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Impulsive model for the Richtmyer-Meshkov instability

Marc Vandenboomgaerde, Claude Mu¨gler, and Serge Gauthier
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A general formula for the growth rate of the Richtmyer-Meshkov instability@R. D. Richtmyer, Commun.
Pure Appl. Math.13, 297 ~1960!; E. E. Meshkov, Sov. Fluid Dyn.4, 101 ~1969!# is derived within the
framework of the impulsive model. It allows us to predict the growth rate in both heavy-light and light-heavy
configurations. This formula is validated over more than 100 cases with various values of the shock strength
and the adiabatic exponents. The range of validity of the impulsive model is also specified. Comparisons are
performed against the results available in the literature. This expression may be reduced to the Richtmyer or
the Meyer-Blewett@Phys. Fluids15, 753~1972!# formulas in particular cases. Specific configurations are built
in order to emphasize the differences between the latter prescriptions and the formula proposed in this paper.
@S1063-651X~98!13108-2#

PACS number~s!: 47.20.Ma, 47.40.Nm
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I. INTRODUCTION

When two different materials are impulsively accelera
into each other by a shock wave, small perturbations of
interface first grow linearly and then evolve into nonline
structures. This instability was theoretically discovered a
described by Richtmyer@1# and experimentally confirmed b
Meshkov@2#. The Richtmyer-Meshkov~RM! instability oc-
curs in various situations, from incompressible configu
tions @3# to high Mach number experiments in inertial co
finement fusion@4#. In the framework of the impulsive
model, Richtmyer@1# proposed the following expression fo
the linear growth rate of the instability:

da

dt
5kDuA1a0

1 , ~1!

wherea is the amplitude of the perturbation,k its wave num-
ber, Du the velocity jump across the shock wave,a0

1 the
amplitude immediately after the shock passage, andA1 the
Atwood number after the interaction. In the above, the
wood number is defined as (r22r1)/(r21r1), wherer1 is
the density of the first shocked fluid. The preshocked a
postshocked amplitudesa0

2 anda0
1 , respectively, are linked

by the compression factor 12Du/Wshock@1#, whereWshockis
the speed of the incident shock wave. It is usually admit
that expression~1! gives relatively good results for light to
heavy accelerations, although several exceptions to Richt
er’s formula have been found@5,6#. Richtmyer’s formula~1!
gives the growth rate of the instability during its linear pha
using the postshocked quantities only. For heavy to li
accelerations, Meyer and Blewett~MB! found, on empirical
grounds, that the terma0

1 in Eq. ~1! was to be replaced by
the average of the initial unshocked and shocked amplitu
to match their numerical results@7#

da

dt
5

1

2
kDuA1~a0

11a0
2!. ~2!

These two formulas are just prescriptions. On the ot
hand, Fraley@8# solved the perturbation equations for th
PRE 581063-651X/98/58~2!/1874~9!/$15.00
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case of a reflected shock wave. He used Laplace transfo
and found a simple solution for weak shock waves. The
lution for strong shock waves may be given by a pow
series. The results obtained from this approach were c
pared with Richtmyer’s prescription by Mikaelian@5#. He
found reasonable agreement in most cases, but he also f
some configurations where Richtmyer’s prescription fa
These discrepancies were attributed to compressibility
fects. However, it was not possible to determine a range
validity in the parameters space.

More recently, Yang, Zhang, and Sharp@6# have pre-
sented an analysis of the Richtmyer-Meshkov instabil
The linear theory is formulated and, as opposed to Frale
work, numerically solved. Moreover, a systematic compa
son with Richtmyer’s prescription is carried out. They dra
certain conclusions from the results obtained for the reflec
shock and reflected rarefaction cases. First, the agreem
between both approaches is better as the incident sh
strength decreases. Second, the agreement is better a
adiabatic exponents of the fluids increase and when they
not too different. These two requirements are closely rela
to the compressibility effects.

An analytic theory of Richtmyer-Meshkov instability ha
been published by Velikovich@9# for the case of a reflected
rarefaction wave. He used the same kind of techniques
those used by Fraley. Moreover, the author claims that
‘‘qualitative explanation of the RM instability provided b
the impulsive model is therefore inadequate, regardless
the successes or failures of any prescriptions based on i

Wouchuk and Nishihara@10# have also recently estab
lished an analytic model for the asymptotic growth in t
linear RM instability. Two different formulas are obtaine
whether the reflected wave is a shock or a rarefaction.

In nearly all publications, the impulsive model is still use
and many configurations have been found in which it giv
wrong results. The purpose of this paper is to propos
simple formulation of the impulsive model that includes bo
Richtmyer and MB expressions. It is first postulated a
validated on more than 100 configurations taken in Re
@5, 6, 9#, which allows us to estimate the range of validity
the impulsive model. This formula is then heuristically d
1874 © 1998 The American Physical Society
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PRE 58 1875IMPULSIVE MODEL FOR THE RICHTMYER-MESHKOV . . .
rived by using the equation of evolution of a perturbati
subjected to a Rayleigh-Taylor instability within the fram
work of incompressible fluids~see the Appendix!. This for-
mula reads

da

dt
5

1

2
kDu~A1a0

11A2a0
2!

2
1

6
kDu~A12A2!~a0

12a0
2!. ~3!

The second part of the right-hand side of Eq.~3! appears to
be very small in most cases tested. Consequently, we s
validate the following formula@11# on numerous results
available in the literature:

da

dt
5

1

2
kDu~A1a0

11A2a0
2!. ~4!

These three formulas~1!, ~2!, and ~4! may be seen in the
following way. Richtmyer’s prescription uses only pos
shocked quantities, while Meyer and Blewett’s prescript
takes into account the variation of the perturbation amplitu
during the interaction with the shock wave. The formula p
posed in this paper takes into account both the variation
the amplitude and the Atwood number during the interacti
As a result, specific limiting cases lead to either Richtmye
or Meyer and Blewett’s prescriptions.

The outline of this paper is the following. In Sec. II fo
mula ~4! is validated on the reflected shock wave cases
Sec. III the reflected rarefaction wave case is studied. In S
IV we discuss the validity of our proposal and consequen
the range of applicability of the impulsive model. The de
vation of the basic formula~3! is given in the Appendix.

II. CASE OF A REFLECTED SHOCK WAVE

In this section formula~4! is first validated for the case o
a reflected shock wave. A comparison with the results
Fraley@8# and Mikaelian@5# ~FM! is carried out. Let us first
define our notations. Following Mikaelian, the normaliz
growth rate is defined as

NGR5
ȧ

a0
2Duk

. ~5!

The shock strengthe is defined as

e512
P0

P3
, ~6!

whereP0 is the initial pressure andP3 the pressure behind
the incident shock wave.

In the reflected shock wave case, Mikaelian@5# compares
the growth rate obtained from Fraley’s work@8# with the
classical Richtmyer growth rate. This is done for several
tial Atwood numbers~0.25, 0.5, 0.75, and 0.95! and various
pairs of adiabatic exponents (g1 , g2): ~1.1, 1.667!, ~1.667,
1.667!, ~1.1, 1.1!, and~1.667, 1.1!. The evolution of the nor-
malized growth rateNGR given either by Fraley’s analysis o
by the impulsive model with Richtmyer’s prescription~1! is
computed versus the dimensionless shock strength param
all
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.
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e. These graphs are plotted in Figs. 1~a!–1~d! where the
dashed lines correspond to Mikaelian’s results obtained fr
Fraley’s analysis and the continuous lines to Richtmye
prescription. In Figs. 1~e!–1~h!, for the same values of pa
rameters, theNGR is calculated by the impulsive model wit
formula ~4! ~continuous lines! and compared with Fraley’s
analysis. From these comparisons, it appears clearly tha
the weak shock limit, i.e., smalle, all growth rates obtained
from formula~4! are tangential to Mikaelian’s curves. On th
contrary, the normalized growth rate obtained from Richtm
er’s prescription deviates from FM values even for ve
small shock strength parametere. In other words, the slope a
the origin dNGR/deue50 of curves obtained from formula
~4!, is very close to FM’s results for all cases reported in F
1. The relative errors defined asE15ȧRichtmyer/ȧFM21 and
E25ȧEq. ~4! /ȧFM21 for the two considered impulsive mod
els, i.e., Richtmyer’s and formula~4!, are plotted versus the
shock strength parametere, in Figs. 2~a! and 2~b!, for the
parameter valuesg15g251.667 andA250.25, 0.5, 0.75,
and 0.95. For shock strength parametere smaller than 0.4,
the relative errorE2 is less than 10% and is tangential to ze
whene decreases. This is not true for Richtmyer’s prescr
tion ~1!. These two conclusions are still valid for the oth
combinations of parameters. Note that such a definition
the relative error asE1 is irrelevant as one of the growt
rates goes to zero.

In Ref. @6#, Yang, Zhang, and Sharp~YZS! compare the
results of Richtmyer’s impulsive model to those obtain
from small-amplitude theory. The relative errorE3

5ȧRichtmyer/ȧYZS21 between the terminal growth rate of th
linear theory and the one of the impulsive model is plotte
for various combinations of gases, versus the incident sh
strengthe in Fig. 16 of @6# and is reproduced in Fig. 3~a!.
The relative error for the model presented in this paper,E4

5ȧEq. ~4! /ȧYZS21, is plotted in Fig. 3~b!. The conclusions
previously drawn from Figs. 1 and 2 still hold in these cas
The results of the linear theory@6# and the impulsive mode
defined by Eq.~4! tend to each other as the incident sho
strength decreases. In the weak incident shock limit, they
in better agreement than the linear theory and Richtmy
impulsive model.

To confirm this conclusion, we have carried out a syste
atic comparison of the predictions of the linear theo
Richtmyer’s impulsive model, and formula~4!, as it was
done in@6#. For these comparisons, following Yang, Zhan
and Sharp,NGR is defined asNGR5ȧ/(a0

2Wshockk). Varying
parameters are the adiabatic exponentsg1 andg2 , the inci-
dent shock strengthe, and the preshocked density ratioR
5r2 /r1 . The results of this comparison are presented
Table I. For each entry, the upper number is Richtmye
impulsive model result, the second one is our impuls
model result, and the lower one is obtained from numeri
simulation of YZS’s linear theory. For small strength sho
parametere, the normalized growth rateNGR calculated with
formula ~4! is closer to the linear theory than Richtmyer
result. Furthermore, as one could expect from an inco
pressible model, the discrepancy between formula~4! and
the linear theory increases with the shock strength param
e and the difference between the adiabatic exponents.
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FIG. 1. ~a!–~d! Normalized growth rate (NGR) according to Richtmyer’s prescription~continuous lines! and according to Fraley’s
analysis~dashed lines!. ~e!–~h! NGR according to formula~4! ~continuous lines! and according to Fraley’s analysis~dashed lines!. For ~a! and
~e!, the initial Atwood numbers are given byA250.0, 0.25, 0.50, 0.75, and 0.95 and the adiabatic exponents areg151.1 andg251.667. For
the other graphs, the initial Atwood numbers are given byA250.25, 0.50, 0.75, and 0.95 and the adiabatic exponents are, for~b! and ~f!,
g151.667 andg251.667, for~c! and~g!, g151.1 andg251.1, and for~d! and~h!, g151.667 andg251.1. In all cases, the curves obtaine
from Eq.~4! are tangential to Fraley’s curves for small values of shock strength parametere, which is not true for Richtmyer’s prescription
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III. CASE OF A REFLECTED RAREFACTION WAVE

The same comparisons between the linear theory for
lated and numerically solved in@6# and the impulsive mode
can be carried out for the case of a reflected rarefac
wave. The combinations of gases are the same as those
sen in @6# and correspond to values commonly used in
periments. Let us remark that, in Ref.@6#, the authors use
MB’s prescription~2! for the case of a reflected rarefactio
wave, while they use Richtmyer’s formula~1! for the re-
flected shock wave. We emphasize that in this paper
same formula~4! is used in both reflected rarefaction an
shock wave cases. In Fig. 4~a! the relative error E5
5ȧMB /ȧYZS21 between the terminal growth rates of the im
pulsive model with MB’s prescription and the linear theo
is plotted. The relative errorE4 for formula ~4! is presented
in Fig. 4~b!. For the parameter values considered, the er
u-

n
ho-
-

e

rs

remain smaller than 10% for values of the shock stren
parametere as large as 0.5.

As in Sec. II, we now present in Table II, for various se
of parameter values, the normalized growth rateNGR given
by impulsive models@MB’s and Eq. ~4!# and the linear
theory ~YZS’s! in the case of a reflected rarefaction wav
For each entry, the upper number is MB’s impulsive mod
result, the second one is our impulsive model result, and
lower one is obtained by numerical simulation of the line
theory~YZS’s!. Our formula gives here again good results
the weak shock limit for ratiog1 /g2 not too different from 1.

Formula ~4! can also be tested in configurations defin
by Velikovich @9#, who uses the failure of both Richtmyer’
and MB’s prescriptions to deny the relevance of the imp
sive model. The parameter values areg151.8,g251.45, and
e50.213 and the preshocked Atwood number varies fr
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FIG. 2. ~a! Relative errorE15ȧRichtmyer/ȧFM21 vs the shock strength parametere. ȧRichtmyer is the growth rate obtained from Richtmy
er’s prescription andȧFM the one given by Fraley’s analysis.~b! Relative errorE25ȧEq. ~4! /ȧFM21 vs the shock strength parametere. ȧEq. ~4!

is the growth rate obtained from formula~4!. This case corresponds to Figs. 1~b! and 1~f!, i.e., the initial Atwood numbers are given b
A250.25, 0.50, 0.75, and 0.95 and the adiabatic exponents areg151.667 andg251.667. For a given value of the shock strength parame
e<0.4, the larger the initial Atwood number, the larger the relative errorsE1 andE2 . The relative errorE2 is less than 10% fore smaller
than 0.4. The slope at the origin ofE2 is clearly zero. This is not true forE1 .
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20.02 to 0. As shown in Fig. 5, formula~4! gives NGR al-
most equal to the one obtained from Velikovich’s analy
theory, whereas Richtmyer’s and MB’s prescriptions are
from the theoretical result. For example, for a preshoc
Atwood number equal to 0, the relative error forNGR is
about 9% for our model, whereas it is about 97% for MB
prescription. Figure 5 defines a phenomenon of freeze
that occurs when the growth rate is zero. The preshoc
Atwood number for the freeze-out is found to be appro
mately equal to20.0078 from Velikovich’s theory and
20.0070 from formula~4!. In this case, Richtmyer’s an
MB’s prescriptions give approximately the same Atwo
number,20.0150, very far from the two previous results.

IV. DISCUSSION

In this paper we propose a formula for the growth rate
the Richtmyer-Meshkov instability in the linear phase with
the framework of the impulsive model. This formula is d
rived in a heuristic way based on an analogy with t
Rayleigh-Taylor instability~see the Appendix!. We start
from the ordinary differential equation, which gives the d
r
d

ut
d

-

f

-

persion relation for a Rayleigh-Taylor instability in incom
pressible fluids,ä(t)5Agka(t), whereg is the acceleration.
This equation is applied to the Richtmyer-Meshkov instab
ity by defining a nonzero constant acceleration during
interaction between the incident shock wave and the in
face. Furthermore, the amplitude of the perturbation and
Atwood number are supposed to vary linearly during t
interaction. By doing so, we obtain a formula that takes
count of the variation of both the amplitude and the Atwo
number. As already stated, this is not the case for the
scriptions of Richtmyer, and Meyer and Blewett. Our mo
eling takes into account the shock induced compression
the perturbation in a simplified way. This effect has to
distinguished from what is usually called compressibility e
fects. In other words, formula~4! takes into account a larg
part of the compression during the interaction, but takes
account of the compressibility effects after the interactio
Indeed, compressibility effects are controlled by several
rameters. The most important ones seem to be the M
number of the incident shock wave and the ratio of the ad
batic exponents. Consequently, we cannot expect formula~4!
to give good results for large values of the shock stren
FIG. 3. ~a! Relative errorE35ȧRichtmyer/ȧYZS21 between the terminal growth rate of the linear theory@4# and the one of Richtmyer’s
prescription vs the incident shock strength parametere for various combinations of gases. The parameters used aregHe5gAr5gXe51.667,
gair51.4,gCO2

51.3,gSF6
51.0935,rCO2

/rair51.53,rXe /rAr53.29,rSF6
/rair55.1, andrair /rHe57.25.~b! Same as in~a!, but for the relative

error E45ȧEq. ~4! /ȧYZS21. The slope at the origin ofE4 is clearly zero. This is not true forE3 . The relative errorE4 is smaller than 10%
for e smaller than 0.4.
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FIG. 4. ~a! Relative errorE55ȧMB /ȧYZS21 between the terminal growth rate of the linear theory@4# and the one of the prescription o
Meyer and Blewett vs the incident shock strength parametere for the same combinations of gases as in Fig. 3.~b! Same as in~a!, but for
the relative errorE45ȧEq. ~4! /ȧYZS21. The relative errorE4 is smaller than 10% fore smaller than 0.5.

TABLE I. Comparisons of normalized growth rates as given by the impulsive model with Richtmyer’s
prescription, the impulsive model with formula~4!, and the linear theory~YZS!. The first column gives the
two adiabatic exponents. The second column is the shock strength parametere and the top row is the
preshocked density ratio (r2 /r1). The upper number in each entry of the table is Richtmyer’s result, the
second one the value obtained from formula~4!, and the lower one is obtained by numerical simulation of the
linear theory. The reflected wave here is a shock.

g1 /g2 e

r2 /r1

1.1 2.0 4.0 8.0 16.0

1.1/1.1 1.0 0.001 0.016 0.050 0.095 0.14
0.023 0.150 0.252 0.303 0.32
0.004 0.031 0.064 0.094 0.11

0.5 0.012 0.079 0.13 0.14 0.14
0.017 0.104 0.16 0.17 0.15
0.015 0.093 0.14 0.15 0.13

0.05 0.0020 0.012 0.018 0.018 0.016
0.0021 0.012 0.018 0.018 0.016
0.0021 0.012 0.018 0.018 0.016

3.0/3.0 1.0 0.010 0.070 0.12 0.14 0.13
0.017 0.103 0.16 0.17 0.15
0.014 0.089 0.14 0.16 0.14

0.5 0.0074 0.046 0.069 0.072 0.064
0.0084 0.050 0.074 0.076 0.067
0.0081 0.049 0.072 0.075 0.065

0.05 0.00077 0.0046 0.0067 0.0068 0.0059
0.00078 0.0046 0.0067 0.0068 0.0060
0.00078 0.0046 0.0067 0.0068 0.0060

1.5/3.0 1.0 20.099 20.071 20.012 0.054 0.10
20.033 0.064 0.141 0.179 0.19
20.0038 0.071 0.14 0.19 0.20

0.5 20.018 0.036 0.077 0.091 0.086
20.002 0.060 0.098 0.105 0.094

0.004 0.064 0.10 0.11 0.095
0.05 0.00099 0.0071 0.010 0.010 0.0088

0.00114 0.0073 0.010 0.010 0.0089
0.0012 0.0073 0.010 0.010 0.0089
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TABLE II. Same as Table I, except the reflected wave here is a rarefaction and the upper number
entry is Meyer and Blewett’s prescription.

g1 /g2 e

r2 /r1

0.91 0.5 0.25 0.125 0.0625

1.1/1.1 1.0 20.0085 20.060 20.11 20.15 20.18
20.0230 20.172 20.33 20.43 20.50
20.0039 20.025 20.042 20.047 20.044

0.5 20.017 20.13 20.26 20.35 20.41
20.017 20.13 20.26 20.35 20.41
20.016 20.12 20.24 20.33 20.39

0.05 20.0021 20.017 20.035 20.051 20.062
20.0021 20.017 20.035 20.051 20.062
20.0021 20.017 20.035 20.051 20.062

3.0/3.0 1.0 20.015 20.12 20.23 20.33 20.39
20.017 20.13 20.25 20.33 20.42
20.014 20.11 20.22 20.31 20.38

0.5 20.0086 20.069 20.14 20.20 20.24
20.0086 20.069 20.14 20.20 20.24
20.0085 20.068 20.14 20.19 20.24

0.05 20.00081 20.0065 20.013 20.019 20.024
20.00081 20.0065 20.013 20.019 20.024
20.00081 20.0066 20.013 20.019 20.024

3.0/1.5 1.0 0.17 0.093 20.029 20.16 20.26
0.04 20.086 20.23 20.35 20.43
0.016 20.073 20.18 20.28 20.36

0.5 0.011 20.059 20.14 20.20 20.25
20.0001 20.068 20.14 20.20 20.25

0.0011 20.066 20.14 20.20 20.25
0.05 20.00080 20.0073 20.015 20.021 20.025

20.00088 20.0074 20.015 20.021 20.025
20.00088 20.0074 20.015 20.021 20.025
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parametere or for large values of the ratio of the adiabat
exponents. This quasi-incompressible assumption is no
restrictive: Experiments have been recently carried out at
shock Mach number by Jacobs, Jones, and Niederhaus@12#.
From the results presented in Secs. II and III, it appears
the maximum relative errors between the various theoret
results@6,8,9# and Eq.~4! is about 10% fore-parameter val-
ues smaller than 0.4 and ratios of adiabatic expone
gmax/gmin smaller than 1.5, wheregmax (gmin) is the maxi-
mum ~minimum! of the two adiabatic exponents. This valu
of 10% is an upper bound and many cases can be found
a much smaller error. The range of validity may be defin
up to e50.5 if a relative error of about 20% is tolerate
Once again, this is a maximum value and relative errors
2% can often be found even fore50.5 ~see Tables I and II!.
The condition about the ratio of adiabatic exponents is no
restrictive since values of adiabatic exponents of phys
gases are between 1.09 and 1.67. Furthermore, for a
equal to 1 but with large values of adiabatic exponents c
responding to nongaseous fluids, the relative errorE2 be-
tween formula~4! and FM’s theory is still smaller than 10%
for e smaller than 0.4. As we can see in Fig. 6~a! for a small
value of the shock strength parameter (e50.1), this error
tends to zero as the adiabatic exponents tend to the infi
so
w
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d

f

o
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ty,

which corresponds to the incompressible limit. We have a
plotted in Fig. 6~b! the errorE1 between Richtmyer’s pre
scription and FM’s theory. For the Atwood numbers cons
ered, this error is at least three times larger than the errorE2 .
In the particular cases of Figs. 1 and 6, it turns out that
fixed values of adiabatic exponents, the difference betw
formula ~4! and Fraley’s theory reduces as the Atwood nu
ber decreases. On the other hand, for ratio of adiabatic
ponents far from the value 1.5, for example, 2 as used
Tables I and II, Eq.~4! may give wrong results.

It can be noticed that the weak shock limit of the Fral
@8# and Wouchuk-Nishihara@10# analytic expressions lead
to the same relation. Taking the incompressible limit for t
reflected shock case with large adiabatic exponentsg1
5g2 , one obtains, at first order ine,

ȧ

a0
2kDu

5
R21

R11
1

e

g

12AR

11R
. ~7!

This expression is also the first-order expansion ine of for-
mula ~4!. So, although formula~4! is based on an analogy o
the Rayleigh-Taylor instability, it provides the same expre
sion at the incompressible limit as approximate formulas
rived from exact theories.
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We would like to underline that the model proposed
this paper gives a good approximation for the growth r
provided the parameters fall in the range of validity defin
by e<0.4 andgmax/gmin<1.5. Indeed, no counterexamp
has been found and the range of validity holds in the case
both a reflected shock wave and a reflected rarefaction w

On the contrary, Richtmyer’s prescription is only used
reflected shock wave case, whereas MB’s prescription
been introduced to handle the reflected rarefaction w
case. Moreover, nobody was able to establish a reliable ra
of validity for these two prescriptions. For example, in h
original paper Richtmyer@1# built his prescription from con-
figurations ate51. He applied his incompressible prescri
tion to these very compressible configurations and surp
ingly obtained good results. This inconsistency has b
pointed out by Yang, Zhang, and Sharp@6#: ‘‘The agreement
between the impulsive model and linear theory found
Richtmyer in the case of a strong incident shock was
accidental result of a specific choice of parameters.’’

On the other hand, specific examples can show the fai
of Richtmyer’s prescription even for quasi-incompressi

FIG. 5. Normalized growth rates given by Velikovich’s line
theory ~curve L!, the impulsive model with the prescription o
Richtmyer~curveR!, the prescription of Meyer and Blewett~curve
MB!, and formula~4! @curve Eq.~4!# vs the initial Atwood number.
The adiabatic exponents areg151.8 and g251.45. The shock
strength parameter ise50.213. Formula~4! gives results very close
to the linear theory, which is not true for Richtmyer’s and Mey
and Blewett’s prescriptions.
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configurations in which this prescription should ha
worked. This point can be illustrated by the two followin
examples. In the case of a reflected shock wave, we cons
two gases with adiabatic exponentsg151.667 andg251.9
and molar massesM1540 g/mol andM2544 g/mol. The
shock strength parameter ise50.4. The values of theNGR
given by theory and models are presented in Table III. In t
configuration, the ratio of the adiabatic exponentsgmax/gmin
is 1.14, which is close to 1, and the shock strength param
is e50.4. These values should be in the range of validity
an incompressible model. Indeed, Eq.~4! produces a quite
good result: The relative error with respect to Fraley’s the
is less than 2%. However, Richtmyer’s prescription is ina
curate: The relative error is about 40%.

The second example deals with a reflected rarefac
wave and is borrowed from Velikovich@9#. The initial At-
wood number isA2520.02, the shock strength parameter
e50.213, and the adiabatic exponents areg151.8 andg2
51.45. The results are presented in Table IV. Here ag
even in these quasi-incompressible conditions (e50.213 and
g1 /g251.24) MB’s prescription fails to give a reasonab
value. The relative error is about 60%. However, Eq.~4!
provides a rather good result with a 7% relative error.

In this paper a formula for the growth rate of th
Richtmyer-Meshkov instability was derived within th
framework of the impulsive model. It has been heuristica
established from the Rayleigh-Taylor growth rate by usin
nonzero constant acceleration during the interaction betw
the incident shock wave and the interface. All reported co
parisons have shown that the revisited impulsive model p

TABLE III. Normalized growth rates and relative errors a
given by Richtmyer’s prescription, the impulsive model@Eq. ~4!#,
and Fraley’s theory. The adiabatic exponents areg151.667 and
g251.9 and the molar masses areM1540 g/mol andM2

544 g/mol. The shock strength parameter ise50.4.

Source NGR Relative error~%!

Richtmyer 0.005 14 38.3
Eq. ~4! 0.008 46 1.6
Fraley 0.008 33
q.
.
e

FIG. 6. ~a! Relative errorE25ȧEq. ~4! /ȧFM21 between the terminal growth rate of the linear theory and the one obtained from E~4!
vs the adiabatic exponentg. In this caseg5g15g2 , e50.1 and the initial Atwood numbers are given byA250.25, 0.50, 0.75, and 0.95
The errorE2 increases with the Atwood number.~b! Same as in~a!, but for the relative errorE15ȧRichtmyer/ȧFM21. In that case the absolut
value of the errorE1 decreases with the Atwood number. For large values ofg, i.e., in the incompressible limit, the errorE1 is at least three
times larger than the errorE2 .
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duces a good estimate of the growth rate of the Richtmy
Meshkov instability provided it is used within its range
validity. Nowadays, approximate formulas derived from e
act theories@8–10# are available. However, it was useful
understand and explain the failures of the impulsive mo
noticed in the literature for years@5,6,9#. Indeed, the revis-
ited impulsive model gives good results in both heavy-lig
and light-heavy configurations provided that it is used with
its range of validity, i.e.,e<0.4 andgmax/gmin<1.5, which
corresponds to nearly incompressible flows.

APPENDIX: DERIVATION OF THE FORMULA FOR THE
GROWTH RATE OF THE RM INSTABILITY

During the interaction between a monomode perturba
and a shock wave, the interface is accelerated and c
pressed. The acceleration begins when the shock wave
the interface. It finishes when the incident shock wave
gone right through the perturbation. If the initial peak to pe
amplitude of the perturbation isa0

2 , the acceleration occur
betweent52a0

2/2Wshock and a0
2/2Wshock, whereWshock is

the speed of the incident shock wave. The instantt50 cor-
responds to the moment the shock strikes the middle of
perturbation. Furthermore, we do not model the shock w
as a pure step function but as a regularized function
extends over a small thicknessh. This thicknessh is taken to
be much smaller than the amplitudea0

2 . The effect of the
acceleration is to transmit the fluids a velocityDu that we
consider constant. The accelerationg is modeled as a non
zero constant function during the action of the incident sh
wave

g~ t !5
WshockDu

a0
2 Y2a

0
2/2Wshock

~ t !@12Y1a
0
2/2Wshock

~ t !#,

~A1!

whereYt0
(t) is a regularized Heaviside function centered

t5t0 .

TABLE IV. Normalized growth rates and relative errors
given by MB’s prescription, the impulsive model@Eq. ~4!#, and
Velikovich’s theory. The adiabatic exponents areg151.80 andg2

51.45 and the initial Atwood number isA2520.02. The shock
strength parameter ise50.213.

Source NGR Relative error~%!

MB 20.0045 60
Eq. ~4! 20.0121 7
Velikovich 20.0113
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During the interaction between the incident shock wa
and the perturbation the amplitude varies froma0

2 to a0
1 . As

the velocity of the interface is taken to be constant, the e
lution of the amplitudea(t) versus time is linear during the
interaction. Its overall evolution can be modeled by

a~ t !5~12Y2!a0
21Y2~12Y1!y~ t !1Y1@a0

11 f ~ t !#,
~A2!

where

y~ t !5
Wshock

a0
2 ~a0

12a0
2!t1

1

2
~a0

11a0
2!.

In this expression,Y65Y6a
0
2/2Wshock

(t) and f (t) is a con-

tinuous function taken to be constant and equal tof (0) for
t<0 and toa(t) for t@a0

2/2Wshock.
During the interaction between the incident shock wa

and the perturbation, the Atwood number varies fromA2 to
A1. However, the evolution of the Atwood number is qui
complicated. We shall approximate it by a linear function

A~ t !5~12Y2!A21Y2~12Y1!z~ t !1Y1A1 ~A3!

where

z~ t !5
Wshock

a0
2 ~A12A2!t1

1

2
~A11A2!.

We start from the ordinary differential equation, whic
gives the dispersion relation for a Rayleigh-Taylor instabil
in incompressible fluids,ä(t)5Agka(t), where k is the
wave number of the perturbation. By introducing the expr
sions for the accelerationg(t), the Atwood numberA(t),
and the amplitudea(t), the previous differential equation
can be integrated fromt52` to t@a0

2/2Wshock,

E
2`

t

g~ t8!A~ t8!ka~ t8!dt85E
2`

t

ä~ t8!dt8. ~A4!

Equation~A4! gives, fort@a0
2/2Wshock,

ȧ~ t !' 1
2 kDu@A2~ 2

3 a0
21 1

3 a0
1!1A1~ 2

3 a0
11 1

3 a0
2!#.

~A5!

Finally, we propose the following formula for the linea
growth rate of the Richtmyer-Meshkov instability:

da

dt
5

1

2
kDu~A1a0

11A2a0
2!

2
1

6
kDu~A12A2!~a0

12a0
2!. ~A6!
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@10# J. G. Wouchuk and K. Nishihara, Phys. Plasmas3, 3761
~1996!; 4, 1 ~1997!.
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