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PHYSICS OF FLUIDS VOLUME 12, NUMBER 7 JULY 2000
Two-dimensional Navier–Stokes simulations of gaseous mixtures
induced by Richtmyer–Meshkov instability

Claude Müglera) and Serge Gauthier
Commissariat a` l’Énergie Atomique/Bruye`res-le-Chaˆtel, Boı̂te Postale 12, 91680 Bruye`res-le-Chaˆtel, France

~Received 23 June 1999; accepted 3 April 2000!

Two-dimensional numerical calculations of the fluid instability of shock-accelerated interfaces
between a heavy fluid and a light one are carried out in order to simulate experiments performed by
Poggi et al. @Phys. Fluids10, 2698 ~1998!#. In these experiments, the laser Doppler anemometry
technique gives measurements of the fluctuating velocity. Experimental data show that a turbulent
mixing zone is generated by the incident shock wave. This turbulent regime is reproduced by
two-dimensional calculations. Before the first reshock, several quantities in the mixing zone, such
as bubble and spike fronts, turbulent kinetic energy, enstrophy, adopt a quasi self-similar behavior
versus time. In particular, we can see in numerical simulations the decay of the turbulent kinetic
energy before the first reflected shock wave–mixing-zone interaction and its strong enhancement by
reshocks. Furthermore, spectral analysis of the numerical results exhibit ak23 energy spectrum.
Experimental measurements also show that the turbulent boundary layers which develop on the
shock-tube walls accelerate the fluid flow in the middle of the tube. Numerical simulations clearly
reproduce both this acceleration and the lambda-shock structure observed in experiments. ©2000
American Institute of Physics.@S1070-6631~00!01207-1#
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I. INTRODUCTION

When two different fluids are impulsively accelerat
into each other by a shock wave, small perturbations at
interface grow first linearly and then evolve into nonline
structures having the form of ‘‘bubbles’’ and ‘‘spikes.’’ Af
terwards, it may lead to the formation of a turbulent mixi
zone. This instability was theoretically discovered and
scribed by Richtmyer,1 and experimentally confirmed b
Meshkov.2 This phenomenon, known as the Richtmye
Meshkov~RM! instability is a typical mechanism for turbu
lent mixing of layered fluids and is of critical importance
inertial confinement fusion.

RM instability is usually studied in shock tubes, whe
measurements are easier to carry out than in small pellet3–7

In almost all the shock-tube experiments, two gases, a he
one and a light one, are initially separated using a thin pla
membrane which is often placed directly below a thin w
mesh.4,6,7 The membrane is then broken into small pieces
the incident shock wave passing through the grid. Sho
tube experiments provide mostly schlieren visualizations
the mixing-zone thickness.3,4 This diagnostic gives only
qualitative information about the intensification of mixin
More quantitative information is obtained by x-rays and d
ferential interferometry measurements,5 or by infrared
absorption.6 These diagnostics give the density profiles in t
mixing zone. The thickening of these density profiles w
time is then often attributed to turbulent diffusion in the mi
ing zone. After the interaction of the reflected shock at
end wall with the mixing zone, a relative intensification
the density fluctuation is sometimes observed and tend

a!Electronic mail: claude.mugler@cea.fr
1781070-6631/2000/12(7)/1783/16/$17.00
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confirm that the flow is turbulent.6 But all the profiles are
averaged along the shock-tube thickness and are co
quently deformed by the presence of boundary layers wh
develop on the shock-tube walls. So, their interpretation
mains difficult. Finally, in all previous experiments, the d
agnostics give only an indirect measurement of turbulen
Intensification of mixing or intensification of averaged de
sity fluctuations. Furthermore, there is no evidence of tur
lence in the mixing before its interaction with the first r
flected shock. Therefore, the new experiments performed
Poggiet al. are of particular interest.7,8 In these experiments
instantaneous velocities in a gaseous mixture arising fr
the shock-wave-induced Richtmyer–Meshkov instability a
measured by Laser Doppler Anemometry~LDA !. These ex-
periments give for the first time a direct measurement
turbulence. Experimental data demonstrate that the in
small scale perturbations of the interface develop into a
bulent mixing zone after the incident shock-wave passa
Velocity measurements clearly show the strong amplificat
of turbulence when the shocks reflected at the end wall
teract with the mixing zone. Furthermore, data exhibit a
crease of the turbulence level between two successive
shocks, which is explained by both diffusion and dissipati

Numerous numerical studies have been performed on
RM instability. The first Lagrangian simulations are report
by Meyer and Blewett.9 Some years after, Cloutman an
Wehner performed two- and three-dimensional simulatio
based on both the Euler and Navier–Stokes equations w
finite difference numerical method and a front-tracki
technique.10 All these computations of the RM instability fo
singly shocked, sinusoidally perturbed interfaces pred
growth rates greater than observed in single-interface exp
ments. Only recent computations show agreement with
3 © 2000 American Institute of Physics
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1784 Phys. Fluids, Vol. 12, No. 7, July 2000 C. Mügler and S. Gauthier
perimental growth rates. First, this agreement has been
tributed to the use of a front-tracking technique.11,12A front-
tracking technique seems well adapted to describe la
scale structures but it cannot be used to simulate turbu
gaseous flows. In this case, a mixing model which descr
gaseous mixing at a molecular level is needed. Nowad
other numerical methods give as good results as a fr
tracking technique. For example, 2D~two-dimensional! nu-
merical simulations of the RM instability at two nearby i
terfaces performed with an Adaptative Mesh Refinem
~AMR! Eulerian code show flow patterns in agreement w
experimental images.13 This AMR code and the front-
tracking code were compared together with single-mode
experiments performed with strong radiatively driv
shocks.14 The two numerical techniques agree on the lar
scale structures, such as the amplitude of the interface
turbation, and both of them are able to describe experime
data. Other 2D numerical simulations of single-mode R
experiments performed with an Arbitrary Lagrangian
Eulerian~ALE! code also give flow patterns very similar
experimental pictures.15 In these simulations, mixing of two
gases is described within the single fluid approximation
using a concentration governed by an advection-diffus
equation. Numerical and experimental growth rates are
good agreement and are decaying in time in a similar w
All these computations show that experimental and num
cal flow patterns are very similar provided the experimen
initial conditions~amplitude and wave number of the pertu
bation! are well known.

The goal of our project is to perform highly resolve
three-dimensional numerical simulations of flows subsequ
to the RM instability, in order to study both the transition
and the turbulent regimes. Since the Reynolds numbe
such flows is moderate,16 direct numerical simulations seem
to be feasible. In such an approach, the whole method
physical models, numerical schemes, implementation
resolution — is first confronted with experimental da
Then, numerical results processing gives access to phy
quantities, such as vorticity, energy spectrum or statist
correlations, that cannot be measured or extracted from m
surements.

In this paper, we apply this general strategy to tw
dimensional calculations. As already stated, the wh
method is confronted with the experimental data of Po
et al.7,8 At this stage, experimental data are directly co
pared with the numerical results in order to interpret the
periments. These shock-tube experiments of SF6 incident on
air demonstrate that the initial small-scale perturbations
the interface develop into a turbulent mixing zone, who
turbulence level decays before the first reflected shock w
arrives from the end wall. Afterwards, the reshock inter
tion amplifies the turbulence level through a baroclinic
fect. Experimental measurements also show that the tu
lent boundary layers which develop on the shock-tube w
accelerate the fluid flow in the middle of the tube. Numeri
simulations clearly reproduce both this acceleration and
lambda-shock structure observed in experiments. In a sec
step, we perform a detailed study of the numerical results
particular, we show that right after the first shock passage
Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP l
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flow still depends on the initial conditions through the lar
scales although ak23 energy spectrum may be exhibite
After the first reshock, the flow also exhibits ak23 energy
spectrum. Moreover, we can see in numerical simulations
scenario detailed above, i.e., decay of the turbulence be
the first reflected shock wave–mixing zone interaction a
amplification by reshocks.

Experimental conditions will be described in Sec. II
this paper. Afterwards, Sec. III will give a description of th
numerical methods used to perform the high-resolution sim
lations. In Sec. IV, experimental measurements and num
cal results will be compared, and, finally, in Sec. V, a d
tailed study of the numerical results will be presented a
discussed.

II. EXPERIMENTS

In the experiments performed in the vertical shock-tu
at C.E.A.7,8 a discontinuous heavy-light interface betwe
hexafluoride (SF6) and air is impulsively accelerated by a
incident upward shock wave~Mach number 1.45, shock
strength 0.54) and decelerated by several reshocks of
creasing strength (0.38 for the first reflected shock, 0.15
the second one!, as shown in Fig. 1. The shock strength
defined as the pressure jump across the shock front nor
ized by the pressure behind the shock. The initial Atwo
number, defined as (r22r1)/(r21r1) wherer1 is the den-
sity of the first shocked fluid~here the SF6), is equal to
20.67. The tube has a square cross section (80380 mm2)
with high ~5 bar! and low-pressure~1 bar! chambers, 0.8 and
2.96 m long, respectively. The distance between the ini
interface position and the upper end wall is set to 0.3 m. T

FIG. 1. Schematic shock tube and (x, t) diagram~Ref. 8!.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1785Phys. Fluids, Vol. 12, No. 7, July 2000 2D Navier–Stokes simulations of gaseous mixtures
two gases, the heavy one (SF6) and the light one~air!, are
initially separated by a plastic membrane 0.3mm thick,
which is placed directly below a thin wire mesh~wire spac-
ing and diameter: 1.01 and 0.08 mm!. The membrane is bro
ken into small pieces by the passing incident shock w
through the grid. Therefore, the initial wavelengths of t
perturbations at the SF6 –air interface are supposed to be
the order of the mesh size.

A schlieren visualization allows us to measure the tim
dependent location and thickness of the mixing zone. A
other diagnostic, the Laser Doppler Anemometry~LDA !,
gives measurements of the fluctuating flow velocity at
lected points in the shock tube. A detailed description of
setup and the characteristics of the diagnostics can be fo
in Ref. 7.

III. EQUATIONS AND NUMERICAL CHOICES

A. Governing equations

The code CADME´E, derived from CFDLIB,17 was de-
veloped in order to carry out two-dimensional numeric
simulations of unsteady compressible mixing flows, such
those occurring in shock tubes. Features of the modeling
the following:

~i! CADMÉE solves the 2D unsteady full Navier–Stok
equations, namely, the mass, momentum, and energy co
vation equations for a viscous, compressible fluid:

]r

]t
1

]

]xl
~rul !50,

]

]t
~rui !1

]

]xl
~ruiul !52

]P

]xi
1

]s i l

]xl

, ~1!

]

]t
~rE!1

]

]xl
~rEul !

52
]

]xl
~Pul !1

]

]xl
S x

]

]xl

TD1
]

]xl
~s j l uj !.

In these equationsr is the mass density,T, the temperature
P, the pressure,ui with i 51,2, the material velocity compo
nent in the xi direction, with x1[x and x2[y, E5e
1uiui /2, the mass specific total energy,e, the mass specific
internal energy, andx, the thermal conductivity coefficient
The componentss i j of the viscous stress tensors% are de-
fined in the Stokes approximation by

s i j 5mS ]uj

]xi
1

]ui

]xj
2

2

3
d i j

]ul

]xl
D , ~2!

wherem is the dynamic viscosity coefficient.
~ii ! Mixing of two gases is described within the sing

fluid approximation by a concentration governed by
advection-diffusion equation which writes

]

]t
~rc!1

]

]xi
~rcui !5

]

]xi
S rD

]c

]xi
D . ~3!
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whereD is the diffusion coefficient. Partial densities of fluid
1 and 2,r1 and r2 , are equal torc and r(12c), respec-
tively. By doing so, no numerical interface and no mix
cells are needed.

~iii ! The pressureP and the densityr are the sum of the
partial pressures and densities of each component, res
tively. They are related to temperature by the perfect gas l
The local thermal equilibrium hypothesis is assumed, wh
implies that the temperature is the same for each specie

P5P11P2 ,

r5r11r2 ,

T5T15T2 ,

Pi5r i

R
Mi

T5~g i21!r icv iT, i 51,2.

The indices refer to the partial corresponding quantities
fluids 1 and 2. The ratio of specific heats of the mixtu
notedg, can be evaluated with help of the following rela
tions:

g5
cpmixing

cvmixing

5
ccp1

1~12c!cp2

ccv1
1~12c!cv2

5
ccv1

g11~12c!cv2
g2

ccv1
1~12c!cv2

. ~4!

The specific internal energy of the mixture is written

e5cvmixing
T5~ccv1

1~12c!cv2
!T. ~5!

With these hypotheses, the sound speedc and the Mach
numberM are defined as

c25
gP

r
, M5

uuuuu
c

. ~6!

~iv! Viscosity and molecular diffusion coefficients o
each species of the mixture are calculated from Ref.
Thermal conductivity coefficients can be obtained direc
from viscosity coefficients provided the Prandtl number
each species is assumed to be constant. Mixture visco
and molecular diffusion coefficients are then determin
from Wilke’s mixture rule19 and the mixture thermal conduc
tivity coefficient is calculated from the model given in Re
20. Finally, all transport coefficients,~viscosity, diffusion,
and thermal conductivity!, depend on the two thermody
namic quantities: concentration and temperature.

B. Description of the numerical choices

Features of the numerical method are detailed in Ref.
but let us recall here the main characteristics of the c
CADMÉE:

~i! CADMÉE uses structured meshes made of quadr
gular cells;

~ii ! state variables are cell-centered;
~iii ! a Godunov method is used to accurately descr

strong discontinuities such as shock waves. It uses
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1786 Phys. Fluids, Vol. 12, No. 7, July 2000 C. Mügler and S. Gauthier
approximate Riemann solver of Dukowicz.22 Conse-
quently, no artificial viscosity is needed;

~iv! a second-order differencing technique in space can
used and a low-storage second order Runge–K
scheme has been implemented.23 The importance of
the scheme accuracy has been shown in a prev
paper;15

~v! the computation is performed in two phases: A L
grangian phase and a remapping phase in which c
servative variables are transferred from the Lagra
ian mesh to an arbitrary specified mesh. Th
approach is the so-called Arbitrary Lagrangian
Eulerian~ALE! formulation;

~vi! Although the code solves the 2D Navier–Stok
equations, a turbulent algebraic model, the Baldwi
Lomax model,24 has been implemented in order
model turbulent boundary layers that usually deve
along shock tube walls. Indeed, direct numeric
simulations of transition and turbulence in the boun
ary layers would have required higher spatial reso
tions. Furthermore, it would have been necessary
define the characteristics of the perturbations wh
destabilize the boundary layers. In experimen
schlieren pictures clearly show that the boundary l
ers are turbulent. Several defects on the shock-t
walls certainly contribute to the transition, but the
are not well identified. So, as we are not interested
the boundary layers themselves but only in their
fects on the flow, we prefer using a well-known tu
bulent model which acts only near the walls. T
Baldwin–Lomax model is a two-layer eddy viscosi
model in which the turbulence effects are mode
through the expression of turbulent transport coe
cients which are added to the molecular transport
efficients in the Navier–Stokes equations. The turb
lent eddy viscositym t is given by

mt5H~mt!in 0<y<yc

~m t!out yc<y<d,

wherey is the normal distance from the wall andyc

can be defined as the smallest value for which the
formulations are equal. Consequently, the turbul
model does not act far from the walls.

The code CADME´E has been validated against nume
ous configurations of compressible viscous flows.21 Of par-
ticular importance to the computations reported in this pa
is the fact that we are performing direct 2D numerical sim
lations. Indeed, as already stated, the Baldwin–Lomax
bulence modeling used here acts only near the walls.

IV. COMPARISON OF EXPERIMENTS AND
SIMULATIONS

A. Initial configurations

The definition of the initial hydrodynamic conditions fo
the computations is based on shock-tube experiments p
ously described. As said before, the CEA shock tube is v
Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP l
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tical. However, out of habit, the simulated shock tube will
horizontal. This rotation does not have any consequenc
the configuration studied because gravity effects can be
glected. In numerical simulations, the initial perturbation
the interface is multimode and composed of eight wa
lengthsl of the order of the experimental wire mesh siz
l50.5, 0.625, 0.8, 1, 1.25, 1.6, 2, and 2.5 mm. As we sh
see below, before the reshock, the evolution of the mixi
zone width depends on the characteristics of the initial p
turbations at the interface. So, in computations, we assu
that the wavelengths are of the order of the experime
wire mesh size but we have no experimental information
the amplitude values. So, we arbitrarily take the same va
for all the amplitudes. This value, equal to 0.2 mm, has b
deduced from several simulations — performed with
coarser numerical grid than those used below in this sec
— in order to obtain, before the reshock, a time evolution
the mixing-zone width in agreement with experimental
sults. The largest dimensionless initial perturbation am
tudeak is equal to 0.25. The initial shock Mach number
equal to 1.453. Calculations are started with a Lagrang
mesh with nodes located at the initial interface, and con
ued with an Eulerian grid before the shock reaches the in
face. By doing so, the development of undesired pertur
tions of wavelengths of the order of the numerical mesh s
is avoided. The instantt50 corresponds to the moment th
shock strikes the left edge of the perturbation.

The purpose of numerical and experimental studies
twofold: First, to study the evolution of the turbulent mixin
zone and second, to quantify the influence of the turbul
boundary layers on the fluid dynamics in the middle of t
tube. Only one simulation to accurately simulate both
mixing zone and the boundary layers would have requi
too many zones in the mesh. Therefore, two kinds of sim
lations of the experiment have been performed. They prin
pally differ by the mesh and the boundary conditions use

In the first kind of simulations, only a half-shock-tube
simulated and the walls are considered as reflective wa
The mesh zone size is regular in the transverse directioy
but not in the longitudinal directionx. Two runs have been
carried out with two various zone sizes in they direction.
The region where the instability initially develops is cover
with 0.0530.08 mm2 zones in the coarse grid and 0.0
30.05 mm2 zones in the fine one. At last time, the mixin
zone moves in a region covered with 0.730.08 mm2 and
0.730.05 mm2 zones in the coarse and fine grids, resp
tively. The entire coarse~fine! mesh is done of 500 000
~720 000! zones.

In the second kind of simulation, the entire shock tube
simulated and no slip type boundary condition for the velo
ity and isotherm type (Tw5293 K! boundary conditions for
the temperature are assumed. Furthermore, turbulent bo
ary layers are computed with the Baldwin–Lomax mod
The mesh is refined near the walls in order to accura
simulate the boundary layers: The lowest transversal z
size is equal to 0.05 mm and the largest one is equal to 0
mm. The entire mesh is done of 500 000 zones.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1787Phys. Fluids, Vol. 12, No. 7, July 2000 2D Navier–Stokes simulations of gaseous mixtures
B. Mixing-zone width

In the experiments, a schlieren visualization allows us
measure the mixing-zone thickness. To estimate the mix
zone width from the numerical simulations, we calculate
each abscissax the transversal averaged densityrm(x). The
density profile is then normalized and the mixing-zone wid
is defined as the distance between the two points where
normalized density is equal to 0.97 and 0.03. Figure 2 d
plays the evolution versus time of the experimental and
merical mixing-zone widths. Diamonds correspond to the
perimental width measured from schlieren pictures. T
errorbars of this visual measurement are equal to610%.
The three small circles correspond to microdensitome
measurements of some schlieren pictures. In Fig. 2, comp
sions due to the interaction of the reflected shock waves w
the mixing zone clearly appear. Before the first reflec
shock–mixing zone interaction, microdensitometry giv
mixing-zone width greater than those obtained from dir
measurement from optical pictures. The discrepancy betw
experimental results before the first reflected shock–mix
zone interaction may be attributed to the difficulty to co
rectly distinguish the initially thin mixing zone from the tu
bulent boundary layers which develop on the shock-tu
walls. In Fig. 2, full and dotted lines correspond to mixin
zone width values calculated from numerical simulatio
with the coarse and fine grids, respectively. After incide
shock–interface interaction and before the interaction of
mixing zone with the first reflected shock at the end w
tube, the mixing-zone width calculated from the simulati
obtained from the finest mesh is larger than the other o
This discrepancy may be due to the small wavelengths wh
are smoothed when the mesh is not fine enough. Prev
numerical simulations of single-mode Richtmyer–Meshk
experiments have shown that 50 mesh zones in the w
length are necessary to correctly describe the evolution of
amplitude perturbation and a very high spatial resolut

FIG. 2. Evolution of the mixing-zone width vs time. Diamonds correspo
to the experimental width measured from schlieren pictures. The error
of this visual measurement are equal to610%. The three small circles
correspond to microdensitometry measurements of some schlieren pic
Full and dotted lines correspond to numerical widths obtained from
coarse and fine grids, respectively.
Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP l
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(360 mesh zones in the wavelength! is required if we want
the physical viscous dissipation to dominate the numer
viscosity effects.15 The finest resolution used in the prese
simulations corresponds to only 10 and 50 zones in
smallest and largest wavelengths, respectively. Con
quently, only the largest wavelengths which are very close
the experimental mesh size are sufficiently described. On
other hand, the calculation of the small wavelengths is
converged and is responsible for the difference between
results obtained from the coarse grid and the fine grid
merical simulations. However, after the first reflected shoc
mixing zone interaction, Fig. 2 shows that the mixing-zo
widths obtained from the coarse and the fine meshes are
similar. It looks as if the grid resolution had no more effe
on the mixing-zone width. This spatial convergence
achieved because larger and larger structures develop in
mixing zone and both numerical grids are fine enough
describe them. Spectral analysis presented in next sec
will confirm this result. Figure 2 allows us to compare n
merical results with experimental ones. After the incide
shock passage and before the reshock, mixing-zone wi
obtained from numerical simulations are slightly greater th
experimental ones. This result is not surprising since the
ues of the amplitudes of the initial perturbations have be
chosen with this aim from numerical simulations perform
with a coarser grid. After the first interaction and before t
second one, experimental and numerical widths are v
similar. In experiments, according to Vetter and Sturteva4

the thin membrane which forms the initially plane interfa
has a significant influence on the initial growth rate of t
mixing-zone thickness. On the other hand, the measu
growth rates after the first reflected shock–mixing zone
teraction are independent of the membrane configuration

C. Velocity in the mixing zone

As we said previously, the experiments performed at
C.E.A. use the Laser Doppler Anemometry~LDA !. This di-
agnostic gives measurements of the fluctuating flow velo
which can be directly compared with results of numeric
simulations. In the experiments7,8, the position of the LDA
probe is successively at 125.5, 161, and 178.5 mm do
stream the initial interface abscissa. Figure 3 shows velo
measurements at the abscissa 161 mm. In this figure,
monds correspond to experimental data.8 The full line corre-
sponds to the numerical simulation obtained with the fi
resolution in the mixing zone, without turbulent bounda
layers. Hereafter, the instantt50 corresponds to the momen
the shock arrives at the probe. In Fig. 3, the first experim
tal velocity plateau at 130 m/s corresponds to air accelera
by the incident shock wave~for t<0.8 ms!. Then we observe
a second perturbed plateau which includes the crossing o
turbulent mixture. The Rankine–Hugoniot relations give
theoretical mean velocity of 47 m/s in this plateau althou
experimental measurements give a mean velocity of 59 m
This acceleration is due to the boundary layer reversal eff
in the SF6 at shock crossing decelerated by the first reflec
shock on the end wall. This second plateau ends with
arrival of the second reflected shock wave. In Fig. 3
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numerical velocity fluctuates in the mixing zone and the le
els of the fluctuations are the same as the experimental o
These low-frequency fluctuations can be correlated to sp
structures which develop in the mixing zone. In Figs. 4~a!
and 4~b!, three isovalues of the concentration of SF6 in the
mixing zone (c55%, 50%, and 95% from right to left! are
superimposed on the velocity colormaps at two various
stants, just before@Fig. 4~a!# and just after@Fig. 4~b!# the first
reflected shock–mixing zone interaction. In Fig. 4~a!, the
zones where the velocity is higher than the averaged v
131.5 m/s correspond to heavy gas pockets which pene
in the light gas. On the other hand, the zones where
velocity is lower than the value 131.5 m/s correspond to li
gas pockets which are pushed by the heavy gas. After
reflected shock passage through the mixing zone@Fig. 4~b!#,
the difference in velocity between air bubbles and SF6 spikes
is bigger.

FIG. 3. Velocity measurements at 161 mm. Diamonds correspond to ex
mental data. The full line corresponds to the numerical simulation obta
with the fine resolution in the mixing zone, without turbulent bounda
layers.
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D. Effects of the boundary layers

Experimental measurements show that the turbu
boundary layers which develop on the shock-tube walls p
turb the fluid dynamics in the middle of the tube. Hig
resolution 2D numerical computations with no slip typ
boundary condition for the velocity and isotherm typ
boundary condition for the temperature allow us to simul
this behavior. Figure 5~a! gives an example of density nu
merical isocontours in the mixing zone. It shows that t
mixing zone is stretched along the shock tube walls in
boundary layers. Therefore, the density profiles obtained

FIG. 4. ~Color! Superimposition of concentration isocontours and veloc
colormaps:~a! Before and~b! after the first reflected shock passage.

ri-
d

e

FIG. 5. Stretching of the mixing zone
by the turbulent boundary layers
which develop on the shock-tube
walls: ~a! Density isocontours and~b!
density profiles obtained by taking th
average of the density on all the
shock-tube thickness~dotted line! or
only in the middle of the tube~full
line!.
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taking the average of the density on all the shock tube th
ness@dotted line in Fig. 5~b!# or only in the middle of the
tube @full line in Fig. 5~b!# are not the same. As the exper
mental microdensitometry measurements of the mixing-z
width consist in calculating averaged density profiles fro
schlieren pictures which include boundary layer effects, i
not surprising to find a higher value than the width visua
measured~see crosses and diamonds in Fig. 2!. LDA mea-
surements with the probe located at 125.5 mm downstre
the initial interface abscissa allow us to study boundary la
effects. Figure 6 shows velocity measurements at this
scissa. In this figure, dots correspond to experimental d
Full and dashed lines correspond to numerical simulati
with and without turbulent boundary layers, respective
The instantt50 corresponds to the moment the shock

FIG. 6. Velocity measurements at 125 mm. Dots correspond to experim
data. Full and dashed lines correspond to numerical simulations with
without turbulent boundary layers, respectively.
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rives at the probe. In Fig. 6, the first velocity plateau at 1
m/s firstly corresponds to air accelerated by the incid
shock ~for t<0.6 ms! and afterwards to SF6 . The second
plateau at 59 m/s corresponds to SF6 decelerated by the firs
reflected shock on the end wall. This second plateau e
with the arrival of the second reflected shock wave. As o
can see in Fig. 6, one effect of the turbulent boundary lay
is to accelerate the SF6 . The first simulation, whose result
in pure gases are similar to the Rankine–Hugoniot solutio
gives a theoretical mean velocity of 47 m/s in the seco
plateau, while experimental measurements give a value o
m/s. In the 2D simulations presented in this paper, only t
turbulent boundary layers are simulated and the mean ve
ity in the second plateau equals 52 m/s. By simulating wit
3D ~three-dimensional! code the four turbulent boundary lay
ers which really develop in the shock tube, we may expec
find a higher value close to the experimental one.

Another effect of the turbulent boundary layers is t
velocity undershoot just after the passage of the first reflec
shock. As this shock interacts with the mixing zone, a sho
~Mach number equal to 1.37 in fluid-fixed reference frame! is
transmitted in the SF6 . Because of its interaction with th
boundary layer in the SF6 and according to the hydrody
namic conditions~Mach number and adiabatic coefficie
values!, this transmitted shock bifurcates. The experimen
interferometric image given in Fig. 7~a! clearly shows the
lambda shock structure, with the presence of a bubble at
shock foot.5 The bifurcation height increases as the sho
moves in the SF6 . Figure 7~b! shows the numerica
schlieren-type image obtained at the same instant. Such
merical images are particularly useful to simultaneously
sualize mixing-zone and shock structures. As shown in F
7, the visual agreement between the experimental schlie
picture and the numerical schlieren-type image is very go
for the shock structure. On the other hand, the numer
mixing zone is thicker than the experimental one. This d

tal
nd
e
FIG. 7. ~Color! ~a! Experimental, from Galametz~Ref. 5!, and~b! numerical schlieren pictures at a timet just after the first reflected shock wave–mixing zon
interaction. Because of its interaction with the boundary layer, the transmitted shock in the SF6 bifurcates.
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crepancy has two reasons. First, the numerical image
been obtained from the computation performed with a hi
spatial resolution near the walls. Consequently, the turbu
boundary layers and their interaction with the refrac
shock wave are well described, but not the mixing zo
which is too diffuse. Second, this nice experimental int
ferometric image has been obtained from previo
experiments.5 In these experiments, the plastic membra
which initially separates the heavy gas from the light one
not placed directly below a thin wire mesh. Consequen
the membrane is not broken into small pieces by the incid
shock and it slows down the mixing of the two gases. T
experimental mixing-zone thickness is then thinner than
pected. The influence of the boundary layers on the flow
the middle of the tube points out the interest of buildi
shock tubes with larger cross-sectional areas, as it has
done by Vetter and Sturtevant.4

V. ANALYSIS OF THE NUMERICAL RESULTS

A. Scaling laws

In a general way, it is of interest to look for scaling law
for the evolution of the mixing-zone width. In that respe
several interpretations of the numerical results can be giv
First, models for the nonlinear regime such as those p
posed by Ramshaw25 and Alonet al.26 may be used. Second
statistical models of fully developed turbulence may also
used.27,28 For example, the solution of the diffusion
dissipation part of a two-equationk-e model provides a self-
similar behavior that can be compared with numerical
sults.

The first approach to model the evolution of the mixi
zone gives a lot of importance to the nonlinear behavior
large structures in the mixing fronts. A numerical study h
been performed by Alonet al.26 in order to validate a 2D
model based on bubble-rise dynamics. This theoretical
numerical study of the nonlinear evolution of large structu
in RM mixing fronts gives a constant power-law coefficie
bb equal to 0.4 for multimode RM bubble fronts. On th
other hand, the power-law coefficientbs for the spike fronts
is not constant: It increases with the Atwood numberAt from
bs50.4 for At50 to bs51 for At51. According to Fig. 2
from Ref. 26,bs is approximately equal to (11At)bb . In
our case, the Atwood number is equal
20.67 whence thebs value is equal to 0.66. Figure 8 dis
plays the evolution versus time of the large stuctures in
RM mixing fronts. In numerical simulations, spike an
bubble heights are inferred from the location of bubble a
spike fronts relative to the unperturbed interface. The lo
tion of the unperturbed interface is obtained from the cal
lation of the theoretical interface velocity with the Rankine
Hugoniot relations. In Fig. 8, crosses and diamon
correspond to spike and bubble heights, respectively.
and dotted lines correspond to the fits of the numerical
sults by power lawsL(t)5L1tb, with bs50.63 for the spike
front andbb50.39 for the bubble front. The power-law co
efficientsbb andbs presently obtained from 2D CADME´E
simulations are in good agreement with bubble-rise mod
(bb50.4 andbs50.66).
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In the second approach, by considering self-similar
lutions of a one equation statistical turbulent model redu
to the diffusion and dissipation terms, Barenblatt27 has
shown that, at late time, the turbulent width varies astb with
b52/3 in the case of zero dissipation andb,2/3 otherwise.
Cherfils and Harrison28 also studied the evolution of a one
dimensional turbulence in the case where it is complet
determined by diffusive and dissipative processes. On
bases of two-equationk-e models, they found a self-simila
solution asymptotic to the exact flow. The decay exponen
the kinetic energy was equal to21.32, 21.39 or 21.48
according to three various numerical values of the dissi
tion coefficient. This phenomenological dissipation coe
cient is usually calibrated on 3D experiments. The lay
thickness then scales astb whereb50.34, 0.305, and 0.26
respectively. Such power-law behavior has also been fo
from numerical simulations carried out by several autho
For multiple-scale random perturbations, the layer thickn
obtained by Pham and Meiron29 from 2D RM instability
simulations in continuously stratified fluids seems to sc
with tb. The time exponentb shows a weak dependency o
the initial configurations but it always lies in the neighbo
hood of 0.25. According to Pham and Meiron, ‘‘the tim
variation of the layer thickness differs from the scaling d
rived using ideas of self-similarity due to Barenblatt27 even
at low Atwood ratio, presumably because of the inhomo
neity and anisotropy due to the excitation of vortic
plumes.’’ Furthermore, ‘‘it is possible that the layer has n
evolved over a sufficiently long time. At the end of the ca
culations the layer has only grown a factor of roughly tw
over its initial size.’’ Youngs30 obtains a close valueb
50.3 from 3D numerical simulations but he notice
‘‘Richtmyer–Meshkov mixing due to a single shock do
depend on the initial conditions, and different forms for t
initial perturbations are likely to give different values for th
power-law coefficient.’’ Very recently, a simple model fo
linear and nonlinear mixing at unstable fluid interfaces h
been proposed by Ramshaw.25 It reproduces the RM growth

FIG. 8. Evolution of large stuctures in the RM mixing fronts. Crosses a
diamonds correspond to spike and bubble heights, respectively. Full
dotted lines correspond to power lawsL(t)5L1tb with bs50.63 for the
spike front andbb50.39 for the bubble front.
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law L(t);tb whereb depends on the rate of kinetic energ
dissipation: In the case of zero dissipation, it gives the p
vious theoretical valueb52/3 first proposed in Ref. 27 an
it further exhibits the expected reduction inb due to dissi-
pation.

Figures 9~a! and 9~b! display the evolution versus tim
of the mixing-zone width with a linear and a log–log sca
respectively. In these figures, diamonds and crosses c
spond to numerical simulations obtained from the coarse
fine grids, as previously presented in Fig. 2. In Figs. 9~a! and
9~b!, full and dotted lines correspond to a power lawL(t)
5L01L1(t2t0)b. In this expression,t050 andL05L(t0)
50 because the instantt50 corresponds to the moment th
incident shock strikes the discontinuous interface~see Fig.
1!. After the incident shock passage and before the resh
the fit of the numerical results givesL150.37, (L150.34),
and b50.50, (b50.48), for the simulation obtained from
the coarse~fine! grid. The power-law coefficientsb presently
obtained (b50.48 and 0.50) correspond to the complex flo
behavior subsequent to the RM instability generated b
single shock wave. So, the power-law coefficients obtai
from our simulations (b'0.5) are in agreement with no
zero dissipation (b,2/3) and are equal to the power-la

FIG. 9. Mixing-zone width vs time,~a! with a linear scale and~b! with a
log–log scale. Diamonds and crosses correspond to numerical simula
with code CADMÉE obtained from the coarse and fine grids, respective
Full and dotted lines correspond to a power lawL(t)5L1tb. The fits of the
numerical results giveL150.37, (L150.34), andb50.50, (b50.48), for
the simulation obtained from the coarse~fine! grid.
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values reported by Dimonteet al. (b50.560.1) from turbu-
lent Richtmyer–Meshkov instability experiments perform
with strong radiatively driven shocks.31 All these results con-
cern the mixing-zone behavior after the incident shock p
sage and before the reshock. After the reshock, Fig. 9~b!
shows that a power-law is no more valid. Figure 10 gives
transversal averaged density profilesrm obtained from the
fine grid simulations at several times and versus the absc
j5x/tb with b50.48. These profiles show the quasi se
similar behavior of the mixing zone.

B. Spectral analysis

To characterize the flow regime, we study the nonline
evolution of the interface perturbation by modal analysis,
done in Ref. 15. We introduce the new variableU[Aru
wherer is the density andu the streamwise velocity compo
nent. This quantity is equal to the square root of the kine
energy per unit volume. Then, we consider the on
dimensional transversal spectrum

E~ky ,t !5
1

2Lx
E

2Lx

1Lx
uÛ~x,ky ,t !u2dx. ~7!

In this expression,Û(x,ky ,t) is the transversal discrete Fou
rier transform of the variableU at a given abscissax, it reads

Û~x,ky ,t ![ÛS x,
l

NDy
,t D

5
1

N (
j 50

N21

U~x, j Dy,t !expS 2 i
2pl j

N D , ~8!

where l 50,1, . . . ,N21, N is the number of samples an
Dy the sample interval. The length 2Lx<d corresponds to a
x-span on which the transversal spectrum is averaged.
will commonly choosed equal to the shock-tube square se
tion and the length 2Lx greater than or equal to the mixing
zone width at the final time. The advantage of this spec

ns
.

FIG. 10. Transversal averaged density profiles obtained from the fine gr
several times before the reshock and versus the abscissaj5x/t0.48. These
profiles show the quasi self-similar behavior of the mixing-zone.
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FIG. 11. Concentration isocontours
vorticity isocontours and energy spec
trum E(ky ,t) in a linear and in a log–
log scale at the instantt50.152 ms,
just after the incident shock passag
through the initial perturbated inter
face.
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analysis is to give information on all scales present in
mixing zone, even if the flow develops into a turbulent r
gime. In Eq.~7!, the quantityE(ky ,t) represents the spatia
average of the streamwise kinetic energy spectral den
The total streamwise kinetic-energy is then given by^E(t)&
5(ky

E(ky ,t).
Figures 11–14 give the concentration and vorticity is

contours at four various times. The sizes of the windows
3 cm width and 3 cm height for all these maps. Figu
11–14 also give the one-dimensional averaged transve
spectra of the quantityU, given by Eqs.~7! and~8!, in linear
and log–log scales. We have superimposed thek23 enstro-
phy cascade to the energy spectra. Just after the inci
shock–interface interaction~see Fig. 11!, the concentration
isovalues already show the existence of bubble and s
structures in the mixing zone. The vorticity is concentra
in these structures. The interface perturbations have alre
evolved into the nonlinear regime. However, the lowest i
tial perturbation modes are still present and dominant in
energy spectrum. Afterwards, the mixing zone becom
larger and larger and the initial perturbation modes disapp
~see Fig. 12!. The energy spectrum moves towards the la
wavelengths and exhibits the persistence of dominant mo
smaller than the initial ones. After the reflected shock p
sage~Fig. 13!, the mixing zone is compressed — as alrea
seen in Fig. 2 — and the vorticity strongly increases throug
the baroclinic production term. Perturbation modes pres
in the mixing zone are all excited. However, the spectr
still contains some dominant low modes and shifts towa
low wave numbers~see Fig. 14!. Spectral analysis quantita
tively confirms what can be seen in concentration and v
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ticity isovalues: Larger and larger spatial structures deve
in the mixing zone. Spectra globally move towards low wa
numbers and exhibit ak23 enstrophy cascade. This scalin
law is valid for a limited range of wave numbers. Indeed, t
high wave number end of the spectra is unsignificant beca
of the mesh-size limitation. For example, the mode ind
l 5101 corresponds to the wavelengthl50.8 mm which is
described with only 16 mesh zones. Thek23 enstrophy cas-
cade was first predicted by Kraichnan.32 Kraichnan conjec-
tured that, if energy is fed in at a constant rate to a band
wave numbers of the order ofki , on one hand, an invers
cascade of energy with constant energy flux will take pla
following a k25/3 law for k!ki and, on the other hand, ak23

range with constant enstrophy flux will be observed at larg
wave numbers for k@ki , up to the viscous cutoff.
Batchelor33 also obtained thek23 inertial energy spectrum
by phenomenological and dimensional considerations in
context of a freely decaying two-dimensional turbulenc
where a self-similar evolving spectrum was assumed. But
confirmation by numerical simulations of thisk23 energy
spectrum is not so evident.34 However, the analysis of the
relaxation of two-dimensional turbulence performed
McWilliams35 shows the expectedk23 law but also exhibits
the emergence of larger scales of turbulence and show
the long-time evolution of two-dimensional fields is dom
nated by coherent vortices whose vorticities are much str
ger than that of the well-mixed background. Finally, t
spectral analysis of our numerical simulations tends to pr
that the flow in the mixing zone is turbulent. As we will se
in the next paragraph, this turbulent behavior is confirmed
statistical analysis.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1793Phys. Fluids, Vol. 12, No. 7, July 2000 2D Navier–Stokes simulations of gaseous mixtures
FIG. 12. Same as in Fig. 11 but at th
instant t51.2 ms, just before the first
reflected shock–mixing zone interac
tion.

FIG. 13. Same as in Fig. 11 but at th
instant t51.3 ms, just after the first
reflected shock–mixing zone interac
tion. The scales of the transversa
spectrum have been modified.
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FIG. 14. Same as in Fig. 13 but at th
instant t51.84 ms, a long time after
the first reflected shock–mixing zon
interaction.
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C. Statistical analysis

A rigorous study of the statistical properties of com
pressible Richtmyer–Meshkov instability-induced turbule
mixing would need an average several numerical simu
tions. In practice, it is not possible yet because we are lim
by the excessive memory requirements and long run tim
So, hereafter, we use only the fine resolution simulation p
viously described. In this simulation, there are no bound
layers. Experimental LDA measurements have shown
strong anisotropy of the turbulence in the mixing zone:7 The
most energetic component of the Reynolds stress is the a
one. Furthermore, mixing is certainly not homogeneous,
pecially in the axial direction which is the direction of prop
gation of the shock waves. Nevertheless, mixing is assu
homogeneous along the transversaly direction. Averaged
quantitiesā(x,t) are then performed along this direction

ā~x,t !5
1

N (
j 50

N21

a~x, j Dy,t !. ~9!

For incompressible flows, turbulent fluctuationsa8 of the
quantitya are expressed as

a8~x,y,t ![a~x,y,t !2ā~x,t !.

On the other hand, for compressible flows, turbulent fluct
tions a9 of the quantitya are expressed within the Favr
averaging framework

a9~x,y,t ![a~x,y,t !2ã~x,t !,
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where the mean velocityã(x,t) is given by

ã~x,t ![ra~x,t !/ r̄~x,t !.

Figure 15 displays the turbulent kinetic energy profil

K̃5ui9ui9̃/2 at various times. We clearly see the strong ge
eration of turbulent kinetic energy at the incident shock p

FIG. 15. Turbulent kinetic-energy profilesK̃5uI9ui9̃/2 at various times. We
clearly see the strong generation of turbulent kinetic energy at the inci
shock passage through the interface~first profile on the left side of the
figure!, and at the reshock~the third profile from the right side of the figure
corresponds to the time when the reflected shock, which travels from rig
left, is still interacting with the mixing zone!.
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sage through the interface and at the reshock. Figure 16 g
a zoom of the profiles before the reshock. The maxim
amplitude of these profilesK̃max decreases by diffusion an
dissipation as the mixing zone moves in the shock tube an
follows a (x2x0)21.35 power law, wherex050.4 is the ini-
tial position of the unperturbed interface in the simulatio
As the mixing-zone averaged velocity is almost constant,
obtain: K̃max(t) a t21.35. According to Kolmogorov,36 the ki-
netic energy for freely evolving three-dimensional isotrop
turbulence in incompressible fluids should decay as a po
law t2a wherea510/7. On the bases of EDQNM calcula
tions, Lesieur37 found a51.38. From numerous result
found in the literature and from their own grid turbulen
experiments, Mohamed and Larue38 show that the exponen
in the decay power-law for the kinetic energy is equal to
and is independent of initial conditions such as Reyno
number, mesh size, solidity, and rod shape. We note
before the first reshock, the decay exponenta51.35 of the
kinetic energy given by the 2D CADME´E numerical simu-
lations is close to all these values. However, since all
results cited concern the three-dimensional isotropic tur
lence, we conclude that this is a pure coincidence. After
reshock, the kinetic-energy profiles are larger,~see Fig. 15!,
and it is no more easy to find a power-law behavior.

Figures 17~a! and 17~b! illustrate the anisotropy of the
Reynolds stress tensor at the 125 mm abscissa and at th
mm abscissa, i.e., about 0.2 ms before and 0.3 ms afte
interaction with the first reflected shock, respectively. Fig
17~c! gives theu18u18 and u28u28 profiles obtained from LDA
experimental measurements at the 169 mm abscissa.7 These
figures clearly show the strong anisotropy of turbulence
the mixing zone: At the maximum of the profiles, the ra
u18u18/u28u28 reaches the value 3 in the experiments and ab
2.5 in the calculations. Numerical values of the axial a
radial components are twice greater than experimental m
surements. However, experimental and numerical res
may not be compared on a quantitative way because of

FIG. 16. Turbulent kinetic-energy profilesK̃5uI9ui9̃/2 at various times after
the incident shock–interface interaction and before the first reflected s

passage. The maximum amplitude of these profilesK̃max decreases as the
mixing zone moves in the shock tube and it follows a (x2x0)21.35 power
law, wherex050.4 is the initial position of the unperturbed interface.
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2D character of the computations and it is well-known th
the phenomenology of 2D turbulence is very different fro
the 3D one.

To determine the incompressible or compressible ch
acter of the fluctuations, we have calculated the turbul

Mach number, defined asAK̃/cs wherecs is the local sound
speed. This Mach number is always less than few perce
Consequently, the fluctuations of the velocity field are qua
incompressible. However, we do note that in the mixing zo
the r.m.s.~root-mean-square! value of the density fluctua

tions ((r2 r̄)2)1/2/ r̄ is about 0.4 after the incident shoc
passage and about 0.5 after the reshock.

We also calculated the turbulent kinetic-energy dissi
tion rate defined asr̄ ẽ5s i l ]ui9/]xl . Figure 18 displays the
profiles of the dissipation rate of turbulent kinetic energy
various times after the incident shock–interface interact
and before the first reshock. In Fig. 18, the maximum am
tude of these profilesẽmax decreases as the mixing zon
moves in the shock tube and it follows a (x2x0)21.84 power
law, wherex0 is the initial position of the unperturbed inte
face. As the mixing-zone averaged velocity is almost co
stant, we obtain:ẽmax(t)at21.84. However, within the frame-
work of a two-equation statistical model, the dissipation r
of the turbulent kinetic energy decreases asdK̃/dt, so, in this
configuration, the dissipation rate should decrease asx
2x0)22.35 or t22.35. This discrepancy can be explained b

ck

FIG. 17. Evolution of axial and radial components of the Reynolds str
tensor:~a! Numerical results at the 125 mm abscissa;~b! numerical results at
the 169 mm abscissa ;~c! experimental data at the 125 mm abscissa.
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noticing that a turbulence created by a RM instability
quires a certain amount of time to reach a perfect self-sim
state. In other words, it requires a certain amount of time
reach an isotropic state with a spectral equilibrium. Mo
over, the flow numerically simulated in this paper is a turb
lence mixing and fluctuations of density, which are not tak
into account in the turbulence model considered here, m
alter the decay exponent. We also calculated the kinetic
ergy dissipation rate in the incompressible case,ē
5n(]ui8/]xj )(]ui8/]xj ), and found profiles very similar to
the compressible ones. This result is in agreement with
low values of the turbulent Mach number and proves t
between interactions with the shock waves, the flow is qu
incompressible.

D. The enstrophy behavior

The vorticity equation for a compressible viscous fluid
described by the Helmholtz equation

]

]t
v1u.¹v52v¹.u1v.¹u2

1

r2
¹p3¹r1¹3S 1

r
¹.s% D .

~10!

In this equation,u is the velocity,v5“3u the vorticity,
“5(]/]x,]/]y,]/]z) the gradient operator ands% the vis-
cous shear stress tensor still defined in Eq.~2!. The first and
second terms on the right-hand-side of Eq.~10! represent the
change of vorticity due to the compression and stretching
vortex lines, respectively. These two terms are linear in v
ticity so that they would vanish in an irrotational flow. Th
third term on the right-hand-side, called the baroclinic ter
may create vorticity in an initially irrotational flow. This
term vanishes in a constant density incompressible fluid.
last term represents the change of vorticity by viscous effe
and may be written as

FIG. 18. Turbulent kinetic-energy dissipation rate profilesẽ at various times
after the incident shock–interface interaction. The maximum amplitude

these profilesẽmax decreases as the mixing zone moves in the shock tube
it follows a (x2x0)21.84 power law, wherex050.4 is the initial position of
the unperturbed interface.
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1

3
¹~¹.u! D G .

~11!

For a Newtonian incompressible fluid with constant kin
matic viscosity coefficientn5m/r, this term reduces to the
Laplacian of the vorticityn¹2v. In two-dimensional flow,
the vorticity v is a vector perpendicular to the plane of th
flow. The magnification of the vorticity by stretching of vo
tex lines, which is such an important feature of the inert
effect in three-dimensional turbulence, is consequently
tirely absent in two-dimensional calculations. Finally, in
constant density incompressible fluid, Eq.~10! reduces to the
well-known equation

]

]t
v1~u.“ !v5n¹2v. ~12!

In the 2D inviscid limit, the vorticity behaves as a pseud
scalar conserved along the fluid trajectories. By taking
scalar product ofv and Eq.~10! without the term of stretch-
ing of vortex lines ~which is equal to zero in 2D-
calculations!, we obtain

]

]t
V1u.“V522V“.u2

1

r2
v.~“p3“r!

1nv.F¹2v2
1

r
“r3S ¹2u1

1

3
“~“.u! D G .

~13!

In this equation,V is the enstrophy density defined byV
5 1

2uvu2. The second term on the left-hand-side and the th
terms on the right-hand-side of Eq.~13! are called the advec
tion, compression, baroclinic production, and dissipat
terms, respectively. Figure 19 displays the averaged ens
phy profilesV(x) obtained by averaging the enstrophy alo
the transversaly direction, at various times after the incide
shock–interface interaction and before the first reshock

f

nd

FIG. 19. Enstrophy profiles at various times after the incident shoc
interface interaction. The maximum amplitude of these profilesVmax de-
creases as the mixing zone moves in the shock tube and followsx
2x0)22 power law, wherex050.4 is the initial position of the unperturbe
interface.
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Fig. 19, the maximum amplitude of these profilesVmax de-
creases as the mixing zone moves in the shock tube
follows a (x2x0)22 power law, wherex0 is the initial posi-
tion of the unperturbed interface. As the mixing-zone av
aged velocity is almost constant, we obtainVmax(t)at22. This
time dependency of the mean-square vorticity is in agr
ment with the theoretical and numerical results of Batche
in the context of a freely-decaying two-dimensional co
pressible turbulence.33 In Eq. ~13!, the terms (nv).(¹2v)
and (nv).(2 (1/r) “r3(¹2u1(1/3)“(“.u))) represent
the incompressible and compressible contributions to the
strophy dissipation, respectively. After calculations of the
contributions, we observed that the compressible part i
any time negligible towards the incompressible one. Fig
20 displays a comparison between various terms in the
strophy budget at two instants after the incident shoc
interface interaction. The profiles of dissipation, baroclin
production and compression show that the main contribu
to the enstrophy budget comes from the baroclinic term. T
result is in agreement with numerical simulations of tw
dimensional homogeneous flows performed by Passot
Pouquet.39 On the other hand, Kida and Orszag40 showed
that the main contributions to the enstrophy budget in thr
dimensional flow come from the stretching and the dissi
tion terms, which give a positive and a negative contributi
respectively.

VI. CONCLUDING REMARKS

In this paper, we have presented the results of hi
resolution 2D numerical simulations of shock-tube expe
ments of SF6 incident on air performed by Poggiet al.7,8 In
these experiments, measurements demonstrate that the
small scale perturbations of the interface develop into a
bulent mixing zone. The main result of this paper is to sh
that 2D calculations exhibit a turbulent regime compati
with the experimental data. In particular, we can see in
merical simulations the decay of the turbulence before

FIG. 20. Comparison of the profiles of the dissipation~thick full lines!,
baroclinic production~dotted lines! and compression terms~thin full lines!
in the enstrophy budget at two instants after the incident shock–inter
interaction.
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first reflected shock wave–turbulent mixing-zone interact
and its strong enhancement by reshocks. And finally,
mixing zone can be regarded as a region where large sc
coexist with small scale turbulence more or less develop
So, we have compared our numerical results both with m
els for the nonlinear regime such as those proposed
Ramshaw25 and Alonet al.,26 and with statistical turbulence
models, using the tools of fully developed turbulence, i.
self-similar behavior, scaling laws and spectrum.

On one hand, after the incident shock passage and be
the first reshock, large scales in the Richtmyer–Meshk
mixing fronts evolve versus time according to scaling la
given by models based on bubble-rise dynamics26 (t0.4 for
the bubble fronts andt0.66 for the spike fronts!. These large
scales of the motion govern the thickening of the mixi
zone and retain memory of the initial conditions. In the l
erature, this dependence to the initial conditions has
been noticed in experiments, numerical simulations a
models. In experiments,4 the thin membrane which forms th
initial interface has an influence on the initial growth rate
the mixing-zone thickness. In numerical simulations,30 re-
sults slightly depend on the initial interface perturbatio
~amplitudes and wavelengths! and on the mesh size refine
ment. In models,25 the kinetic energy deposited at the inte
face by the impulsive acceleration is a function of the init
conditions.

On the other hand, a statistical processing of the num
cal results shows that the decay of the turbulent kine
energy scales asta with a521.35 before the first reshock
However, the agreement with the value of the scaling law
the decaying of a free-evolving three-dimensional isotro
turbulence is certainly a pure coincidence. The enstro
also decays as a power lawt22 that is in agreement with the
theoretical and numerical results of Batchelor in the cont
of a freely-decaying two-dimensional incompressib
turbulence,33 although the flows simulated in this paper a
bounded. Moreover, spectral analysis of the mixing la
exhibits ak23 enstrophy cascade which is in agreement w
theoretical studies of two-dimensional turbulence.32,33 But
some results moderate the conclusion that the flow is fu
turbulent. We have seen that the turbulent kinetic-energy
sipation rate scales ast21.84 but in a fully 3D turbulent flow
where dissipation plays an important role, we would ha
expected ata21 behavior wherea is the exponent of the
scaling law for the turbulent kinetic energy. However, w
have to note that this agreement, using statistical turbu
models, does not take into account the density fluctuatio
Moreover, let us recall that the theoretical scaling laws m
tioned above give only an asymptotic limit in time and a
sume that the turbulence is homogeneous and isotro
which is not true in our case. Indeed, measurement of
longitudinal and transversal velocity variances have pro
that the flow is anisotropic in the mixing layer. Finally, b
fore the first reshock, several quantities in the mixing zo
adopt a quasi self-similar behavior even if the flow is n
fully turbulent but still in a strongly nonlinear or weakl
turbulent regime.

After the interaction between the first reflected sho
wave with the mixing layer, the flow behavior is differen

ce
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Because of the 2D character of the simulations, large st
tures are still growing with time but power-law evolution
for various quantities~bubble and spike fronts, turbulent k
netic energy, enstrophy! are no more valid. This behavio
may be explained by the presence of a weak turbulence
from equilibrium because the mixing layer has probably
evolved over a sufficiently long time between two reshoc
to reach a spectral equilibrium.

Numerical simulations of these multimode Richtmye
Meshkov experiments have also shown the influence of
bulent boundary layers on mean flow velocity measured
the middle of the tube. Indeed, turbulent boundary lay
which develop on the shock-tube walls confine the flow a
accelerate it. Furthermore, the lambda-shock structure
served in experiments is well reproduced by simulations

Finally, numerical simulations presented in this pap
allow us to characterize and better understand the flow in
Richtmyer–Meshkov instability induced mixing-zone. The
2D calculations have been done as a precursor to fu
three-dimensional simulations and the comparison betw
2D and 3D results will permit to isolate effects that are d
only to the 2D character, such as enstrophy cascade, o
fects that are allowed by the third direction, such as vor
stretching.
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