature‐limited regions (c) for maize (regions with winter snow
only) and (d) for spring wheat. Distributions of the average precipitation/PET at planting in moisture‐
limited regions for (e) maize, (f) soybean, and (g) spring wheat. We calculated weighted average climate
values in each region, with the weighting based on the total crop‐harvested area in that region.
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threshold, and N is the total number of days, e.g., 365
for annual GDD calculation. Different crops have differ-
ent minimum and maximum temperature thresholds for
thermal accumulation. Table 2 gives specific values of Tb
and Tmax.
[30] As in Agro‐IBIS [Kucharik and Brye, 2003], we

hypothesized that crop total GDD requirement is related to
annual GDD. Farmers select cultivars that are adapted to
the local climate: cultivars grown in colder climates have
smaller GDD requirements than those grown in warmer
climates. Thus, simulating harvesting decisions in the model
is comparable to simulating the choice of crop cultivars as a
function of the length of the growing season. Using the crop
calendar data set, we calculated total GDD requirement
for each crop by accumulating GDD between planting and
harvesting dates. Finally, we examined the relationship
between total crop GDD requirements and annual GDD,

and derived simple functions from nonlinear regressions
(Figure 4). We also determined a minimum GDD require-
ment, corresponding to the minimum average GDD between
planting and harvesting dates in the data (Table 2).

2.6. Dynamic Carbon Allocation and Turnover

[31] Carbon assimilated via equation 1 is allocated to four
vegetation pools: leaves, stem, roots, and storage organs. We
used a descriptive allometry presented by Penning de Vries
et al. [1989] to specify dynamic allocation and turnover
fractions for each of those organs (Figure 5):

dCx

dt
¼ �xP � �xCx ð9Þ

Cx is the carbon content in organs x, i.e., leaves, stem, roots,
and storage organs; P is the daily biomass produced

Figure 4. Scatterplots of growing degree day (GDD) accumulation between planting and harvesting
dates versus annual GDD for (a) maize, (b) soybean, and (c) spring wheat. Areas of circles represent
crop‐harvested area.

DERYNG ET AL.: SIMULATING GLOBAL CROP YIELD GB2006GB2006

8 of 18



(equation (1)); and ax and bx are the allocation and turnover
fractions, respectively (Figure 5).
[32] Allocation and turnover fractions vary with crop

development, which is determined by thermal accumulation.
The dynamic partitioning starts at emergence, with the
duration between planting and emergence corresponding to a
small fraction of the total crop GDD requirement (see Table 2
for numerical values), and ends at harvest (section 2.5.2).
[33] Crop yield (Ye), calculated in term of fresh matter, is

proportional to the amount of dry biomass accumulated in
the storage organs at harvesting date (Cso):

Ye ¼ EF

0:45� DF
� Csoðt Ha�1Þ ð10Þ

where EF represents the economic fraction of the storage
organs [Penning de Vries et al., 1989], DF is the dry fraction
of the economic yield to convert weight of dry matter to weight
of fresh matter (Table 2), and 0.45 is the mass of carbon
contained in one unit of dry matter [Monfreda et al., 2008].

2.7. Simulated Cropland Extent

[34] PEGASUS simulates potential cropland area ac-
cording to minimum temperature and soil moisture (ratio of
precipitation to PET) thresholds and a minimum annual
GDD requirement. As a consequence, PEGASUS allows

crop production in some places that do not actually grow
the corresponding crop type today. However, PEGASUS
appears more restrictive than the actual crop‐harvested area
data in the northern boundaries of the high‐latitude Northern
Hemisphere, where minimum temperature requirement to
plant and/or minimum GDD requirement to harvest is not
met. Yet the discrepancy comprises a negligible fraction of
the total crop‐harvested area.
[35] Total cultivated area in present‐day simulations

(section 4.2) is the intersection of simulated and actual
cropland extent for each crop. In addition, due to a lack of
global data on growing areas of spring versus winter wheat,
the total harvested area shown for the present‐day spring
wheat simulation is the intersection between actual wheat
harvested area and the spring wheat crop calendar data set
[Sacks et al., 2010]. This excludes regions where most wheat
grown is winter wheat, as well as regions where we are
unsure whether spring or winter varieties dominate. For
comparison, sensitivity simulations presented in section 5
include potential cultivable areas as simulated by PEGASUS.

3. Model Calibration

[36] Values of model parameters presented in Table 2
were chosen based on values commonly found in the liter-
ature. In addition, we performed a sensitivity analysis to

Figure 5. Dynamic carbon allocation during the growing period for (a) maize, (b) soybean, and (c) spring
wheat, and (d) carbon turnover for all crops. The four different pools consist of leaves, stem, roots, and stor-
age organs. Carbon allocation begins at emergence and ends at harvest. Carbon turnover rates for storage
organs and stem remain equal to zero.
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identify which parameters had the greatest effect on simu-
lated yields, and found the light use efficiency coefficient "
(equation (1)) to be the most important parameter.
[37] The model was calibrated against the spatial crop

yield data (M3 crops data [Monfreda et al., 2008]) by tuning
this one variable ". The model was run for a wide range of "
values. The calibration procedure entailed selecting the
optimum " value for each crop in two steps. First, we
selected those " values for which the systematic component
of the weighted root‐mean‐square error (RMSE) was
smaller than the unsystematic part. Then, from within these
" values, we picked the one with the highest weighted index
of agreement (d) [Willmott et al., 1985]. The index of
agreement (d) is a standardized measure of the RMSE, and
evaluates discrepancies between model prediction and
observation according to the mean value of the observation.
Again, the weighting is based on maps of actual crop‐har-
vested areas [Monfreda et al., 2008].
[38] The resulting values of " expressed in mol C m−2 s−1

APAR are 0.033 for maize, 0.027 for spring wheat, and 0.011
for soybean. These global mean values coincide with the
upper bound of the range found in the literature for wheat
[0.022–0.027], but " is slightly overestimated for maize
[0.027–0.031] and underestimated for soybean [0.017–
0.021] [Andrade, 1995; Hay and Porter, 2006; Kiniry et al.,
1989; Lindquist et al., 2005]. In the latter case, the value of
" might be underestimated due to the absence of nutrient
limitation in equation (1) (section 2.4).

[39] Although we used the same data set for calibration
and evaluation of the model (presented in section 4.2), the
calibration and evaluation drew on different aspects of this
data set. The calibration modified only the global average "
values, whereas we evaluated the resulting model for its
ability to match the spatial variability of the observations.

4. Simulation of Present‐Day Crop Planting and
Harvesting Dates and Yields

4.1. Planting and Harvesting Dates

[40] PEGASUS simulates planting and harvesting dates
according to the rules summarized in section 2.5. Figures 6
and 7 present global maps of simulated dates, observed
mean dates provided by the global crop calendar data set,
and respective differences between the simulation and
observations. However, in order to evaluate quantitatively
the performance of our algorithm, we also compare the
results to the range of dates from the data set. They give a
more realistic evaluation criterion, especially in large
countries where planting and harvesting times vary across
regions due to differences in climate.
[41] Overall, the simulated planting dates match the range

of dates given by the global crop calendar data set fairly
well. Modeled planting dates show 74% agreement with
observed ones in the case of maize, 91% in the case of
soybean, and 75% in the case of spring wheat; the agree-
ment is calculated here as the ratio of the harvested area of

Figure 6. (a–c) Global planting dates simulated by PEGASUS and (d–f) corresponding planting date
observations [Sacks et al., 2010] for each crop. (g–i) The difference in months between simulated and
observed planting dates.
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all grid cells with simulated planting dates that lies within
the range given by the observations to the total harvested
area. For the most part, the algorithm for temperature‐
limited regions appears to be reasonable, whereas most of
the discrepancies occur in moisture‐limited regions and
in non–climate‐limited regions. Indeed, similar to Stehfest
et al. [2007], most of the inconsistencies for maize occur
in southeast Asian countries like Indonesia, Malaysia, and
southeast China, and in southern Australia where predictions
are early compared to the observations. First, simulated
planting dates shift abruptly around the equator in Malaysia
and Indonesia as these countries belong to non–climate‐
limited regions. According to our model, the planting
decision is not driven by climate in those countries, and our
choice of a fixed planting date is somewhat arbitrary. Sec-
ondly, our predictions in moisture‐limited regions do not
consider irrigation, which could also lead to differences
in planting decisions, although irrigation water availability
depends on the precipitation pattern as well. Similarly, soy-
bean simulated planting dates disagree in the southeastern
United States and Colombia, which are not climate limited,
and in Turkey and southwest China, which are moisture‐
limited regions. Finally, spring wheat simulated planting
dates differ mostly in Africa (i.e., Kenya, Tanzania, and
Ethiopia) and northern Australia, which again are moisture‐
limited regions. The method presented here demonstrates
that planting decisions are strongly influenced by climate

factors. Additionally, it provides a set of rules to predict
changes in farmers’ planting decisions with climate change.
However, it is important to keep in mind that socioeconomic
factors also play a role in planting decisions and should be
considered for realistic predictions [Sacks et al., 2010].
[42] As for planting dates, the timing of harvesting deci-

sions generally conforms to the range of harvesting dates in
the data. Note that in order to assess the harvesting date
algorithm independently of the planting one, we initiate the
growing season using the observed planting dates. In sum-
mary, 75% of total maize harvested area is harvested within
the range of harvesting dates given by the crop calendar
data. The main divergences occur in non–temperature‐
limited regions like southern Africa, northeast Australia,
southeast Asia, and central South America. Soybean and
spring wheat harvesting dates are very well simulated with
92% and 99% agreement with the range of harvesting dates,
but the total area simulated is smaller than for maize. Note
that accuracy in modeling harvesting dates when using
simulated planting dates equals 62% for maize, 91% for
soybean, and 90% for spring wheat.

4.2. Crop Yields

[43] In this section, we present global crop yields simu-
lated for present‐day climate and management practices.
Planting and cultivar choice decisions are simulated according
to the methodology described in section 2.5. Figure 8 shows

Figure 7. (a–c) Global harvesting dates simulated by PEGASUS and (d–f) corresponding harvesting
date observations [Sacks et al., 2010] for each crop. (g–i) The difference in months between simulated
and observed harvesting dates.
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global maps of simulated crop yields within current harvested
area in comparison with actual crop yield [Monfreda et al.,
2008] for each of the three crops.
[44] In addition to spatial comparisons, model results are

compared to national average yield derived from Monfreda
et al. [2008]. We calculate national average yield weighted
by the corresponding harvested area; we also exclude countries
with total harvested area less than 1200 Ha (Figure 9). We
present both weighted and unweighted coefficients of deter-
mination (R2). Weighted R2 is calculated based on the crop’s
total harvested area within each country.
[45] In the case of maize, developed countries with

intensive agricultural management practices exhibit the
largest yield. Highest yields are found in the United States
and in western Europe, regions that apply large amounts of
fertilizer. Lowest yields are found in India, Africa, and parts
of Latin America. However, the model simulates lower yield
than expected for eastern Europe and Russia (Figure 8).
One possible explanation could be the use of manure, which
is not taken into consideration in PEGASUS. Figure 9a pre-
sents a scatterplot of maize average yield for 131 countries.
The R2 is quite high when weighted by harvested areas (0.81),
showing that important maize producers such as the United
States, Brazil, China, Mexico, and Argentina are well simu-
lated. However, the unweighted R2 is only 0.37, due to dis-

crepancies within European countries. In particular, PEGASUS
underestimates yield in countries like Germany, Switzerland,
Austria, the Netherlands, and Belgium.
[46] The soybean simulation includes 64 countries. While

the biggest soybean producers, the United States, Brazil,
Argentina, and China, are well simulated as shown in both
Figures 8 and 9b, large variations exist between simulated
and observed yield. In particular, yield is overestimated in
African countries, whereas yield is underestimated in Euro-
pean countries. These differences underline a possible sys-
tematic error due to the absence of a nutrient stress factor
in soybean simulations. Nevertheless, soybean harvested
areas of the four top countries represent almost 90% of total
soybean harvested area. As a consequence, the weighted
R2 (0.66) is reasonable, while the unweighted R2 (0.01)
remains insignificant.
[47] Finally, the global simulation of present‐day yield for

spring wheat is shown in Figure 8. As for the maize simu-
lation, the global yield pattern is in agreement with global
chemical fertilizer application rates. The highest yields are
found in the United States, China, and Italy, while Turkey,
Australia, Bolivia, and Russia exhibit lower yields. A total
of 39 countries are simulated. The weighted regression
analysis presented in Figure 9c results in a weighted R2 of
0.45, while the unweighted value remains acceptable with

Figure 8. Global crop yields simulated by PEGASUS for (a) maize, (b) soybean, and (c) spring wheat
and (d–f) corresponding crop yield observations [Monfreda et al., 2008]. (g–i) The spatial differences in
ton/ha between simulated and observed crop yields for each corresponding crop type.
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0.22. Yield in China is slightly overestimated, whereas
yields are mostly underestimated for a few big producers
like Canada, Turkey, Kazakhstan, and Ukraine.

4.3. Comparison to Previous Studies

[48] A direct comparison with the performance of other
global crop models, i.e., LPJmL and DayCent, can only be
done to a limited extent. Bondeau et al. [2007] show a
qualitative comparison between simulated and actual plant-
ing dates for temperate cereals; Stehfest et al. [2007] provide
a comparison with the national average month of planting for
maize, rice, wheat, and soybean. Further, neither of these
studies evaluate the simulation of harvesting dates.
[49] Both DayCent and LPJmL provide a measure of

agreement between simulated yield and national FAO data.

Bondeau et al. [2007] evaluate simulated maize yield for
41 countries (R2 = 0.55). The coefficients of determination
for DayCent simulations of maize and soybean yields are
0.67 and 0.32, respectively (0.66 and 0.56 when weighted by
crop area) [Stehfest et al., 2007]. In PEGASUS, unweighted
R2 are lower, but R2 weighted by crop areas are higher. These
large differences between weighted and unweighted R2 likely
result from our approach, wherein the derived empirical
equations used data weighted by present‐day crop‐harvested
areas (sections 2.4 and 2.5). In addition, when PEGASUS
was calibrated against spatial crop yield data, similar weight-
ing by crop‐harvested area was used (section 3). Consequently,
PEGASUS reproduces adequately patterns of management
and yield of major crop producers, but misses many small
producing countries. Last, we could reduce scatter in the

Figure 9. Comparison of simulated crop yields and corresponding observations [Monfreda et al., 2008]
aggregated by country for (a) maize, (b) soybean, and (c) spring wheat. Areas of circles represent crop‐
harvested area. We show both unweighted and weighted R2, with the weighting based on crop‐harvested
area for each country, along with respective slope and intercept values of the best fit line.
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correlations by using spatially explicit data on fertilizer
application rates (which is not available yet at the crop‐
specific level) rather than national average.

5. Sensitivity of Crop Yields to Variations
in Temperature and Precipitation

5.1. Crop Yields

[50] In this section, we present a sensitivity analysis of the
model outputs to changes in annual mean temperature and
precipitation. We created monthly climatology for the 2050s
using four climate change simulations from the IPCC fourth
assessment report (AR4). We selected two of the better
global climate models (GCMs) according to the metric
developed by Gleckler et al. [2008]: the Geophysical Fluid
Dynamics Laboratory’s climate model version 2.1 (GFDL
CM 2.1) and the Max‐Planck Institut für Meteorologie’s
climate model version 5.1 (ECHAM 5.1) for both A1b and
B1 emissions scenarios. Increase in annual global average
temperature ranges between 1.7 (ECHAM 5.1, B1 scenario)
and 2.5 (GFDL’s CM 2.1, A1b scenario) by the year 2050.
For this combination of two models and two scenarios, we
obtained bias‐corrected climate model simulation data from
Maurer et al. [2009].
[51] We performed two sets of simulations for each of the

three crops. In the first set, we used the simulated planting
and harvesting dates for present‐day climate, which is
equivalent to preventing farmers from adjusting those deci-
sions to any variation in temperature and precipitation. In the
second set of simulations, however, farmers adapt their
planting decision and their choice of crop cultivars (as sim-
ulated through the GDD requirement for crop maturity) to the
new climate.
[52] In both sets of simulations, we estimated relative

changes in crop yield in regions that can potentially be
cropped according to our planting algorithm. On the global

average (Figure 10), spring wheat yield changes the least of
the three crops, with a decrease by 14 to 25% when planting
decision and choice of crop cultivars remain as for present
day, and a decrease by 4 to 10% when farmers fully adapt
those management practices to the new temperature and
precipitation patterns. Maize experiences the larger global
decrease in yield for simulations preventing adaptation in
planting and harvesting decisions: 19 to 34%. Soybean yield
decreases by 15 to 30% without adaptation. However,
soybean experiences the larger global decrease in yield for
simulations allowing adaptation: 12 to 26%, while maize
yield decreases by 6 to 18%. Overall, adapting planting date
and cultivar choice show a stronger impact in the case of
maize and spring wheat, resulting in an average reduction
in global crop yield losses by 18 and 12%, respectively,
whereas it shows a lesser effect in the case of soybean with
an average reduction in global crop yield losses of only 7%.
[53] Figures 11, 12, and 13 display a spatial comparison

of the relative change in simulated crop yield for maize,
soybean, and spring wheat, respectively. Figures 11a–11h,
12a–12h, and 13a–13h present the change in crop yield
simulated for each of the four different future climate
simulations and the two adaptation scenarios relative to crop
yield simulated using present‐day climatology. In addition,
Figures 11i–11l, 12i–12l, and 13i–13l present the corre-
sponding relative change in yield resulting from adapting
planting dates and crop cultivars compared to simulations
without adaptation. In simulations using present‐day plant-
ing dates and crop cultivars, there is a general decrease in
crop yields across the globe. However, acclimating planting
decisions and cultivar choices would increase yield in the high
northern latitudes, due to an increase in the length of the
growing season. In contrast, adapting planting dates to chan-
ges in precipitation does not present a strong impact on crop
yields in tropical regions, which are also affected by heat stress
as temperature increases simultaneously. This points out that

Figure 10. Estimated changes in global average crop yield by 2050 using temperature and precipitation
simulations from two GCMs (ECHAM 5.1 and GFDL CM 2.1), two emissions scenarios (A1b and B1),
and for the two scenarios of planting and harvesting decisions.
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the yield calculation is particularly sensitive to variations in
the length and the timing of the growing season.
[54] In the case of maize (Figure 11), adaptation of

planting dates and crop cultivars to the new climate results

in yield increases in temperature‐limited regions such as
Canada, Russia, central Europe and the United Kingdom. In
contrast, yield decreases despite these adaptations in western
Europe, eastern and central US, northern part of Australia,

Figure 12. Estimated change (%) in soybean yield by 2050, relative to the control simulation, with four
different future climate simulations (a–d) for present‐day planting (P) and harvesting (H) dates and (e–h) for
planting and harvesting dates adapted to higher temperature. (i–l) The relative difference (%) between
Figures 12a–12d and the corresponding Figures 12e–12h. White areas correspond to unsuitable regions
for growing crops.

Figure 11. Estimated change (%) in maize yield by 2050, relative to the control simulation, with four dif-
ferent future climate simulations (a–d) for present‐day planting (P) and harvesting (H) dates and (e–h) for
planting and harvesting dates adapted to higher temperature. (i–l) The relative difference (%) between
Figures 11a–11d and the corresponding Figures 11e–11h. White areas indicate unsuitable regions for
growing crops.
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southeast Asia, and all of India, Africa, and Latin America.
Nevertheless, adapting planting and harvesting decisions
reduces crop yield losses in the US, Europe, and East Asia.
[55] Relative changes in spring wheat yields show very

similar patterns as for maize simulations (Figure 13). How-
ever, losses are less substantial in the US and the western
European countries. Furthermore, the expansion of suitable
cropland area is smaller than for maize.
[56] Finally, adapting planting dates and crop cultivars

expands the suitable area for soybean production in some
parts of Europe and northeast Asia. Crop yield losses are
minimized in the eastern US and East Asia (Figure 12).
However, adapting those decisions in some places with
significant reductions in precipitation, mainly in Africa,
western Spain, and Cuba, shows a negative effect on yield.
Those anomalies highlight potential limitations of planting
changes in moisture‐limited regions.

5.2. Comparison to Previous Studies

[57] In this section, we compare our simple sensitivity
analysis to previous studies of the effects of climate change
on global crop yield. Rosenzweig and Parry [1994] esti-
mated that global cereal production would decrease by 11 to
20% when considering only the direct effect of climate
change, and by 1 to 8% when including the CO2 fertilization
effect (global mean temperature increases by ∼4 to 5, global
precipitation increases by ∼8 to 15%, and CO2 concentration
increases by ∼600 to 640 p.p.m. in their scenarios).
[58] Leemans and Solomon [1993], who performed a

basic analysis of the effect of changes in temperature on
global crop yield, found a decrease in global potential rain‐
fed crop yields of roughly 15% assuming no change in
suitable cultivated area. However, they took into account

rain‐fed agriculture only, while we examined both irrigated
and rain‐fed agriculture. Considering only rain‐fed cropland
area, we also observe a global decrease in yield of 14% for
maize, 16% for soybean, and 18% for spring wheat on
average when adapting planting dates and crop cultivars.
[59] More recently, Nelson et al. [2009] estimated chan-

ges in yield ranging from −2 to −8.7% for irrigated maize
(from 1.4 to −5.7% for rain‐fed maize) and from −4.9 to
−34.3% for irrigated wheat (from −1.4 to 3.1% for rain‐
fed wheat). In our study, global relative changes in yield
similarly range between −1% and 6% for irrigated maize
(according to present‐day maize irrigated area) for the
adaptation scenarios. However, relative changes in yield for
irrigated spring wheat and irrigated soybean areas are larger
than for rain‐fed areas, ranging from −12 to −24% for spring
wheat and from −19% to −38% for soybean. But irrigation
in our analysis is simplistic as it does not include any
information on water availability or any information on
potential increase in irrigated cropland area.

6. Conclusion

[60] This study presents a simple modeling approach to
quantify global crop yields and the role of agricultural
management practices on crop productivity. We demonstrate
the importance of planting and cultivar choices on crop yields
in relation to variations in temperature. We developed sim-
ple rules to derive planting and cultivar choice decisions
according to variations in temperature, precipitation, and
potential evapotranspiration. For each crop considered in
this study, more than 60% of the total harvested area is
planted and harvested within the range of observed dates.
Nonetheless, the planting date algorithm works better in

Figure 13. Estimated change (%) in spring wheat yield by 2050, relative to the control simulation, with
four different future climate simulations (a–d) for present‐day planting (P) and harvesting dates (H) and
(e–h) for planting and harvesting dates adapted to higher temperature. (i–l) The relative difference (%)
between Figures 13a–13d and the corresponding Figures 13e–13h. White areas correspond to unsuitable
regions for growing crops.
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temperature‐limited regions, and not as well in moisture‐
limited regions. PEGASUS’s performance in simulating crop
yields is comparable to that of other global crop models.
[61] In addition, we evaluate the implication of changes in

monthly mean temperature and precipitation on yields along
with the effect of adapting planting dates and cultivar choices
to these new climatic conditions. We found that these
management practices could play a crucial role in mitigating
the negative impact of climate change on world food pro-
duction, as they could avoid predicted global yield losses by
18% for maize, 12% for spring wheat, and 7% for soybean.
[62] PEGASUS relies on few parameters, which allows its

broad and straightforward application. However, several
improvements remain necessary. First of all, simulation of
nutrient limitation could be improved by including the
effects of manure in the model, and by reconsidering the
effects of nutrients on soybean yield. We could also improve
upon the simple empirical approach used here to consider
nutrient influence. In addition, improvements should be
made with respect to the influence of soil water on nutrient
stress. Second, it is desirable to incorporate other crops into
the model, such as winter wheat and rice, and other non-
cereal crops, in order to comprehensively assess world food
production. Third, improvements in the simulation of water
availability for irrigation are mandatory for realistic climate
change impact assessments. Finally, additional factors that
should be considered, but whose influences are still being
debated, include the physiological effect of increasing
atmospheric CO2 on biomass production and on crop water
use, as well as the impact of future pest and disease behaviors
on agricultural systems [Long, 2006; Tubiello et al., 2007].
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