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Abstract

The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented.
The model has been designed to operate on spatial scales commensurate with those of global and regional climate models.
It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation
are described, and demonstrated for the prediction of groundnut (i.e. peanut;Arachis hypogaea L.) yields across India for
the period 1966–1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest
index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year
period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies
spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model
was tested using a historical data set on a 2.5◦ × 2.5◦ grid to simulate yields. Three sites are examined in detail-grid
cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between
observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest
where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean
rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed
and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily
extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large
areas.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Crop productivity in many environments is highly
dependent upon weather and climate. This is particu-
larly so in tropical regions, which are often monsoon
environments with low levels of crop management
technology. Increased understanding of the impacts
of current sub-seasonal and inter-annual climate vari-
ability on crop yields would support agricultural
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Nomenclature

A mean albedo of the surface
Cx dimensionless constant identified byx
CYG yield gap parameter
e vapour pressure
esat saturation vapour pressure
E evaporation rate (cm per day)
ET normalised transpiration efficiency
ETN,max maximum transpiration efficiency
G soil heat flux
HI harvest index
k extinction coefficient
kDIF uptake diffusion coefficient
ksat saturated hydraulic conductivity of soil
lv root length density (by volume)
L leaf area index
NSL number of soil layers
P precipitation
R runoff
RN net surface all-wave radiation
S soil water stress factor
Srad surface incoming solar radiation
t time
tTT thermal time
tTTi thermal duration of development stagei
T temperature
Tb base (cardinal) temperature
Teff effective temperature
Tm maximum (cardinal) temperature
Tmax maximum daily temperature
Tmin minimum daily temperature
To optimal (cardinal) temperature
TT transpiration rate (cm per day)
TTpot potential transpiration
T̄ mean daily temperature
V vapour pressure deficit
VEF extraction front velocity
W above-ground biomass
xcr critical, or threshold, value of

parameterx
xe energy-limited value of parameterx
Y yield
zed depth of soil from which evaporation

occurs
zef depth of the root extraction front
zmax depth of soil profile

Greek letters
α Priestley–Taylor coefficient
γ ratio of the specific heat of air at

constant pressure toλ
θ soil water content
θdul drained upper limit
θll lower limit
θpe potentially extractable soil water
θsat saturated upper limit
λ latent heat of vapourisation of water

planning over these timescales. In addition, an under-
standing of the impacts of current climate variability
is a prerequisite for the study of the impacts of climate
change(Challinor et al., 2003). These impacts will
be seen across many spatial scales, but it is relatively
large spatial scales, similar to those of regional and
global climate models, that facilitate an integrated
modelling approach to the problem. Hence there is a
need for process-based crop models that can capture
the impact of weather and climate variability on these
spatial scales.

Crop models seek to quantify the relationships be-
tween crop growth and weather, combined with some
of the effects of crop management. These models of-
ten perform well at the field scale. For example, the
five wheat simulation models compared byJamieson
et al. (1998)provided reasonable predictions of the re-
sponse of grain yield to water supply. PNUTGRO, the
CROPGRO configuration for groundnut (i.e. peanut)
has been tested for a plot of unspecified size in Punjab,
India (Kaur and Hundal, 1999)and found to predict
seed yield to within±10% of observed values (r =
0.94). In order to capture variability at the field scale,
such models have a high input data requirement for
information on genotype, soil type, slope and so on.
Other models(e.g. Parthasarathy et al., 1992)use sta-
tistical regressions, and so require less data. However,
statistical models are less adaptable to different con-
ditions over both time (e.g. changing CO2 or temper-
ature) and space (e.g. water- versus radiation-limited
growth).

There is an increasing number of studies examining
the combination of general circulation models (GCMs)
and crop models(Mearns et al., 1999; Hansen and
Jones, 2000; IRI, 2000; Tsvetsinskaya et al., 2001a;
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Mearns et al., 2001). One of the principle issues in the
application of climate forecasts to crop modelling(and
indeed agricultural applications in general: Hansen,
2002)is the disparity in spatial scale between forecast
and impact assessment.Challinor et al. (2003)set out
a methodology for the design of a combined weather
and crop yield forecasting system. It begins with an
exploration of the spatial scale of the relationship be-
tween crop yield and weather. A crop model is then
designed to run at the spatial scale at which a rela-
tionship between crop yield and weather is observed.
A working spatial scale of the order of tens to a few
hundred kilometres (comparable to the resolution of
regional and general circulation models) was estab-
lished for the case of groundnut yield in India. The
current study presents the design and optimisation of
a crop model (the general large-area model for annual
crops, GLAM) which operates on these scales. Ac-
cordingly, the model is sufficiently process-based to
simulate crop productivity over a range of tropical en-
vironments, whilst being simple enough to avoid the
need for large amounts of location-specific input data
or calibration.

There are a variety of approaches to the issues of
choice of complexity (empirical versus process-based
modelling) and spatial scale for modelling crops over
large areas. For example,Brooks et al. (2001)pro-
posed a meta-model of the wheat simulation model
SIRIUS for regional impacts assessments based on
monthly mean weather input data. A spatial model
for simulating wheat crop phenology across Europe
was developed byHarrison et al. (2000)in which
daily temperature data were derived by interpolation
from monthly values.Landau et al. (2000)described
a multiple regression model of wheat yield across
the UK using weather variables averaged over five
development stages. This semi-empirical approach
sought to combine the pragmatism of empirical mod-
elling with a simulated phenology. This model cap-
tures well the average spatial variability in yield, but
cannot be extrapolated outside of current UK cli-
mate conditions.Jagtap and Jones (2002)noted the
impracticality of modelling yields at the field scale
for large area applications. Their study maintained
the process-based approach by simulating regional
variability in soybean yields using an ensemble of
nine CROPGRO-soybean runs (varying planting
date and crop variety) on a 0.5◦ square grid. They

used daily weather inputs from a weather generator.
Simulated yields had a (spatial) median root mean
square error (RMSE) of between 7 and 85%. Finally,
more empirical approaches such as the FAO method
(Doorenbos and Kassam, 1979)are sometimes em-
ployed for large-area crop modelling(Fischer et al.,
2002; Martin et al., 2000). Such approaches assume
a degree of stationarity in derived crop–weather re-
lationships which are not necessarily valid in future
climate scenarios. Further discussion on crop mod-
elling for climate variability applications can be found
in Hansen and Jones (2000)and Challinor et al.
(2003).

The spatial scale of a mathematically one-dimen-
sional crop model is defined by the level of detail and
spatial aggregation of its input data requirements. By
aiming for an intermediate level of input data require-
ment, the spatial scale of GLAM can be varied by
varying the spatial scale of the inputs. Note however
that different input scales can produce very different
simulated yield impacts(Mearns et al., 2001)and
that caution is needed where input crop parameters
are calibrated to account for this since aggregation
error can result(Hansen and Jones, 2000). More com-
plex models such as CROPGRO(Boote and Jones,
1998)include more non-linear processes, so that spa-
tial aggregation of inputs over heterogeneous land is
less justifiable. However, if resources permit, remote
sensing can be used to identify homogeneous crop
regions over which a model such as this can be run
(Basso et al., 2001; Jones and Barnes, 2000; Guerif
and Duke, 2000). GLAM is intended for large (�
field scale) spatial scales. The precise spatial scale on
which GLAM is run should be determined by the scale
of the weather–yield relationship(Challinor et al.,
2003).

GLAM employs a process-based approach, in order
to maintain as high a domain of spatial and tempo-
ral (e.g. climate change) applicability as possible, and
to account for the effects of sub-seasonal variability
in weather. The objective of the model is to repro-
duce the impact of weather on observed crop yield.
This aim leads to two particular model characteris-
tics: firstly, complexity at a level far-removed from
yield-determining processes is omitted(see Sinclair
and Seligman, 2000). Hence, for example, photosyn-
thesis is not modelled directly, but is represented by
a transpiration efficiency. In general, simple param-
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eterisations are favoured over more complex meth-
ods. Secondly, of the impacts on yield due to factors
other than weather (pests, diseases, management fac-
tors, etc.), only two are modelled explicitly: planting
date and soil type. The rest, whilst in reality complex
and varied, are modelled using a single yield-gap pa-
rameter. This allows the model to focus on the impact
of weather and climate on the spatio-temporal vari-
ability of crop yield. The impact of climate on model
yields is two-fold. Firstly, a different climate implies
different statistics of daily weather, which may im-
pact upon crop yield. Secondly, a different climate
may imply different values of model parameters. For
example, the impact of potential future CO2 concen-
trations can be modelled using a parameterised ef-
fect of CO2 on transpiration efficiency. For future cli-
mates, the model may also need to include the sen-
sitivity of yield to weather extremes such as high
temperature(e.g. Wheeler et al., 2000)which may
be encountered with increased frequency. In accor-
dance with the guidelines ofSinclair and Seligman
(2000) all the parameters, except the yield-gap pa-
rameter, can be measured independent of the model
formulation.

GLAM aims to combine the benefits of more
empirical modelling methods such asFischer et al.
(2002) and Landau et al. (2000)(low input data re-
quirement, validity over large areas) with the benefits
of a process-based approach (the potential to cap-
ture variability due to different sub-seasonal weather
patterns, and hence increased validity under fu-
ture climates). The model has been developed such
that different crop-specific parameter values, and
in some cases equations, allow simple and trans-
parent operation across many annual crops. This
approach is similar to that ofWang et al. (2002),
who developed a generic crop modelling template
for more physiologically and spatially detailed
applications.

GLAM is optimised and tested here for groundnut
(i.e. peanut;Arachis hypogaea L.) in India. Extension
to other crops can proceed along similar lines to the
calibrations described inSection 3.1. The model re-
sults presented here are large-scale deterministic hind-
casts carried out in order to look at the stability of
optimal parameters over time, space and input data
(Section 3) and to obtain an estimate of model consis-
tency and skill (Section 4).

2. Model description

The model formulation is described below, using
the following notation: capital subscripts form part
of the identification of a variable type (e.g. harvest
index,HI ) whereas lower case subscripts distinguish
within variable types (e.g. daily maximum and min-
imum temperaturesTmax and Tmin). Empirically de-
termined coefficients are denoted byCx in the di-
mensionless case, andKx for other variables, where
x identifies the particular coefficient. Subscript T is
used for the two transpiration-related quantities (tran-
spiration efficiency,ET, and transpiration rateTT) in
order to distinguish them from temperature (T ) and
evaporation rate (E). Values of all the parameters,
together with sources, are listed inAppendix A. In
total, the model has forty parameters, five of which
vary spatially, and an additional twenty of which are
crop-specific.

2.1. Growth and development

The crop is planted either on a specified date, or
on the first day that the soil moisture exceeds a given
fraction (Csow) of the maximum available soil water.
If this threshold is not reached within a given time
limit (30 days has been used in this study) then the
crop is planted regardless. Emergence (the first day on
which LAI, leaf area index, becomes non-zero) occurs
tem days after sowing (tem = 8 for groundnut). The
thermal time elapsed within a given development stage
is given by

tTT =
∫ T

ti

(Teff − Tb)dt (1)

where t is the time, Tb is the base temperature,
below which development ceases, andi is the de-
velopment stage number, equal to 0 between sowing
and flowering, 1 between flowering and pod-filling,
2 between pod-initiation and maximum LAI and 3
between maximum LAI and maturity. Development
stage i starts at timeti and is completed after a
specified durationtTTi has elapsed and harvest is at
maturity.

The effective temperature,Teff is defined as follows
using the cardinal temperaturesTb, To andTm, where
the subscripts denote base, optimum and maximum
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temperatures, respectively.

Teff

=




T̄ Tb ≤ T̄ ≤ To

To − (To − Tb)

(
T̄ − To

Tm − To

)
To < T̄ < Tm

Tb T̄ ≥ Tm, T̄ < Tb

(2)

The mean daily temperature,T̄ is taken either directly
from measurements, or as the average ofTmin and
Tmax.

The growth of the crop leaf area is determined as
follows:

∂L

∂t
=




(
∂L

∂t

)
max
CYG min

(
S

Scr
,1

)
i < 3

0 i = 3
(3)

whereL is the effective LAI (see below),(∂L/∂t)max
is a prescribed constant and

S = TT

TTpot
(4)

is the soil water stress factor, which begins to affect
growth at values less than the critical threshold value
Scr. TT andTTpot are the rates of transpiration and po-
tential transpiration, respectively.CYG is the yield gap
parameter, used to reduce LAI from the physical value
to an effective value which accounts for the mean ef-
fects of pests, diseases and non-optimal management.
Yield potential (maximum obtainable yields as deter-
mined by weather and crop) may be simulated by set-
ting CYG = 1. This approach to the yield gap is sim-
ilar to that of Jagtap and Jones (2002), whose yield
correction factor is appliedafter the crop simulation.
The roots grow according to the following equations:

∂lv(z = 0)

∂L
= prescribed constant,

VEF = prescribed constant,

lv(z = zef) = prescribed constant (5)

wherelv is the root length density by volume,z de-
notes depth into the soil,zef is the depth of the root
extraction front andVEF is the extraction front veloc-
ity. Above-ground biomass (W) is determined by a

separate prognostic equation:

∂W

∂t
= TT min

(
ET

V
,ETN,max

)
(6)

where V is the vapour pressure deficit (VPD=
esat(T̄ ) − e, where e is the vapour pressure),ET
is the normalised transpiration efficiency in Pa (i.e.
V × transpiration efficiency in g kg−1), andETN,max
is the maximum transpiration efficiency in g kg−1.
In the case of studies in possible future climates,ET
would be increased from current values as a simulated
response to higher CO2 levels.

Where humidity measurements are not used,V is
parameterised as

V = CV [esat(Tmax)− esat(Tmin)] (7)

whereCV is a constant(Tanner and Sinclair, 1983).
The saturation vapour pressure deficit at temperature
T , esat(T), is determined afterBolton (1980). Yield
is determined using harvest index,HI . For i < 2 the
yield component is zero, and fori ≥ 2

∂HI

∂t
= prescribed constant, Y = HIW (8)

2.2. Water balance equations

The drained upper limit, lower limit and satura-
tion limit of the soil (θdul, θll and θsat, respectively)
are assumed to be constant throughout the profile,
which is of depthzmax (set equal to the maximum
attainable rooting depth). The soil is split intoNSL
soil layers, each with a value oflv(z) determined by
Eq. (5), and a value of the volumetric soil water con-
tent, θ, determined at each time step (1 day) by car-
rying out the following steps in order: firstly, rainfall
runoff occurs according to the US Soil Conservation
Service method(USDA-SCS, 1964; Choudhury and
DiGirolamo, 1998):

R = P2

P + S (9)

whereR is the runoff,P is the precipitation andS is
the amount of water that can soak into the soil. The
latter is set equal to the saturated hydraulic conductiv-
ity of the soil,ksat. Interception by the leaf canopy is
ignored since it is a small term made hard to estimate
by uncertainty in rainfall data and canopy architecture.



104 A.J. Challinor et al. / Agricultural and Forest Meteorology 124 (2004) 99–120

The second step in the soil water balance sequence
is drainage, which occurs according to the scheme of
Suleiman (1999):

∂θ

∂t
= −FD(θs − θdul),

D = Cd1θ
2
dul + Cd2θdul + Cd3,

F = 1 − ln(Qi + 1)

ln(ksat+ 1)
, ksat = Kks

(
θsat− θdul

θdul

)2

(10)

whereFD is the drainage rate, the factorF account-
ing for simultaneous inflow from the layer above,θs
is the initial value ofθ, Qi is the incoming water flux
from the layer above (P − R in the case of the up-
permost layer).Cd1, Cd2, Cd3 andKks are empirical
constants.

Finally, water is extracted over the depthzed by
evaporation, and over the root-zone depth by roots,
according to the amount of transpiration (Eq. (19)).
Note that zed must be a multiple of the soil layer
depth (two in the case of the current study). The op-
timal NSL was found by plotting yield againstNSL
for a givenzed over a number of environments (not
shown). ForNSL > 25 variation in yield was small (<
1%), thereforeNSL = 25 was adopted for all model
runs.

2.3. Evaporation and transpiration

Transpiration (TT) and evaporation rates (E) are de-
termined by considering separately the limitations im-
posed by plant/soil structure, energy availability, and
water availability. Potential values ofE andTT are de-
fined as being limited by only the first two of these
constraints. The physiologically limited transpiration
is modelled using an empirical relationship based on
the data ofAzam-Ali (1984):

T
p
Tpot =



TTmax

(
1 − Lcr − L

Lcr

)
L < Lcr

T
p
Tpot = TTmax L ≥ Lcr

(11)

whereLcr is a critical threshold value ofL andTTmax
is the maximum possible potential transpiration rate.

The energy-limited evaporation and transpiration
rates (Ee andT e

T, respectively) are defined to be con-
sistent with the Priestley–Taylor equation(Priestly and

Taylor, 1972)so that potential evapotranspiration rate
is given by

ET
pot = Ee + T e

T = α

λ

∆(RN −G)
∆+ γ (12)

whereRN is the net all-wave radiation,G is the soil
heat flux,λ is the latent heat of vapourisation of water,
∆ = ∂esat/∂T , determined afterBolton (1980), and
γ is the ratio of the specific heat of air at constant
pressure to the latent heat of vapourisation of water.
The Priestley–Taylor coefficient (α) is parameterised
after Jury and Tanner (1975)as a function of VPD, a
constant reference value of VPD (Vref) (Steiner et al.,
1991)and a pre-correction valueα0 = 1.26 (Priestly
and Taylor, 1972):

α = 1 + (α0 − 1)
V

Vref
(13)

This method was chosen because it takes some account
of aerodynamic (i.e. advective) effects on the exchange
of water vapour from the surface without the need for
windspeed data.

The net radiation is estimated from the solar radia-
tion using

RN = (1 − A)Srad (14)

whereSrad is the incoming short-wave radiation and
A is the mean albedo of the surface. This assumes
that net long-wave radiation is zero, which is very rea-
sonable under monsoon (i.e. cloudy) conditions. Dur-
ing monsoon breaks, and during the dry season, clear
skies mean thatRN can be over-estimated by up to
100 W m−2. However, sensitivity studies have shown
that this has an insignificant effect on the model sim-
ulations.

Modelling the light interception using the Beer–
Bougert equation(see, e.g. Arya, 1988)then gives

Ee = (1 − CG)ET
maxe−kL (15)

and

T e
T = ET

max(1 − e−kL) (16)

and whereCG is the constant in the equation for the
soil heat flux,G = CGRN e−kL (Choudhury et al.,
1987) and k is the extinction coefficient.ET

max, the
maximum possible energy-limited evapotranspiration
is given by settingG = 0 in Eq. (12).
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The potential (energy and soil-structure limited)
daily evaporation is modelled afterCooper et al.
(1983):

Es
pot =

Ee

tR
(17)

where tR is the number of days since the daily to-
tal rainfall was greater than a threshold value ofPcr.
This threshold value was chosen to be just above zero
(1 mm) to avoid unrealistically high potential evapo-
ration just after low rainfall.

The potential (energy and physiology limited) tran-
spiration rate is given by

TTpot = min(T p
Tpot, T

e
T) (18)

Now that energetic and structural constraints have
been modelled, it only remains to account for limited
water availability. This is done by partitioning the
available water according to demand where necessary,
so that

TT = TTpot and E = Epot for θpe ≥ ET
pot,

TT = θpe
T e

T

T e
T + Ee and E = θpe

Ee

T e
T + Ee

for θpe< E
T
pot (19)

whereθpe is the potentially extractable soil water. This
is given by using the parameterisation ofPassioura
(1983):

θpe =
∫ zmax

0
θcr(1 − ekDIFlv(z)te(z))dz (20)

where te(z) is the time of first root uptake in layer
z, and kDIF is the uptake diffusion coefficient.te(z)
is determined initially as the time of arrival of the
extraction front, and subsequently as the time at which
the equation is re-initiated as a result of wetting such
that θ(z) > θcr, where

θcr = θrll + Cθ(θdul − θrll ) (21)

(Allen et al., 1998)andCθ is a constant.

3. Calibration and parameter optimisation

3.1. Method

The model has been calibrated and tested for
groundnut in India, using thirty-five 2.5◦ × 2.5◦

grid cells. Both Rabi (irrigated November sowing,
March–April harvest) and Kharif (monsoon season;
June or July sowing, September–December har-
vest) seasons were simulated. The Rabi season crop
was simulated with water non-limiting (S = 1; see
Eq. (4)). The current study focusses mainly on three
grid cells, identified by the (majority) geographical
State in which they lie: (i) Andhra Pradesh (AP), an
inland cell towards the south of India, (ii) Gujarat
(GJ), the westernmost cell, and (iii) Uttar Pradesh
(UP) in the northeast of India. These were chosen
for their geographical and meteorological diversity,
and for the range of Rabi:Kharif growing area ratios
(Fig. 1). The States of Gujarat and Andhra Pradesh
together accounted for 44% of India’s total groundnut
production over the study period (1966–1989).

Model parameters (seeAppendix A) were deter-
mined from the literature where possible, with a pref-
erence for the most widely grown cultivar in southern
India, TMV-2. The parameters which were not taken
from the literature were determined as follows: the
maximum LAI growth rate,(∂L/∂t)max, was allowed
a broad range corresponding to the range of possi-
ble maximal (i.e. non-water limited) LAI values for a
groundnut crop planted across a range of sowing den-
sities. The thermal durations,tTT0–tTT3, were obtained
by calculating the durations of the corresponding peri-
ods in a series of runs of CROPGRO-groundnut(Boote
and Jones, 1998)carried out using TMV-2 coefficients
over various years and locations in India. The max-
imum transpiration efficiency,ETN,max, was given a
broad range which included values low enough to give
biomass results comparable to and less than parallel
CROPGRO runs, and high enough to not limitET
at all. The critical soil water stress factor,Scr (see
Eq. (3)), was given the broad range 0.5–1, and found
not to greatly affect results.

In addition to the above global (site-independent)
parameters, there are two model parameters which
vary spatially. These are the yield gap parameter,CYG,
given the broad range of 0.1–1.0, and the planting
date. The latter was derived for rainfed crops using a
threshold soil moisture parameter (Csow) as described
in Section 2.1. The value ofCsow had little impact
upon the results over the range tested (0.3–0.7) and the
central value of 0.5(similar to the value of 0.6 used by
Gadgil et al. (1999))was adopted. For irrigated crops,
the planting date was set equal to the earliest sowing
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Fig. 1. Location of the three grid cells studied (AP in Andhra Pradesh, GJ in Gujarat, and UP in Uttar Pradesh). The legend shows
June–September rainfall and the fraction of total production grown in the Rabi season. Also shown are the remaining 32 grid cells used in
the all-India (ALLIN) runs, and the subdivisional boundaries. Grey shading indicates subdivisions which had a mean groundnut-growing
area of less than 150 km2 over the period 1966–1989. SeeSection 3.2for data sources.

date (the irrigated runs were not sensitive to planting
date). The earliest planting date was taken fromReddy
(1988), and the soil moisture on this date (θs) was cho-
sen to be equal to the drained lower limit (θll ). The
lack of separate Kharif and Rabi yield data means that
the Kharif and Rabi runs had to be calibrated jointly; a
single set of crop parameters, includingCYG, was de-
rived for each grid cell. Whilst being a simplification,
this was considered more realistic than not simulating
the Rabi season crop at all.

3.2. Datasets

The daily weather inputs for this study were one of
two possible sets: (i) MMT—maximum and minimum
temperature over 24 h on a macro-regional scale(six
regions across India; see Pant and Kumar, 1997)with
Eq. (7) to determine the humidity, and̄T = (Tmax +
Tmin)/2; and (ii) VAP—vapour pressure deficit and
mean temperature on a 0.5◦ × 0.5◦ grid (New et al.,
2000). Both sets use daily rainfall for June–September

on a 2.5◦×2.5◦ grid from the Indian Institute of Trop-
ical Meteorology (http://www.tropmet.res.in/), and ra-
diation on a 0.5◦ × 0.5◦ grid (New et al., 1999). All
inputs except rainfall are monthly means, which were
interpolated linearly to daily values. As a result, inputs
other than rainfall will have a reduced standard devia-
tion in comparison to observations. All data have inter-
annual variability with the exception of surface incom-
ing solar radiation (Srad), which is a 1966–1990 clima-
tology. All the inputs were (linearly) spatially interpo-
lated (Tmax andTmin) or averaged (Srad, T̄ , VPD) onto
the rainfall grid, and the model was run on this grid.

Soil hydrological properties were derived from
FAO/UNESCO (1974). The textural categories were
used to assign each 0.5◦ × 0.5◦ grid square to one
of seven classes, five ranging in texture from sand to
clay, with the addition of lithosol and organic cate-
gories(Tate, 2001). Values of the soil parameters (θsat,
θll andθdul) for each run were obtained by averaging
onto the model grid. To account for the uncertainty
in the representation of soil hydrological parameters

http://www.tropmet.res.in/
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over such large areas using these parameters, three
possible sets of the soil parameters were defined,
corresponding to mean, upper, and lower values of
the maximum available soil water within each of the
seven classes. These three sub-classes are referred to
as course, medium and fine. The soil parameters are
listed inAppendix A.

Yearly district-level groundnut production and irri-
gation level (fraction of total growing area irrigated)
data for the period 1966–1995 have been compiled
by the Socio-economic Policy Division of the Inter-
national Crops Research Institute for the Semi-Arid
Tropics (ICRISAT), Patancheru, India, from yearly
agricultural bulletins (Agricultural Situation in India,
Department of Agriculture, Government of India).
Districts range in size from less than 1 to 46,800 km2

(average 8300 km2), although there are only two dis-
tricts which are less than 690 km2 in area. AP has
five groundnut-growing districts, and GJ and UP each
have one. The data set contains growing-area and pro-
duction by weight. Yield data on the model grid were
calculated from the district data. Linearly detrending
the yield data (after upscaling to the model grid) pro-
duced data at the production technology level of the
start year, and these data were used in the model cali-
bration and evaluation procedure. District-level yields
within AP in any 1 year varied by over 200% on five
occasions. Because of this high level of variability,
district-level yields were not used in the validation
procedure. However, higher resolution rainfall data
would allow a study of subgrid variability in the future.

All the results presented, unless otherwise stated,
have the yield calculated from the two seasons (Rabi
and Kharif, seeSection 3.1) summed using the
district-level irrigation data upscaled to the model
grid. The statistics of the weather and groundnut pro-

Table 1
Statistics of groundnut production and weather in the three study cells

Cell code Acell/AAI (%) ARabi/Acell JJAS ppn (mm) T̄ (◦C) Srad (MJ m−2 per day)

Mean σ Mean σ JJAS DJFM JJAS DJFM

AP 6.4 24 6 517 159 31.0 24.4 15.2 18.9
GJ 5.1 0 0 369 181 30.1 23.5 17.5 17.3
UP 0.1 1 1 950 182 30.6 20.5 15.6 14.6

Acell is the area used for groundnut cultivation in grid cell, andAAI is the total all-India groundnut area. Superscript Rabi indicates Rabi
growing season only. JJAS and DJFM are June–September and December–March, respectively.T̄ is the time-mean temperature from the
MMT (maximum and minimum daily temperature) data, ppn is the precipitation, andSrad is the incoming solar radiation.

duction in the three chosen grid cells over the study
period are presented inTable 1. Further information
on the statistics of groundnut production, and its rela-
tionship to rainfall in India, can be found inChallinor
et al. (2003). All three cells have predominantly silt
loam or clay loam sands.

3.3. Determination and stability of optimal
parameters

The GLAM model seeks to maintain a broad range
of applicability without the need for heavy local
fine-tuning. Hence the optimal value of global param-
eters should remain constant over space and time. The
yield gap parameter (CYG) should be stable over time
for each site, and together with local soil parameters
and weather data will provide the spatio-temporal
variability in yield. Stability of parameters implies
that optimal parameters are independent of the subset
of data used to determine them; hence this analysis is
an alternative method of model evaluation to methods
separating data into calibration and testing subsets.

The optimal parameter set was determined by first
examining one grid cell, using one set of input data
(MMT; seeSection 3.2). GJ was chosen, as the crop
there is 100% rainfed. In order to examine the con-
sistency of model parameters across space, all model
parameters were varied in turn across the ranges listed
in Appendix A. The optimal set was defined as that
which minimised the RMSE. This procedure was re-
peated a number of times to ensure the local mini-
mum in RMSE had been found. Although no system-
atic study was undertaken, there was no evidence for
multiple minima.

The yield gap parameters (CYG) for the other two
grid cells (UP and AP) were then determined, again by
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minimising the RMSE. In order to examine the spatial
variability of the optimal parameter set, the RMSE
was examined across parameter space for these two
cells. The optimal parameter set was found not to vary
appreciably across the three cells, despite differences
in the climate and ratio of Rabi:Kharif. The optimal
value ofCYG for the remaining 32 groundnut-growing
grid cells (Fig. 1) was determined using this optimal
parameter set. The RMSE of all 35 cells taken together
(referred to as ALLIN) was measured and found to
produce optimal parameters consistent with those of
individual cells.

A similar procedure was carried out using VAP data.
Different optimal values ofCYG were found (Fig. 2a)
whilst the optimal values of the other parameters re-
mained the same. When theCYG values from the
MMT run were used, different optimal values of other
parameters resulted, and these optimal values varied
spatially. Hence model calibration can compensate to
some degree for differences in input weather data and
produce a parameter set which is internally consistent
across space. When the model is calibrated with, for
example, GCM output, a different set ofCYG is likely
to result.

The consistency of model parameters across time
is also important. For the most part there is little to
no difference between optimal values ofCYG when
three different time periods are used (Fig. 2). The ex-
ception is GJ, where the optimal value varied between
0.3 and 0.9 for the three time periods. However, the
RMSE for the time period 1966–1989 varied by less
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Fig. 2. Root mean square error as a function of the yield gap parameter, CYG, for three grid cells—UP (solid line), GJ (dashed line)
and AP (dotted line)—and using two time periods—(a) 1966–1989 and (b) 1966–1977. Using the 1978–1989 time period (not shown)
produces very similar results. The MMT (thin lines) run uses input maximum and minimum daily temperature, and the VAP (thick lines)
run uses input vapour pressure deficit.

than 4% when using these three CYG values. Yields in
GJ are often heavily rainfall-limited, so that the simu-
lated yields are relatively insensitive to CYG. Because
of this insensitivity to the time window used for opti-
misation, the CYG set obtained from optimisation over
1966–1989 was defined as the calibrated set of values
(rather than performing cross-validation).

Transpiration efficiency, ET, is the key parame-
ter which links the water budget of the system to
biomass. The stability of the optimal transpiration ef-
ficiency across space and input data is illustrated for
the Medium soil subclass in Fig. 3. Use of the coarse
and fine subclasses produced very similar results (the
same optimal parameter values and e.g. r2 > 0.9997
for all three pairs of time series for GJ) and so were
not plotted. The extinction coefficient, k, is a key pa-
rameter in determining the energy available for tran-
spiration, and its stability across space and input data
is presented for the medium soil subclass in Fig. 4.
Coarse and fine subclasses again produced very simi-
lar results and so are not plotted. The optimal values of
all the model parameters were found to be within the
ranges suggested by the literature (Appendix A). The
optimal transpiration efficiency, ET (Fig. 3) is nearer
to the values observed by Kakani (2001) (e.g. 1.3 Pa)
in a field experiment in Hyderabad, India, than the val-
ues (up to 4 Pa) reported for experiments in Queens-
land, Australia (Chapman et al., 1993; Wright et al.,
1988). These latter values were for fertilised crop, and
included root biomass in the calculation, which may
explain why they are higher.
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Fig. 3. Two measures of model errors for a range of values of transpiration efficiency. Lower panels: UP (solid line), GJ (dashed line) and
AP (dotted line) grid cells for both the MMT (thin lines) and VAP (thick lines) runs. Also shown is the VAP UP run with MMT-optimal
values of CYG (crosses). Upper panels: ALLIN runs for MMT data (thin lines) and VAP data (thick lines).

Fig. 5 shows the variation in (∂HI/∂t) (a key model
parameter in linking biomass to yield) when using
different sections of the available time period. In ad-
dition, two detrending methods are used. The optimal
value is stable over time if the baseline period is kept
constant (i.e. a single linear detrend over 1966–1989).
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Fig. 4. Two measures of model errors for a range of values of the extinction coefficient (k). Lower panels: UP (solid line), GJ (dashed line)
and AP (dotted line) grid cells for both MMT (thin lines) and VAP (thick lines) runs. Also shown is the VAP UP run with MMT-optimal
values of CYG (crosses). Upper panels: ALLIN runs for MMT data (thin lines) and VAP data (thick lines).

However, if two piece-wise regressions are used, the
optimal values are not constant. This effect can be
seen with other parameters and other subdivisions
also (not shown). It highlights a difficulty with mak-
ing a system such as this operational; separating the
trend from the variability is not trivial, particularly
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Fig. 5. Root mean square error for the period YRs–YRe for the AP grid cell using baseline period 1966–1989 (left panel) and two-piece
linear regression (1966–YRs), (YRs–YRe). YRs and YRe are given in the legend.

when one considers the potential effects of climate
change.

Optimisation was also carried out for the five
district-level yield time series within AP. In crop mod-
elling terms, the spatial scale of districts is still con-
sidered to be ‘ large area’ . The lack of smaller-scale
weather data prevented an assessment of model out-
put at this scale. However, the optimal value of global
parameters remained invariant, so long as newly cali-
brated district values of CYG were used.

4. Model evaluation

The performance of the model was evaluated using
two methods. First, consistency checks: output diag-
nostic variables such as specific leaf area and radiation
use efficiency were calculated (Section 4.1). Second,
measured and modelled yield time series were com-
pared across three different regions for different input
data, using statistical weather–yield correlations as a
benchmark (Section 4.2). All quoted correlations are
for a 24-year time series, so that correlations above
0.41 are significant at the 5% level, and correlations
above 0.52 are significant at the 1% level.

4.1. Assessment of model internal consistency

Some tests were carried out on the output from the
model for all grid cells in India (ALLIN) using the

optimal parameter set. Final harvest indices ranged
from 0.34 to 0.44, and the final LAI for most runs was
in the region 0.5–1.5 for Kharif runs, and 0.5–2.5 for
irrigated runs.

In order to assess specific leaf area (SLA, the ra-
tio of leaf area to dry leaf weight), MMT runs were
carried out with CYG = 1, since this gives an actual
rather than effective LAI (Section 2.1), which is con-
sistent with the biomass calculation. SLA was esti-
mated using above-ground biomass and LAI; this re-
sults in a slight underestimation, since roots and stems
are included in the calculation. The mean SLA for all
the rainfed Kharif runs was 214 cm2 g−1, with a stan-
dard deviation of 66 cm2 g−1. The Rabi runs gave the
slightly higher mean value of 227 cm2 g−1, with a stan-
dard deviation of 25 cm2 g−1. These values are com-
parable to measured values reported by Nautiyal et al.
(2002) (144–241 cm2 g−1) and Nigam et al. (2001)
(123–206 cm2 g−1).

End-of-season root length per unit leaf area had
a mean (24 years) value of 79 cm−1 for the MMT
Kharif runs. This is larger than the range of values
(∼10–60 cm−1) published in Monteith et al. (1997) for
various field experiments (see also Rao et al., 1989).
However, the ALLIN runs with CYG = 1, produced a
more realistic average of 57 cm−1, due to the higher
LAI values achieved.

The radiation use efficiency (RUE, the ratio of
above-ground dry weight to radiation intercepted) of
irrigated MMT Kharif runs for UP, AP and GJ was
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Fig. 6. End-of-season above-ground biomass vs. cumulative absorbed radiation for UP (crosses), GJ (circles) and AP (squares) grid cells.
The regression lines shown lead to radiation use efficiency values of 0.99, 0.71 and 1.00 g MJ−1, respectively. The correlation coefficients
for the regressions are 0.77, 0.49 and 0.86, respectively. Note that intercepted (as opposed to absorbed) radiation is not explicitly modelled.
The total (soil + crop) albedo is 0.2.

0.99, 1.00 and 0.71, respectively (Fig. 6). These val-
ues agree with the reported values of 0.74 g MJ−1

(Azam-Ali, 1998) and 1.0 g MJ−1 (used by Hammer
et al. (1995) as a model parameter and based on the
observed values of Bell et al. (1992) and Bennett
et al. (1993)). RUE in the rainfed case is lower (0.83,
0.63 and 0.40, respectively).

4.2. Assessment of model skill

This section compares model output (using opti-
mised model parameters) to measured yields. Firstly,
model skill at the grid scale is assessed, together
with the ability of GLAM to capture the effects of
sub-seasonal weather variability on crop yield. Sec-
ondly, an assessment of model skill using larger
spatial scales (up to all-India) is presented.

Differences between the yields simulated using the
three different soil subclasses were relatively small
(less than 5% change in RMSE, and no statistically
significant differences in the correlation coefficient).

Hence, in all cases, the medium soil subclass is
used.

4.2.1. Model skill at the grid scale
Model skill can be assessed both in absolute terms

and relative to statistical relationships. As well as
mean skill it is important to consider the marginal ben-
efit of the inclusion of the Rabi season yields, as well
as variability in skill over time and across different en-
vironments (e.g. water-limited versus well-watered).
It is also important to examine the skill of the model
in translating sub-seasonal weather variability into
crop yield impacts, since this is one of the objec-
tives of GLAM. This section deals briefly with these
issues.

The mean RMSE for all 35 grid cells was
214 kg ha−1 (with standard deviation 77 kg ha−1) for
the MMT run and 202 kg ha−1 (with standard de-
viation 51 kg ha−1) for the VAP data. Most of the
correlation between data and model comes from the
rainfed Kharif runs, although for four cases the cor-
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relation was higher with the inclusion of the Rabi
season. Where irrigation is significant (�50%), the
inclusion of the Rabi fraction is essential (in min-
imising RMSE) as it removes the summer climate
signal from the yields. For AP, the RMSE was sim-
ilar whether the Rabi fraction was included or not
(as long as the model was re-calibrated on the Kharif
runs only). The Rabi yields are generally lower than
the Kharif yields, since Rabi VPD is higher (see
Eq. (6)). This is contrary to observations from south-
ern India (Virmani and Shurpali, 1999) which show
that Rabi yields tend to be higher than Kharif by a
factor of approximately 1.4–2. Errors in the model
simulation of Rabi yields may result from the use of
an imposed humidity which fails to account for the
modification of local humidity by crop evapotranspi-
ration. Another potential source of error arises from
the vapour pressure data: this is the mean of one or
several daily measurements (New et al., 1999), which
may or may not be consistent with the daily aver-
age temperature. Hence the non-linear relationship
between temperature and esat can lead to errors in
the estimation of VPD. Fixing the Rabi-season VPD
such that yields are 1.4–2 times the Kharif yields and
recalibrating CYG did not lower the RMSE. Hence
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Fig. 7. Time series of observed (solid) and simulated (dashed) yields for the three grid cells—GJ (upper panel), AP (middle panel) and
UP (lower panel). MMT data (daily maximum and minimum temperature) were the model inputs for these simulations.

the inclusion of Rabi simulations where irrigation
is not significant does not improve agreement with
data.

The three observed and simulated yield time series
are presented in Fig. 7. GJ has RMSE 281 kg ha−1

(44% of the mean detrended observed yields, and
68% of the observed interannual standard deviation,
σy) and correlation coefficient r = 0.74. AP has
RMSE 105 kg ha−1 (18% of the mean, and 106%
of σy) and correlation coefficient r = 0.42. UP has
RMSE 176 kg ha−1 (27% of the mean, 111% of σy)
and correlation coefficient r = 0.00. These differ-
ences in r reflect differences in the strength of the
climate signal. Higher correlations are associated
with higher standard deviation, so that the impact of
increased climate variability is a stronger and hence
more predictable impact upon yield. This means that
predictability is greatest where human vulnerability
to yield variability is greatest.

When the skill of the model was evaluated for
six different time periods (1966–1989, 1966–1983,
1972–1989, 1966–1977, 1972–1983 and 1978–1989)
no statistically significant differences in correlation
were found. In GJ, any time period including the
years 1983–1989 produced a substantially higher
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RMSE; e.g. 1966–1977 had RMSE = 196 kg ha−1,
and 1978–1989 had RMSE = 346 kg ha−1.

As a simple test of spatial variability, Fig. 8 shows
the skill of the model in reproducing yield differences
between the three sites. Since GJ has much greater
variability in yield than the other two sites, this signal
dominates two of the difference plots. The correlation
coefficient for each of the difference pairs (observed
and simulated yields) is 0.69 (UP minus GJ), 0.30 (UP
minus AP) and 0.67 (GJ minus AP). The difference is
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Fig. 9. Taylor diagram of 1966–1989 model output statistics using both MMT (filled) and VAP (open) data, for the UP (circles), GJ
(squares) and AP (triangles) grid cells. Standard deviation has been normalised with respect to observations, so that the distance from any
point to the point (1, 1) is proportional to the centred (i.e. non-systematic) RMSE in units of observed standard deviation. Also shown
are the observed correlations between June and September rainfall and observed yield for UP (solid grey line), GJ (dashed line) and AP
(dot-dashed line). A perfectly optimised statistical model based on rainfall alone would be represented by the perpendicular bisector of
the point (1, 1) and the correlation line. (See Taylor, 2001, for the full theory behind this diagram.)

of the correct sign in 20, 16 and 22 cases out of 23,
respectively.

A statistical model does not resolve biophysical
processes and may not retain applicability under
changing climates. However, a comparison between
observed rainfall–yield correlations and model cor-
relations provides a useful benchmark for the as-
sessment of skill of the GLAM formulation. If the
model can perform comparably to statistics using
simple interpolated monthly means (except for rain-
fall, which is daily) then this is encouraging: using
daily data, the model should perform better still.
A Taylor diagram (Taylor, 2001) summarises and
compares the performance of the model runs for
the three sites using VAP and MMT data (Fig. 9).
This diagram allows the simultaneous comparison
of modelled and measured standard deviation, cor-
relation and RMSE. Although GJ has the highest
absolute RMSE, this diagram shows that when ob-
served variability is taken into account, it is clearly
the cell with the most skill. The model correlations
are comparable to or better than those obtained
from correlating June–September rainfall and yield.
In two of the three cases the MMT runs perform
better than the VAP runs. In all three cases the
standard deviation of yield is lower than that ob-
served.
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A more realistic standard deviation may be achieved
by changing the soil type and/or sowing criteria, but
only in the situations were the correlation coefficient
is high will this lower the RMSE. Perhaps more im-
portantly, higher temporal resolution in the weather in-
puts, and use of solar radiation data with inter-annual
variability may result in greater variability in model
output.

UP was the only site where rainfall was not
often limiting yields. Here modelled yields were
well-correlated with duration (r = 0.82) and VPD
(r = −0.68). Measured yields in UP showed no corre-
lation with VPD, and some correlation with modelled
duration (r = 0.43). In order to attempt to capitalise
on the RUE relationship which was explored in the
last section, the solar radiation parameterisation of
Ramkrishnan and Ritchie (2000), which uses Tmax
and Tmin as a proxy for cloud cover, was used in place
of the CRU data. It was thought that this may im-
prove correlations in well-watered conditions, where
radiation is the limiting factor. Using a re-calibrated
value of CYG = 0.15, the RMSE for the MMT run
was slightly lower than with the CRU data (167 and
176 kg ha−1, respectively). This indicates that the use
of solar radiation data with a higher temporal reso-
lution could improve model skill. Where such data
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Fig. 10. Rainfall time series for grid cell GJ for 1975 (bars) and 1981 (crosses).

are not available, the approach of Ramkrishnan and
Ritchie (2000) may prove useful.

The impact of sub-seasonal weather variability on
crop yields can be significant (Gadgil et al., 2002;
Hansen and Jones, 2000). As an illustration of the
importance of capturing the effects of sub-seasonal
variability, consider the observed rainfall in GJ in the
years 1975 and 1981 (Fig. 10). The total rainfall dur-
ing the simulation period was similar in each case
(394 and 389 mm, respectively), but because of the
different sub-seasonal distributions, modelled yields
in each case were different (1059 and 844 kg ha−1, re-
spectively). This difference is reflected in the observed
yields (1360 and 901 kg ha−1, respectively).

4.2.2. Model skill at larger scales
When the model output is aggregated over more

that one grid cell (2.5◦ square), the RMSE generally
falls. For example, aggregating GJ with the neigh-
bouring grid cell to the southwest gives an RMSE of
232 kg ha−1, compared with 281 and 256 for the two
cells taken individually. The correlation between ob-
served and simulated yields remains high (r = 0.80
compared with 0.74 and 0.69 for the individual cells).
Part of the reason for the fall in RMSE upon aggrega-
tion is associated with a reduction of observed stan-
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Fig. 11. Observed all-India yields from the Food and Agriculture Organisation (dashed line) and as calculated from ICRISAT data (solid
line) together with GLAM–MMT all-India yields (dotted line). The latter were formed by adding the observed grid-scale trend to the
modelled yields and aggregating (since simulation was for yields at 1966 levels).

dard deviation (which is 305 and 146 kg ha−1 for the
individual sites, and 282 for the aggregated data).

Aggregating over all the grid cells allows a hind-
cast of the all-India yields. For this simulation,
the values of CYG were determined by two-fold
cross-validation—i.e. the values determined by
RMSE-minimisation for the first half of the time se-
ries (1966–1977) were used to determine yields in the
second half (1978–1989) and vice versa. This method
was introduced here since for some cells optimal
values of CYG were different in the first and second
half of the time series. These small changes were
significant in only a few cases. For example, for the
MMT runs, use of CYG values determined from the
first or second half of the data set resulted in RMSE
increases of over 5% in only one (first half) or two
(second half) cells.

The all-India simulations are presented in Fig. 11.
The correlation coefficient between observed and
modelled yields is 0.76 for both data-sets, and the
normalised standard deviation (simulated/observed)
is 1.03 when ICRISAT observed yields are used and
0.99 when FAO data are used. The RMSE with respect
the ICRISAT data is 69 kg ha−1, and with respect to
the FAO data it is 67 kg ha−1 (less than 9% of the
mean detrended observed yields, and less than 74%

of observed standard deviation). That the all-India re-
sults are better than the individual cell output is partly
due to a cancellation of errors in simulated standard
deviation of yield between the northwest and the
southern peninsula: under-prediction in the GJ region,
and over-prediction south of AP. Regional variation in
model errors can be attributed to a number of factors,
which fit into three broad categories: (i) weather and
yield data inaccuracy, (ii) imperfect model response
to different weather regimes, and (iii) temporal vari-
ability in management, pests and diseases, which is
not accounted for by the model.

5. Summary and conclusions

The general large-area model for annual crops has
been presented and optimised for the case of ground-
nut in India. The model is relatively simple, having 40
parameters, 5 of which vary spatially (3 soils param-
eters, planting date, and the yield gap parameter), 20
of which are crop-specific. When run in deterministic
hindcast mode, model parameters are relatively stable
over space and time. This stability breaks down when
shorter time periods are used as the baseline for re-
moval of the technology trend. In the context of the
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prediction of inter-annual variability in crop yield un-
der changing climates, this presents a challenge: the
long-term (∼20 years) time trend must be well esti-
mated.

GLAM output has been shown to have skill compa-
rable to or greater than the skill of a statistical model.
The skill varies with the strength of the climate signal
and should be considered relative to the skill of other
modelling options: high resolution, input-heavy mod-
elling was not an option for our application. Aggre-
gated all-India yields were simulated with an RMSE of
less than 9%. The character of the results was indepen-
dent of the two types of input data used. The model has
the potential to resolve yield response to sub-seasonal
climate variability, and a simple case study has ex-
plored this for the case of rainfall.

The model is suitable for use with large-scale in-
put data such as gridded climate model output and
re-analysis data, where an exploitable correlation ex-
ists between weather and yield on the scale in question
(Challinor et al., 2003). The model can be used where
more spatially detailed modelling followed by aggre-
gation is not plausible (due to, for example, resource
limitations or input data availability/quality). It could
be used in the kind of hybrid modelling approach de-
scribed by Hansen and Jones (2000).

Further development to include interactive coupling
with a GCM (see, e.g. Tsvetsinskaya et al., 2001a,b)
may reduce model errors by allowing the crop to mod-
ify its own environment through surface VPD feed-
backs. This may be particularly important for irrigated
crops grown during the dry season, when observed
large-scale VPD may be higher than that found in the
crop canopy.

This study is a first attempt to model yields over
large areas using minimal data input and calibration.
GLAM succeeds in its aim of capturing climate-

Parameter Used in Value(s) Source

Growth and development
Csow Section 2.1 0.5 Section 3.1(
∂L

∂t

)
max

Eq. (3) 0.01–0.10 [0.1] per day Section 3.1

Scr Eq. (3) 0.5–1.0 [0.7] Section 3.1
∂lv(z = 0)

∂L
Eq. (5) 1 Simmonds and Azam-Ali (1989)

VEF Eq. (5) 1–2 [1] cm per day Matthews et al. (1988) and
Wright and Rao (1994)

induced variability; use of higher-frequency input
climate data may improve results further by increas-
ing modelled interannual standard deviations. The
pragmatic use of process-based modelling techniques
enables assessments of crop productivity under future
climates which are less dependent upon statistical
crop–weather relationships derived under the current
climate.
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Appendix A. Values of parameters used in the
model

The constants and parameters used in the model
are listed below. Values shown outside brackets cor-
respond to the listed source, whilst values in square
brackets indicate the calibrated value (where this is
different to the cited value). All parameters are global
except for CYG, which is determined locally
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Parameter Used in Value(s) Source

lv(z = zef) Eq. (5) 0.3 Simmonds and Azam-Ali (1989)
ET Eq. (6) 1.3–4.5 [1.4] Pa Hammer et al. (1995), Chapman

et al. (1993), Wright et al. (1988)
and Kakani (2001)

ETN,max Eq. (6) 1.5–5 [3] g kg−1 Section 3.1
∂HI

∂t
Eq. (8) 0.007 per day Hammer et al. (1995) and

Wheeler et al. (1997)
tem Section 2.1 8 days Section 2.1
Tb Eq. (2) 8–12 [10] K Ong (1986) and Mohamed (1984)
To Eq. (2) 28–37 [28] K Ong (1986) and Mohamed (1984)
Tm Eq. (2) 40–50 [50] K Ong (1986) and Mohamed (1984)
tTT0 Eq. (1) 350–400 [375] K day Section 3.1
tTT1 Eq. (1) 310–330 [320] K day Section 3.1
tTT2 Eq. (1) 200–300 [250] K day Section 3.1
tTT3 Eq. (1) 500–750 [620] K day Section 3.1

Evaporation and transpiration
Lcr Eq. (11) 0.7 Azam-Ali (1984)
TTmax Eq. (11) 0.15–0.4 [0.30] cm per day Azam-Ali (1984)
α0 Eq. (13) 1.26 Priestly and Taylor (1972)
Vref Eq. (13) 1 kPa Steiner et al. (1991)
A Section 2.3 0.2 Monteith and Unsworth (1990)
CG Eq. (15) 0.4 Choudhury et al. (1987)
k Eq. (15) 0.2–0.8 [0.5] Choudhury et al. (1987) and

Hammer et al. (1995)
Pcr Eq. (17) 0.1 cm Section 2.3
kDIF Eq. (20) 0.06 cm2 per day Dardanelli et al. (1997)
Cθ Eq. (21) 0.5 Allen et al. (1998)

Soil submodel and miscellaneous
zmax Section 2.2 210 cm Section 2.2
NSL Section 2.2 25 Section 2.2
Cd1 Eq. (10) 2.96 per day Suleiman (1999)
Cd2 Eq. (10) −2.62 per day Suleiman (1999)
Cd3 Eq. (10) 0.85 per day Suleiman (1999)
Kks Eq. (10) 37 cm per day Suleiman and Ritchie (2001) and

Suleiman (1999)
θs Eqs. (10) θll Section 3.1
zed Section 2.2 16.8 cm Section 2.2
CV Eq. (7) 0.7 Tanner and Sinclair (1983)
CYG Eq. (3) 0.1–1.0 Section 3.1
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Values of the soil parameters used in the model are listed below. Each soil class (listed by row) has three
sub-classes (coarse, medium and fine) which correspond to different water holding capacities

Coarse Medium Fine

θll θdul θsat θll θdul θsat θll θdul θsat

Silt loam 0.10 0.23 0.46 0.10 0.26 0.46 0.10 0.30 0.46
Clay loam 0.13 0.26 0.48 0.13 0.28 0.48 0.13 0.31 0.48
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