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Two-dimensional Navier—Stokes simulations of gaseous mixtures
induced by Richtmyer—Meshkov instability

Claude Mi]g[era,) and Serge Gauthier i A . i
Commissariat d'Energie Atomique/Bruyes-le-Chael, Bote Postale 12, 91680 Bruges-le-Chael, France

(Received 23 June 1999; accepted 3 April 2000

Two-dimensional numerical calculations of the fluid instability of shock-accelerated interfaces
between a heavy fluid and a light one are carried out in order to simulate experiments performed by
Poggiet al. [Phys. Fluids10, 2698 (1998 ]. In these experiments, the laser Doppler anemometry
technique gives measurements of the fluctuating velocity. Experimental data show that a turbulent
mixing zone is generated by the incident shock wave. This turbulent regime is reproduced by
two-dimensional calculations. Before the first reshock, several quantities in the mixing zone, such
as bubble and spike fronts, turbulent kinetic energy, enstrophy, adopt a quasi self-similar behavior
versus time. In particular, we can see in numerical simulations the decay of the turbulent kinetic
energy before the first reflected shock wave—mixing-zone interaction and its strong enhancement by
reshocks. Furthermore, spectral analysis of the numerical results extibit anergy spectrum.
Experimental measurements also show that the turbulent boundary layers which develop on the
shock-tube walls accelerate the fluid flow in the middle of the tube. Numerical simulations clearly
reproduce both this acceleration and the lambda-shock structure observed in experime2@0 ©
American Institute of Physic§S1070-663(00)01207-]

I. INTRODUCTION confirm that the flow is turbulerftBut all the profiles are
averaged along the shock-tube thickness and are conse-
When two different fluids are impulsively accelerated quently deformed by the presence of boundary layers which
into each other by a shock wave, small perturbations at thgevelop on the shock-tube walls. So, their interpretation re-
interface grow first linearly and then evolve into nonlinear mains difficult. Finally, in all previous experiments, the di-
structures having the form of “bubbles™ and “spikes.” Af-  agnostics give only an indirect measurement of turbulence:
terwards, it may lead to the formation of a turbulent mixing |ntensification of mixing or intensification of averaged den-
zone. This instability was theoretically discovered and desity fluctuations. Furthermore, there is no evidence of turbu-
scribed by Richtmyet, and experimentally confirmed by jence in the mixing before its interaction with the first re-
Meshkov? This phenomenon, known as the Richtmyer—fiected shock. Therefore, the new experiments performed by
Meshkov(RM) instability is a typical mechanism for turbu- poggiet al. are of particular intere€t® In these experiments,
lent mixing of layered fluids and is of critical importance 10 jnstantaneous velocities in a gaseous mixture arising from
inertial confinement fusion. the shock-wave-induced Richtmyer—Meshkov instability are
RM instability is usually studied in shock tubes, where jeasured by Laser Doppler AnemometiDA). These ex-
measurements are easier to carry.out than in small pétiets. periments give for the first time a direct measurement of
In almost all the shock-tube experiments, two gases, a heayyrpylence. Experimental data demonstrate that the initial
one and a light one, are initially separated using a thin plastigmga|| scale perturbations of the interface develop into a tur-
meml?lréa;le which is often placed directly below a thin wirey, jent mixing zone after the incident shock-wave passage.
mesh.™’ The membrane is then broken into small pieces byg|qcity measurements clearly show the strong amplification
the incident shock wave passing through the grid. ShoCkgs y,rphylence when the shocks reflected at the end wall in-
tube experiments provide ”JOSHY schlieren visualizations Ok st with the mixing zone. Furthermore, data exhibit a de-
the mixing-zone thicknes’! This diagnostic gives only crease of the turbulence level between two successive re-
gualitative information about the intensification of mixing. shocks, which is explained by both diffusion and dissipation.
More guar_nitative information is obtained by x-rays and dif- Numerous numerical studies have been performed on the
ferential interferometry measuremefitsor by infrared gy instability. The first Lagrangian simulations are reported
absorptiorf. These diagnostics give the density profiles mtheby Meyer and Blewefl. Some years after, Cloutman and
mixing zone. The thickening of these density profiles with\yepner performed two- and three-dimensional simulations
time is then often attributed to turbulent diffusion in the mix- po<ed on both the Euler and Navier—Stokes equations with a
ing zone. After the interaction of the reflected shock at the;nite difference numerical method and a front-tracking
end wall _with the mixing zone, a relative intensification of techniquet® All these computations of the RM instability for
the density fluctuation is sometimes observed and tends t&ngly shocked, sinusoidally perturbed interfaces predict
growth rates greater than observed in single-interface experi-
dElectronic mail: claude.mugler@cea.fr ments. Only recent computations show agreement with ex-
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perimental growth rates. First, this agreement has been at- Ay

tributed to the use of a front-tracking technigdé?A front- <Bom Reflected shock waves
tracking technique seems well adapted to describe large-

scale structures but it cannot be used to simulate turbulent 2

gaseous flows. In this case, a mixing model which describes 3 air

gaseous mixing at a molecular level is needed. Nowadays,

other numerical methods give as good results as a front- B S N—

tracking technique. For example, 2Bwvo-dimensional nu-

merical simulations of the RM instability at two nearby in- _
terfaces performed with an Adaptative Mesh Refinement 5,’;52:5'°n
(AMR) Eulerian code show flow patterns in agreement with 2

experimental imageS. This AMR code and the front-

tracking code were compared together with single-mode RM SF6

experiments performed with strong radiatively driven
shockst* The two numerical techniques agree on the large-
scale structures, such as the amplitude of the interface per-
turbation, and both of them are able to describe experimental
data. Other 2D numerical simulations of single-mode RM
experiments performed with an Arbitrary Lagrangian—
Eulerian(ALE) code also give flow patterns very similar to 1
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experimental picture¥. In these simulations, mixing of two sre | X .
gases is described within the single fluid approximation by | i’;’fg’f‘m r[:::?;in i
N N N . . |
using a concentration governed by an advection-diffusion ! g
y=

equation. Numerical and experimental growth rates are in
good agreement and are decaying in time in a similar way. FIG. 1. Schematic shock tube anx, ) diagram(Ref. 8.
All these computations show that experimental and numeri-
cal flow patterns are very similar provided the experimental
initial conditions(amplitude and wave number of the pertur- flow still depends on the initial conditions through the large
bation) are well known. scales although & 3 energy spectrum may be exhibited.

The goal of our project is to perform highly resolved After the first reshock, the flow also exhibitska® energy
three-dimensional numerical simulations of flows subsequenpectrum. Moreover, we can see in numerical simulations the
to the RM instability, in order to study both the transitional scenario detailed above, i.e., decay of the turbulence before
and the turbulent regimes. Since the Reynolds number ahe first reflected shock wave—mixing zone interaction and
such flows is moderat®, direct numerical simulations seem amplification by reshocks.
to be feasible. In such an approach, the whole method —  Experimental conditions will be described in Sec. Il of
physical models, numerical schemes, implementation anthis paper. Afterwards, Sec. Il will give a description of the
resolution — is first confronted with experimental data.numerical methods used to perform the high-resolution simu-
Then, numerical results processing gives access to physicgitions. In Sec. IV, experimental measurements and numeri-
quantities, such as vorticity, energy spectrum or statisticatal results will be compared, and, finally, in Sec. V, a de-
correlations, that cannot be measured or extracted from megailed study of the numerical results will be presented and
surements. discussed.

In this paper, we apply this general strategy to two-
dimensional calculations. As already stated, the whol
method is confronted with the experimental data of Pogg?l' EXPERIMENTS
et al”® At this stage, experimental data are directly com-  In the experiments performed in the vertical shock-tube
pared with the numerical results in order to interpret the exat C.E.A’8 a discontinuous heavy-light interface between
periments. These shock-tube experiments qof iBEident on  hexafluoride (Sf) and air is impulsively accelerated by an
air demonstrate that the initial small-scale perturbations ofncident upward shock wavéMach number 1.45, shock
the interface develop into a turbulent mixing zone, whosestrength 0.54) and decelerated by several reshocks of de-
turbulence level decays before the first reflected shock wavereasing strength (0.38 for the first reflected shock, 0.15 for
arrives from the end wall. Afterwards, the reshock interacthe second oneas shown in Fig. 1. The shock strength is
tion amplifies the turbulence level through a baroclinic ef-defined as the pressure jump across the shock front normal-
fect. Experimental measurements also show that the turbuzed by the pressure behind the shock. The initial Atwood
lent boundary layers which develop on the shock-tube wallsiumber, defined aspb—p1)/(po+ p1) Wherep; is the den-
accelerate the fluid flow in the middle of the tube. Numericalsity of the first shocked fluidhere the Sf), is equal to
simulations clearly reproduce both this acceleration and the-0.67. The tube has a square cross section<@Dmnt)
lambda-shock structure observed in experiments. In a secomdth high (5 bap and low-pressur€l bay chambers, 0.8 and
step, we perform a detailed study of the numerical results. 112.96 m long, respectively. The distance between the initial
particular, we show that right after the first shock passage thmterface position and the upper end wall is set to 0.3 m. The
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two gases, the heavy one (SFand the light ongair), are ~ whereD is the diffusion coefficient. Partial densities of fluids
initially separated by a plastic membrane Qudn thick, 1 and 2,p; andp,, are equal toc and p(1—-c), respec-
which is placed directly below a thin wire meghire spac-  tively. By doing so, no numerical interface and no mixed
ing and diameter: 1.01 and 0.08 mrithe membrane is bro- Ccells are needed.
ken into small pieces by the passing incident shock wave (i) The pressur® and the density are the sum of the
through the grid. Therefore, the initial wavelengths of thepartial pressures and densities of each component, respec-
perturbations at the Fair interface are supposed to be of tively. They are related to temperature by the perfect gas law.
the order of the mesh size. The local thermal equilibrium hypothesis is assumed, which
A schlieren visualization allows us to measure the timeimplies that the temperature is the same for each species
dependent location and thickness of the mixing zone. An- P—p. 4P
other diagnostic, the Laser Doppler AnemomethpDA), e
gives measurements of the fluctuating flow velocity at se-  p=p,+p,,
lected points in the shock tube. A detailed description of the
setup and the characteristics of the diagnostics can be found T=T1=T,,
in Ref. 7.

R .
Pi:piHT:(')’i_l)picvi-n i=12.
I

l1l. EQUATIONS AND NUMERICAL CHOICES The indices refer to the partial corresponding quantities of
fluids 1 and 2. The ratio of specific heats of the mixture,

i noted y, can be evaluated with help of the following rela-
The code CADMIE, derived from CFDLIBY’ was de- tions:
veloped in order to carry out two-dimensional numerical

A. Governing equations

simulations of unsteady compressible mixing flows, such as _ _ Pmiing _ CCp, +(1-0)Cy,

those occurring in shock tubes. Features of the modeling are vmiing  CCo1 T (1-cjc,,

the following:

; - . cc, y1+(1—c)c

(i) CADMEE solves the 2D unsteady full Navier—Stokes _ e ( 10,72 @
equations, namely, the mass, momentum, and energy conser- cc, t(1- c)c,

vation equations for a viscous, compressible fluid: o ) _ )
The specific internal energy of the mixture is written

J J
a_ltj —(pu/) 0, e=cumixmgT=(ccUl+(1—c)cU2)T. (5)
5 With these hypotheses, the sound speednd the Mach
d d P doi, numberM are defined as
g (Pu) T g (pUu) == 2+ S (1)
i /
, YP ~Jull
c’="—, M=—. (6)
p c

J
m(pE>+—<pEu/) o o »
(iv) Viscosity and molecular diffusion coefficients of

P 9 each species of the mixture are calculated from Ref. 18.
XW/T)nLE((r“uj). Thermal conductivity coefficients can be obtained directly

' ’ from viscosity coefficients provided the Prandtl number of
In these equationg is the mass densityf;, the temperature, €ach species is assumed to be constant. Mixture viscosity
P, the pressurey; with i =1,2, the material velocity compo- and molecular diffusion coefficients are then determined
nent in thex; direction, with x,=x and x,=y, E=e  from Wilke’s mixture rulé® and the mixture thermal conduc-
+uiui/2, the mass Speciﬁc total energy,the mass Speciﬁc thlty coefficient is calculated from the model given in Ref.
internal energy, ang, the thermal conductivity coefficient. 20. Finally, all transport coefficientdyiscosity, diffusion,
The componentsr;; of the viscous stress tensor are de- and thermal conductivity depend on the two thermody-

Jd
=— —(P + —
ax/( 2 X,

fined in the Stokes approximation by namic quantities: concentration and temperature.
au; du;p 2 du, B. Description of the numerical choices
T~ ok T ax T 3%k, @ - led
i i 4 Features of the numerical method are detailed in Ref. 21

where . is the dynamic viscosity coefficient. but let us recall here the main characteristics of the code

(if) Mixing of two gases is described within the single CADMEE. )
fluid approximation by a concentration governed by an(i)  CADMEE uses structured meshes made of quadran-

advection-diffusion equation which writes gular cells;
(i)  state variables are cell-centered;
i(pC) i(pcu) J <pD0_C) 3) (i) a Godu_nov methgd is used to accurately describe
ot X strong discontinuities such as shock waves. It uses the
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approximate Riemann solver of DukowitzConse- tical. However, out of habit, the simulated shock tube will be
quently, no artificial viscosity is needed; horizontal. This rotation does not have any consequence in
(iv) asecond-order differencing technique in space can bghe configuration studied because gravity effects can be ne-
used and a low-storage second order Runge—Kuttglected. In numerical simulations, the initial perturbation of
scheme has been implementédlhe importance of  the interface is multimode and composed of eight wave-
the scheme accuracy has been shown in a previougngths\ of the order of the experimental wire mesh size:
paper® . A=0.5, 0.625, 0.8, 1, 1.25, 1.6, 2, and 2.5 mm. As we shall
(v)  the computation is performed in two phases: A La-gee pelow, before the reshock, the evolution of the mixing-
grangian phase and a remapping phase in which cory,ne \width depends on the characteristics of the initial per-
servative variables are transferred from the Lagrangy i aiions at the interface. So, in computations, we assume
lan mesh _to an_arbitrary spe_cmed mesh. _Th'sthat the wavelengths are of the order of the experimental
apprqach is the SO'C.a"ed Arbitrary Lagranglan—wire mesh size but we have no experimental information on
Eulerian(ALE) formulation; . o
the amplitude values. So, we arbitrarily take the same value

(vi)  Although the code solves the 2D Navier—Stokes . ;
equations, a turbulent algebraic model, the Baldwin—for all the amplitudes. This value, equal to 0.2 mm, has been

Lomax modeP* has been implemented in order to deduced from several simulations — performed with a
model turbuler,1t boundary layers that usually cjevebpcoarser numerical grid than those used below in this section

along shock tube walls. Indeed, direct numerical™ in order to obtain, before the reshock, a time evolution of

simulations of transition and turbulence in the bound-the mixing-zone width in agreement with experimental re-
ary layers would have required higher spatial resolu-Sults. The largest dimensionless initial perturbation ampli-
tions. Furthermore, it would have been necessary téudeak iS equal to 0.25. The |n|t|a| ShOCk I\/IaCh number iS
define the characteristics of the perturbations whichequal to 1.453. Calculations are started with a Lagrangian
destabilize the boundary layers. In experimentsmesh with nodes located at the initial interface, and contin-
schlieren pictures clearly show that the boundary lay-ued with an Eulerian grid before the shock reaches the inter-
ers are turbulent. Several defects on the shock-tubéace. By doing so, the development of undesired perturba-
walls certainly contribute to the transition, but they tions of wavelengths of the order of the numerical mesh size
are not well identified. So, as we are not interested ins avoided. The instarit=0 corresponds to the moment the
the boundary layers themselves but only in their ef-shock strikes the left edge of the perturbation.

fects on the flow, we prefer using a well-known tur-  The purpose of numerical and experimental studies is
bulent model which acts only near the walls. Thetwofold: First, to study the evolution of the turbulent mixing
Baldwin—Lomax model is a two-layer eddy viscosity zone and second, to quantify the influence of the turbulent
model in which the turbulence effects are modeledpoundary layers on the fluid dynamics in the middle of the
through the expression of turbulent transport coeffi-yyhe. Only one simulation to accurately simulate both the
cients which are added to the molecular transport comixing zone and the boundary layers would have required
efficients in the Navier—Stokes equations. The turbuyo, many zones in the mesh. Therefore, two kinds of simu-

lent eddy viscosityu, is given by lations of the experiment have been performed. They princi-
()i O<Y<Y, pally differ by the mesh and the boundary conditions used.

= ) —v=s In the first kind of simulations, only a half-shock-tube is
(K)out YesY= simulated and the walls are considered as reflective walls.

wherey is the normal distance from the wall ayg ~ The mesh zone size is regular in the transverse diregtion
can be defined as the smallest value for which the twdut not in the longitudinal direction. Two runs have been

formulations are equal. Consequently, the turbulentarried out with two various zone sizes in thedirection.
model does not act far from the walls. The region where the instability initially develops is covered

i with 0.05x0.08 mnf zones in the coarse grid and 0.05
The code CADMEE has been validated against numer- x 0.05 mnf zones in the fine one. At last time, the mixing
ous configurations of compressible viscous flIGWf par-  zone moves in a region covered with 8.8.08 mnt and
ticular importance to the computations reported in this papep.7x 0.05 mnf zones in the coarse and fine grids, respec-
is the fact that we are performing direct 2D numerical simuTive|y_ The entire coarséfine) mesh is done of 500000
lations. Indeed, as already stated, the Baldwin—Lomax ture720 000 zones.
bulence modeling used here acts only near the walls. In the second kind of simulation, the entire shock tube is
simulated and no slip type boundary condition for the veloc-
IV. COMPARISON OF EXPERIMENTS AND ity and isotherm typeT,,= 293 K) boundary conditions for
SIMULATIONS the temperature are assumed. Furthermore, turbulent bound-
ary layers are computed with the Baldwin—Lomax model.
The mesh is refined near the walls in order to accurately
The definition of the initial hydrodynamic conditions for simulate the boundary layers: The lowest transversal zone
the computations is based on shock-tube experiments prewsize is equal to 0.05 mm and the largest one is equal to 0.78
ously described. As said before, the CEA shock tube is vermm. The entire mesh is done of 500 000 zones.

A. Initial configurations
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(360 mesh zones in the wavelength required if we want

the physical viscous dissipation to dominate the numerical
viscosity effects® The finest resolution used in the present
simulations corresponds to only 10 and 50 zones in the
smallest and largest wavelengths, respectively. Conse-
quently, only the largest wavelengths which are very close to
the experimental mesh size are sufficiently described. On the
other hand, the calculation of the small wavelengths is not
converged and is responsible for the difference between the
results obtained from the coarse grid and the fine grid nu-
merical simulations. However, after the first reflected shock—
mixing zone interaction, Fig. 2 shows that the mixing-zone
widths obtained from the coarse and the fine meshes are very
similar. It looks as if the grid resolution had no more effect
on the mixing-zone width. This spatial convergence is
achieved because larger and larger structures develop in the

to the experimental width measured from schlieren pictures. The errorbar81iXing zone and both numerical grids are fine enough to
of this visual measurement are equal 1l0%. The three small circles describe them. Spectral analysis presented in next section
correspond to microdensitometry measurements of some schlieren picture\ﬁ,i” confirm this result Figure 2 allows us to compare nu-
Full and dotted lines correspond to numerical widths obtained from the ical | ith ) . | Aft he incid
cosrse and fine grids, respectively. merical results with experimental ones. After the incident
shock passage and before the reshock, mixing-zone widths
obtained from numerical simulations are slightly greater than
experimental ones. This result is not surprising since the val-

ues of the amplitudes of the initial perturbations have been

In the experiments, a schlieren visualization allows Us tq;pqsen with this aim from numerical simulations performed

measure the mixing-zone thickness. To estimate the mixingith a coarser grid. After the first interaction and before the
zone width from the numerical simulations, we calculate iNsecond one, experimental and numerical widths are very

each abscissathe transversal averaged dengiy(x). The  gimijar. In experiments, according to Vetter and Sturtedant,

density profile is then normalized and the mixing-zone widthy,e thin membrane which forms the initially plane interface
is defined as the distance between the two points where the,q 5 significant influence on the initial growth rate of the

normalized density is equal to 0.97 and 0.03. Figure 2 dis'mixing—zone thickness. On the other hand, the measured

plays tlhe evolution ve_rjuhs time of tr;e expenmen(;al a?]d NUgrowth rates after the first reflected shock—mixing zone in-
merical mixing-zone widths. Diamonds correspond o the eXa 4¢tion are independent of the membrane configuration.
perimental width measured from schlieren pictures. The

errorbars of this vi§ual measurement are gquaitttp%. C. Velocity in the mixing zone

The three small circles correspond to microdensitometry

measurements of some schlieren pictures. In Fig. 2, compres- As we said previously, the experiments performed at the
sions due to the interaction of the reflected shock waves witk-E.A. use the Laser Doppler AnemomettyDA). This di-

the mixing zone clearly appear. Before the first reflectec@gnostic gives measurements of the fluctuating flow velocity
shock—mixing zone interaction, microdensitometry giveswhich can be directly compared with results of numerical
mixing-zone width greater than those obtained from direcsimulations. In the experimerit} the position of the LDA
measurement from optical pictures. The discrepancy betweeprobe is successively at 125.5, 161, and 178.5 mm down-
experimental results before the first reflected shock—mixingtream the initial interface abscissa. Figure 3 shows velocity
zone interaction may be attributed to the difficulty to cor-measurements at the abscissa 161 mm. In this figure, dia-
rectly distinguish the initially thin mixing zone from the tur- monds correspond to experimental dathe full line corre-
bulent boundary layers which develop on the shock-tubgponds to the numerical simulation obtained with the fine
walls. In Fig. 2, full and dotted lines correspond to mixing- resolution in the mixing zone, without turbulent boundary
zone width values calculated from numerical simulationslayers. Hereafter, the instart 0 corresponds to the moment
with the coarse and fine grids, respectively. After incidentthe shock arrives at the probe. In Fig. 3, the first experimen-
shock—interface interaction and before the interaction of théal velocity plateau at 130 m/s corresponds to air accelerated
mixing zone with the first reflected shock at the end wallby the incident shock wavdor t<0.8 mg. Then we observe
tube, the mixing-zone width calculated from the simulationa second perturbed plateau which includes the crossing of the
obtained from the finest mesh is larger than the other ondurbulent mixture. The Rankine—Hugoniot relations give a
This discrepancy may be due to the small wavelengths whicktheoretical mean velocity of 47 m/s in this plateau although
are smoothed when the mesh is not fine enough. Previowexperimental measurements give a mean velocity of 59 m/s.
numerical simulations of single-mode Richtmyer—MeshkovThis acceleration is due to the boundary layer reversal effects
experiments have shown that 50 mesh zones in the wavén the Sk at shock crossing decelerated by the first reflected
length are necessary to correctly describe the evolution of thehock on the end wall. This second plateau ends with the
amplitude perturbation and a very high spatial resolutiorarrival of the second reflected shock wave. In Fig. 3 the

B. Mixing-zone width
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FIG. 3. Velocity measurements at 161 mm. Diamonds correspond to experi- s
mental data. The full line corresponds to the numerical simulation obtained 218
with the fine resolution in the mixing zone, without turbulent boundary )
layers.
234
i
numerical velocity fluctuates in the mixing zone and the lev- T

els of the fluctuations are the- same as the experimental On-esIG. 4. (Color) Superimposition of concentration isocontours and velocity
These IOW'fre_quenCy ﬂucmatlons Can be Correlated_to spati Iolormaps:(a) Before and(b) after the first reflected shock passage.
structures which develop in the mixing zone. In Fig&a)4

and 4b), three isovalues of the concentration ofgSf the

mixing zone €=5%, 50%, and 95% from right to lefare

superimposed on the velocity colormaps at two various in—D' Effects of the boundary layers
stants, just beforfFig. 4(a)] and just aftefFig. 4(b)] the first Experimental measurements show that the turbulent
reflected shock—mixing zone interaction. In Figa¥ the  boundary layers which develop on the shock-tube walls per-
zones where the velocity is higher than the averaged valuturb the fluid dynamics in the middle of the tube. High-
131.5 m/s correspond to heavy gas pockets which penetratesolution 2D numerical computations with no slip type
in the light gas. On the other hand, the zones where thboundary condition for the velocity and isotherm type
velocity is lower than the value 131.5 m/s correspond to lightboundary condition for the temperature allow us to simulate
gas pockets which are pushed by the heavy gas. After thehis behavior. Figure &) gives an example of density nu-
reflected shock passage through the mixing Zdtig. 4(b)], merical isocontours in the mixing zone. It shows that the
the difference in velocity between air bubbles and Sikes  mixing zone is stretched along the shock tube walls in the
is bigger. boundary layers. Therefore, the density profiles obtained by

 J

22r
18
boundary layer FIG. 5. Stretching of the mixing zone
n effects by the turbulent boundary layers
%14 which develop on the shock-tube
£ x walls: (a) Density isocontours antb)
; 2 density profiles obtained by taking the
210 average of the density on all the
a shock-tube thicknes¢dotted ling or
only in the middle of the tubefull
6 line).
2 . . A
3.52 3.54 3.56 3.58 3.6

abscissa x (m)
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rives at the probe. In Fig. 6, the first velocity plateau at 130
m/s firstly corresponds to air accelerated by the incident
shock (for t<0.6 m9 and afterwards to SF The second
plateau at 59 m/s corresponds tosSfecelerated by the first
reflected shock on the end wall. This second plateau ends
100 f | «——— reflected shocks with the arrival of the second reflected shock wave. As one

mixing zone : on the end wall . .
passage can see in Fig. 6, one effect of the turbulent boundary layers

] is to accelerate the $F The first simulation, whose results
| in pure gases are similar to the Rankine—Hugoniot solutions,
gives a theoretical mean velocity of 47 m/s in the second
plateau, while experimental measurements give a value of 59
m/s. In the 2D simulations presented in this paper, only two
turbulent boundary layers are simulated and the mean veloc-
. . . . ) ity in the second plateau equals 52 m/s. By simulating with a
0 0.0005 0.001 00015 000 00025 0003 3D (three-dimensionakode the four turbulent boundary lay-
Time (s) ers which really develop in the shock tube, we may expect to
find a higher value close to the experimental one.
FIG. 6. Velocity measurements at 125 mm. Dots co_rresp_ond to experi_mental Another effect of the turbulent boundary layers is the
data. Full and dashed lines correspond to numerical simulations with and . . .
without turbulent boundary layers, respectively. velocity undershoot just after the passage of the first reflected
shock. As this shock interacts with the mixing zone, a shock
(Mach number equal to 1.37 in fluid-fixed reference frame
taking the average of the density on all the shock tube thickiransmitted in the Sf Because of its interaction with the
ness[dotted line in Fig. B)] or only in the middle of the boundary layer in the SFand according to the hydrody-
tube[full line in Fig. 5(b)] are not the same. As the experi- namic conditions(Mach number and adiabatic coefficient
mental microdensitometry measurements of the mixing-zongalues, this transmitted shock bifurcates. The experimental
width consist in calculating averaged density profiles frominterferometric image given in Fig.(@ clearly shows the
schlieren pictures which include boundary layer effects, it idambda shock structure, with the presence of a bubble at the
not surprising to find a higher value than the width visuallyshock foof The bifurcation height increases as the shock
measuredsee crosses and diamonds in Fig. PDA mea- moves in the Sf Figure 7b) shows the numerical
surements with the probe located at 125.5 mm downstrearschlieren-type image obtained at the same instant. Such nu-
the initial interface abscissa allow us to study boundary layemerical images are particularly useful to simultaneously vi-
effects. Figure 6 shows velocity measurements at this absualize mixing-zone and shock structures. As shown in Fig.
scissa. In this figure, dots correspond to experimental dat&, the visual agreement between the experimental schlieren
Full and dashed lines correspond to numerical simulationpicture and the numerical schlieren-type image is very good
with and without turbulent boundary layers, respectively.for the shock structure. On the other hand, the numerical
The instantt=0 corresponds to the moment the shock ar-mixing zone is thicker than the experimental one. This dis-

first plateau ——— ™

140 fe-:

ol .A.IR SFG'

80

60

Velocity (m/s)

40}

20

8cm

lambda shock Mixing zone

{a) i)

FIG. 7. (Color) (a) Experimental, from GalametRef. 5, and(b) numerical schlieren pictures at a tirgist after the first reflected shock wave—mixing zone
interaction. Because of its interaction with the boundary layer, the transmitted shock ingth&BEates.
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crepancy has two reasons. First, the numerical image ha ' T ' T T
been obtained from the computation performed with a high-& %%
spatial resolution near the walls. Consequently, the turbulen:
boundary layers and their interaction with the refracted &
shock wave are well described, but not the mixing zone% 0.005
which is too diffuse. Second, this nice experimental inter- =
ferometric image has been obtained from previous? o.004
experiments. In these experiments, the plastic membrane &
which initially separates the heavy gas from the light one is% 0.003
not placed directly below a thin wire mesh. Consequently, g
the membrane is not broken into small pieces by the incident

E
£ 0.006

0.002

shock and it slows down the mixing of the two gases. The 0.001 K& i
experimental mixing-zone thickness is then thinner than ex- ! ! L . L

pected. The influence of the boundary layers on the flow at 0 00002 00004 0.0006 0.0008 0.001 0.0012

the middle of the tube points out the interest of building Time (s)

shock tubes with larger cross-sectional areas, as it has be%ﬁ;. 8. Evolution of large stuctures in the RM mixing fronts. Crosses and
done by Vetter and Sturtevaht. diamonds correspond to spike and bubble heights, respectively. Full and

dotted lines correspond to power lawsgt)=L,t# with 8,=0.63 for the

V. ANALYSIS OF THE NUMERICAL RESULTS spike front andB,=0.39 for the bubble front.

A. Scaling laws

In a general way, it is of interest to look for scaling laws In the second approach, by considering self-similar so-
for the evolution of the mixing-zone width. In that respect, lutions of a one equation statistical turbulent model reduced
several interpretations of the numerical results can be giverio the diffusion and dissipation terms, BarenBiathas
First, models for the nonlinear regime such as those proshown that, at late time, the turbulent width varieg‘awith
posed by Ramsha&vand Alonet al?® may be used. Second, B=2/3 in the case of zero dissipation afe: 2/3 otherwise.
statistical models of fully developed turbulence may also beCherfils and Harrisoff also studied the evolution of a one-
used?’?® For example, the solution of the diffusion- dimensional turbulence in the case where it is completely
dissipation part of a two-equatidae model provides a self- determined by diffusive and dissipative processes. On the
similar behavior that can be compared with numerical re-bases of two-equatiok-e models, they found a self-similar
sults. solution asymptotic to the exact flow. The decay exponent of

The first approach to model the evolution of the mixing the kinetic energy was equal te 1.32, —1.39 or —1.48
zone gives a lot of importance to the nonlinear behavior ofaccording to three various numerical values of the dissipa-
large structures in the mixing fronts. A numerical study hastion coefficient. This phenomenological dissipation coeffi-
been performed by Aloret al?® in order to validate a 2D cient is usually calibrated on 3D experiments. The layer
model based on bubble-rise dynamics. This theoretical anthickness then scales #where3=0.34, 0.305, and 0.26,
numerical study of the nonlinear evolution of large structuregespectively. Such power-law behavior has also been found
in RM mixing fronts gives a constant power-law coefficient from numerical simulations carried out by several authors.
B, equal to 0.4 for multimode RM bubble fronts. On the For multiple-scale random perturbations, the layer thickness
other hand, the power-law coefficiet for the spike fronts obtained by Pham and Meir6hfrom 2D RM instability
is not constant: It increases with the Atwood numBefrom  simulations in continuously stratified fluids seems to scale
Bs=0.4 for A,;=0 to Bs=1 for A;=1. According to Fig. 2 with t%. The time exponenB shows a weak dependency on
from Ref. 26,3, is approximately equal to (£A;)B,. In  the initial configurations but it always lies in the neighbor-
our case, the Atwood number is equal tohood of 0.25. According to Pham and Meiron, “the time
—0.67 whence the8, value is equal to 0.66. Figure 8 dis- variation of the layer thickness differs from the scaling de-
plays the evolution versus time of the large stuctures in theived using ideas of self-similarity due to Barentagven
RM mixing fronts. In numerical simulations, spike and at low Atwood ratio, presumably because of the inhomoge-
bubble heights are inferred from the location of bubble ancheity and anisotropy due to the excitation of vortical
spike fronts relative to the unperturbed interface. The locaplumes.” Furthermore, “it is possible that the layer has not
tion of the unperturbed interface is obtained from the calcuevolved over a sufficiently long time. At the end of the cal-
lation of the theoretical interface velocity with the Rankine— culations the layer has only grown a factor of roughly two
Hugoniot relations. In Fig. 8, crosses and diamondsover its initial size.” Youngs® obtains a close values
correspond to spike and bubble heights, respectively. Fuk=0.3 from 3D numerical simulations but he notices
and dotted lines correspond to the fits of the numerical re*Richtmyer—Meshkov mixing due to a single shock does
sults by power laws (t) =L ,t?, with B,=0.63 for the spike depend on the initial conditions, and different forms for the
front and B,=0.39 for the bubble front. The power-law co- initial perturbations are likely to give different values for the
efficients 8, and B presently obtained from 2D CADME  power-law coefficient.” Very recently, a simple model for
simulations are in good agreement with bubble-rise model§near and nonlinear mixing at unstable fluid interfaces has
(Bp,=0.4 andB,=0.66). been proposed by Ramshawit reproduces the RM growth
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£ 001 | 1 several times before the reshock and versus the abs¢isz&®“® These
(b) ‘g 1 profiles show the quasi self-similar behavior of the mixing-zone.
()
C
(e}
N
g values reported by Dimontt al. (8=0.5+0.1) from turbu-
s lent Richtmyer—Meshkov instability experiments performed
with strong radiatively driven shock3 All these results con-
0.001 . cern the mixing-zone behavior after the incident shock pas-
[ . 3 ] sage and before the reshock. After the reshock, Fig) 9
16-05 0.0001 _ 0.001 shows that a power-law is no more valid. Figure 10 gives the
Times (s) transversal averaged density profileg obtained from the

FIG. 9. Mixing-zone width vs time(a) with a linear scale andb) with a fine grid simulations at several times and versus the abscissa

log—log scale. Diamonds and crosses correspond to numerical simulatior= X/t with 3=0.48. These profiles show the quasi self-
with code CADMEE obtained from the coarse and fine grids, respectively. similar behavior of the mixing zone.
Full and dotted lines correspond to a power lagt) =L ,t#. The fits of the
numerical results givé,=0.37, (L,=0.34), and3=0.50, (3=0.48), for .
the simulation obtained from the coardme) grid. B. Spectral analysis

To characterize the flow regime, we study the nonlinear
8 L evolution of the interface perturbation by modal analysis, as
law L () ~t* where5 depends on the rate of Kinetic energy y,ne in Ref. 15. We introduce the new variables ypu
d_|$3|pz;t]|on. ltr.] tTe clase_oé /gefr_o ;j|53|pat|03,_|t glvfeszt7he pdre\'/vherep is the density and the streamwise velocity compo-
vious theoretical valug = IrSt proposed in Ret. and nent. This quantity is equal to the square root of the kinetic

it further exhibits the expected reduction ghdue to dissi- energy per unit volume. Then, we consider the one-

pation. dimensional transversal spectrum
Figures 9a) and 9b) display the evolution versus time P

of the mixing-zone width with a linear and a log—log scale, _ Fhe A 2
respectively. In these figures, diamonds and crosses corre- Elky,t)= 2_|_XJ'LX W(X’ky’t)' dx.
spond to numerical simulations obtained from the coarse and .

fine grids, as previously presented in Fig. 2. In Figs) @nd  In this expressior/(x,k, ,t) is the transversal discrete Fou-
g(b), full and dotted lines Correspond to a power Hi\@:) rier transform of the variable at a given abscissag it reads
=Lo+L(t—tg)”?. In this expressionty=0 andLy=L(t) A A

=0 because the instabt0 corresponds to the moment the U(x,ky ,t)zu(x, Wt)

incident shock strikes the discontinuous interfésee Fig.

()

1). After the incident shock passage and before the reshock, 1 Nt 27/

the fit of the numerical results givds, =0.37, (L;=0.34), =N > Ll(x,jAy,t)exp( —iT : (8)
and 8=0.50, (8=0.48), for the simulation obtained from 1=0

the coarséfine) grid. The power-law coefficientg presently ~ where/=0,1,...,N—1, N is the number of samples and

obtained 3=0.48 and 0.50) correspond to the complex flowAy the sample interval. The length.2<d corresponds to a
behavior subsequent to the RM instability generated by &-span on which the transversal spectrum is averaged. We
single shock wave. So, the power-law coefficients obtainedvill commonly choosel equal to the shock-tube square sec-
from our simulations g~0.5) are in agreement with non tion and the length 2, greater than or equal to the mixing-
zero dissipation $<2/3) and are equal to the power-law zone width at the final time. The advantage of this spectral
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analysis is to give information on all scales present in theicity isovalues: Larger and larger spatial structures develop
mixing zone, even if the flow develops into a turbulent re-in the mixing zone. Spectra globally move towards low wave
gime. In Eq.(7), the quantityE(ky,t) represents the spatial numbers and exhibit &3 enstrophy cascade. This scaling
average of the streamwise kinetic energy spectral densityaw is valid for a limited range of wave numbers. Indeed, the
The total streamwise kinetic-energy is then given{Eyt)) high wave number end of the spectra is unsignificant because
=EkyE(ky,t). of the mesh-size limitation. For example, the mode index
Figures 11—14 give the concentration and vorticity iso-~' =101 corresponds to the wavelengtk-0.8 mm which is
contours at four various times. The sizes of the windows arelescribed with only 16 mesh zones. Tkie* enstrophy cas-
3 cm width and 3 cm height for all these maps. Figurescade was first predicted by Kraichn#nKraichnan conjec-
11-14 also give the one-dimensional averaged transverstired that, if energy is fed in at a constant rate to a band of
spectra of the quantity/, given by Eqs(7) and(8), in linear ~ wave numbers of the order &, on one hand, an inverse
and log—log scales. We have superimposedkih& enstro-  cascade of energy with constant energy flux will take place
phy cascade to the energy spectra. Just after the incidefallowing ak ™ %3law for k<k; and, on the other hand ka ®
shock—interface interactiosee Fig. 1}, the concentration range with constant enstrophy flux will be observed at largest
isovalues already show the existence of bubble and spikwave numbers fork>k;, up to the viscous -cutoff.
structures in the mixing zone. The vorticity is concentratedBatchelo?® also obtained thé ™2 inertial energy spectrum
in these structures. The interface perturbations have alreadyy phenomenological and dimensional considerations in the
evolved into the nonlinear regime. However, the lowest ini-context of a freely decaying two-dimensional turbulence,
tial perturbation modes are still present and dominant in thevhere a self-similar evolving spectrum was assumed. But the
energy spectrum. Afterwards, the mixing zone becomesonfirmation by numerical simulations of this 3 energy
larger and larger and the initial perturbation modes disappeapectrum is not so evidefit. However, the analysis of the
(see Fig. 12 The energy spectrum moves towards the largaelaxation of two-dimensional turbulence performed by
wavelengths and exhibits the persistence of dominant modedcWilliams® shows the expecteki 2 law but also exhibits
smaller than the initial ones. After the reflected shock pasthe emergence of larger scales of turbulence and show that
sage(Fig. 13, the mixing zone is compressed — as alreadythe long-time evolution of two-dimensional fields is domi-
seen in Fig2 — and the vorticity strongly increases through nated by coherent vortices whose vorticities are much stron-
the baroclinic production term. Perturbation modes preserger than that of the well-mixed background. Finally, the
in the mixing zone are all excited. However, the spectrumspectral analysis of our numerical simulations tends to prove
still contains some dominant low modes and shifts towardshat the flow in the mixing zone is turbulent. As we will see
low wave numbergsee Fig. 14 Spectral analysis quantita- in the next paragraph, this turbulent behavior is confirmed by
tively confirms what can be seen in concentration and vorstatistical analysis.
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C. Statistical analysis where the mean velocitg(x,t) is given by

A rigorous study of the statistical properties of com-
pressible Richtmyer—Meshkov instability-induced turbulent
mixing would need an average several numerical simula- Figure 15 displays the turbulent kinetic energy profiles
tions. In practice, it is not possible yet because we are Iimite(kzmlz at various times. We clearly see the strong gen-
by the excessive memory requirements and long run timessration of turbulent kinetic energy at the incident shock pas-
So, hereafter, we use only the fine resolution simulation pre-
viously described. In this simulation, there are no boundary
layers. Experimental LDA measurements have shown a
strong anisotropy of the turbulence in the mixing zdrihe 400 Incident shock ' ‘ '
most energetic component of the Reynolds stress is the axial 350 F / passage .
one. Furthermore, mixing is certainly not homogeneous, es-

ax,H)=pa(x,t)/ p(x,t).

pecially in the axial direction which is the direction of propa- . 390 I T
gation of the shock waves. Nevertheless, mixing is assumed g 55 | -
homogeneous along the transvergadirection. Averaged § Fifs"ef;ectedshwk
quantitiesa(x,t) are then performed along this direction ;‘3;_’ 200 |- peosad \\ T
N—1 S 150 | -
_ 1 _ 3
a(X,t): N jgo a(X!JAyrt)' (9) lE 100 .
For incompressible flows, turbulent fluctuatioa$ of the 50 I- /\ 1
guantitya are expressed as 0 /\ N A L
_ 0.4 0.45 0.5 0.55 0.6
a'(x,y,t)=a(x,y,t)—a(xt). x(m)

On the other hand, for compressible flows, turbulent fluctuaF'G. 15. Turbulent kinetic-energy profild=07u;/2 at various times. We

; " : S clearly see the strong generation of turbulent kinetic energy at the incident
tions a” of the quantitya are expressed within the Favre shock passage through the interfadiest profile on the left side of the

averaging framework figure), and at the reshocithe third profile from the right side of the figure
- corresponds to the time when the reflected shock, which travels from right to
a"(x,y,t)y=a(x,y,t)—a(x,t), left, is still interacting with the mixing zone

Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 12, No. 7, July 2000 2D Navier—Stokes simulations of gaseous mixtures 1795

70 \\ T T 1 T 1 T 20 T T T 1 T
- abscissa 125.5 mm — uy,
60 | [\ E © 45| calculations T
\ “'E uy,
\ ~—
A
550 | 7 (a) =X 10 - 1
2 40 | \ . = 5 ]
8 ) |,=,_
£ \
4 \ .
530' \\\ 1 0 7y " T 1 1 1
32 N 135 0.001 0.0012 0.0014  0.0016 0.0018
'-_:-, 20 . 05/(x-0.4)" | 200 , T T r T
Tep o= abscissa 169 mm — uy
Te—a Ky o { -
10 F /\ A ] NE 150 calculations — U
0 1 1 L //\ (b) 100 F 4
0.42 0.44 0.46 0.48 0.5 0.52 0.54

x(m) 1= 50 | .
FIG. 16. Turbulent kinetic-energy profilés=07U7/2 at various times after 0 . . o . Y-
the incident shock—interface interaction and before the first reflected shock 0.001 0.0012 0.0014 0.0016 0.0018
passage. The maximum amplitude of these profigs, decreases as the 200 T T T T T
mixing zone moves in the shock tube and it followsxa—(x,) ~*® power N abscissa 169 mm - U
law, wherex,=0.4 is the initial position of the unperturbed interface. nE 150 |- experiments ' 1 E
£ T
© =400 | 1
sage through the interface and at the reshock. Figure 16 gives [.3'_
a zoom of the profiles before the reshock. The maximum =50 .
amplitude of these pr.ofiIeKmax decrea;es by diffusion and _ o . . ot
dissipation as the mixing zone moves in the shock tube and it 0.001 00012 0.0014 00016 0.0018
follows a (x—xo) 1% power law, wherex,=0.4 is the ini- t(s)

tial position of the unperturbed interface in the simulations.c,5 17 Eyoiution of axial and radial components of the Reynolds stress
As the mixing-zone averaged velocity is almost constant, Weensor:(a) Numerical results at the 125 mm abscig&numerical results at
obtain: Rma>&(t) at™ 135 According to KOh»ﬂngro\},6 the ki- the 169 mm abscissa(¢) experimental data at the 125 mm abscissa.

netic energy for freely evolving three-dimensional isotropic

turbulence in incompressible fluids should decay as a power

law t~“ wherea=10/7. On the bases of EDQNM calcula- 2D character of the computations and it is well-known that
tions, Lesieut’ found @=1.38. From numerous results the phenomenology of 2D turbulence is very different from
found in the literature and from their own grid turbulence the 3D one.

experiments, Mohamed and Larfishow that the exponent To determine the incompressible or compressible char-
in the decay power-law for the kinetic energy is equal to 1.3acter of the fluctuations, we have calculated the turbulent

and is independent of initial conditions such as Reynoldqwach number. defined aéﬁ/c wherec. is the local sound

. .- 1 S S
number, mesh size, solidity, and rod shape. We note thalyeeq This Mach number is always less than few percents.
before the first reshock, the decay exponent1.35 of the  consequently, the fluctuations of the velocity field are quasi-
kinetic energy given by the 2D CADME numerical simu-  j,compressible. However, we do note that in the mixing zone

lations is close to all these values. However, since all the,o r.m.s.(root-mean-squayevalue of the density fluctua-
results cited concern the three-dimensional isotropic turbu-, 12 I
ons (p—p)°)~“p is about 0.4 after the incident shock

lence, we conclude that this is a pure coincidence. After théI d about 0.5 after th hock
reshock, the kinetic-energy profiles are largeee Fig. 15 passage and about .o after the reshock. .
and it is no more easy to find a power-law behavior We also calculated the turbulent kinetic-energy dissipa-
Figures 17a) and 17b) illustrate the anisotropy of the tion rate defined ape= o du;/dx,. Figure 18 displays the
Reynolds stress tensor at the 125 mm abscissa and at the 18@files of the dissipation rate of turbulent kinetic energy at
mm abscissa, i.e., about 0.2 ms before and 0.3 ms after the&rious times after the incident shock—interface interaction
interaction with the first reflected shock, respectively. Figureand before the first reshock. In Fig. 18, the maximum ampli-
17(c) gives theuju; anduju profiles obtained from LDA tude of these profileg,, decreases as the_rlngiang zone
experimental measurements at the 169 mm abstigsase ~MoVves in the shock tube and it follows x<xo) " power
figures clearly show the strong anisotropy of turbulence inaw, wherex, is the initial position of the unperturbed inter-
the mixing zone: At the maximum of the profiles, the ratio face. As the mixing-zone averaged velocity is almost con-
ujuj/ujuj reaches the value 3 in the experiments and abougtant, we obtainen,(t)at % However, within the frame-
2.5 in the calculations. Numerical values of the axial andwork of a two-equation statistical model, the dissipation rate
radial components are twice greater than experimental meaf the turbulent kinetic energy decreasesl&#¢dt, so, in this
surements. However, experimental and numerical resultsonfiguration, the dissipation rate should decrease xas (
may not be compared on a quantitative way because of the x,) ~2%° or t 2% This discrepancy can be explained by
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FIG. 18. Turbulent kinetic-energy dissipation rate profiteat various imes ~ FIG. 19. Enstrophy profiles at various times after the incident shock—
after the incident shock—interface interaction. The maximum amplitude ofinterface interaction. The maximum amplitude of these profikgg, de-
these profile,,,, decreases as the mixing zone moves in the shock tube angreases as the mixing zone moves in the shock tube and follows a (
it follows a (x—X,) ~ -84 power law, wherex,= 0.4 is the initial position of _fxo)’2 power law, wherex,= 0.4 is the initial position of the unperturbed
the unperturbed interface. interface.

1V2 1V X
V20— —Vp
p p2

noticing that a turbulence created by a RM instability re-V X V2u+%V(V.u)”.

quires a certain amount of time to reach a perfect self-similar

state. In other words, it requires a certain amount of time to (1D
reach an isotropic state with a spectral equilibrium. More-For a Newtonian incompressible fluid with constant kine-
over, the flow numerically simulated in this paper is a turbu-matic viscosity coefficienv=u/p, this term reduces to the
lence mixing and fluctuations of density, which are not takerLaplacian of the vorticity»V2e. In two-dimensional flow,
into account in the turbulence model considered here, mathe vorticity w is a vector perpendicular to the plane of the
alter the decay exponent. We also calculated the kinetic erflow. The magnification of the vorticity by stretching of vor-
ergy dissipation rate in the incompressible case, tex lines, which is such an important feature of the inertial
= v(du{19x;)(au]1dx;), and found profiles very similar to effect in three-dimensional turbulence, is consequently en-

the compressible ones. This result is in agreement with thirély absent in two-dimensional calculations. Finally, in a
low values of the turbulent Mach number and proves thafonstant density incompressible fluid, E&0) reduces to the
between interactions with the shock waves, the flow is quasiVéll-known equation

incompressible.

1_ .
—V.0'>=,u,

J
a—taH—(u.V)w: vVWlo. (12
D. The enstrophy behavior

In the 2D inviscid limit, the vorticity behaves as a pseudo-
scalar conserved along the fluid trajectories. By taking the
scalar product ote and Eq.(10) without the term of stretch-
ing of vortex lines (which is equal to zero in 2D-
calculation$, we obtain

The vorticity equation for a compressible viscous fluid is
described by the Helmholtz equation

1_ .
—V.O').
p

at 9 !
(10 5 Q+uVQ=-20V.u- —.(VpxVp)
p

d 1
—owt+tuVo=—oV.ut+wVu— —ZVpXVp+V><
p

In this equationu is the velocity, =V Xu the vorticity,

V =(dldx,dldy,dl 9z) the gradient operator and the vis- Tro.
cous shear stress tensor still defined in & The first and

second terms on the right-hand-side of Ed) represent the (13
change of vorticity due to the compression and stretching ofn this equation() is the enstrophy density defined iy
vortex lines, respectively. These two terms are linear in vor= 3| w|?. The second term on the left-hand-side and the three
ticity so that they would vanish in an irrotational flow. The terms on the right-hand-side of Ed.3) are called the advec-
third term on the right-hand-side, called the baroclinic termtion, compression, baroclinic production, and dissipation
may create vorticity in an initially irrotational flow. This terms, respectively. Figure 19 displays the averaged enstro-
term vanishes in a constant density incompressible fluid. Thphy profiles()(x) obtained by averaging the enstrophy along
last term represents the change of vorticity by viscous effectthe transversa} direction, at various times after the incident
and may be written as shock—interface interaction and before the first reshock. In

1 1
Ve S Vpx Vaut zV(V.u)
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Be+11 T T T ' first reflected shock wave—turbulent mixing-zone interaction
' and its strong enhancement by reshocks. And finally, the
l‘. mixing zone can be regarded as a region where large scales
W coexist with small scale turbulence more or less developed.
v S So, we have compared our numerical results both with mod-
: els for the nonlinear regime such as those proposed by
Ramshaw’ and Alonet al,?® and with statistical turbulence
. models, using the tools of fully developed turbulence, i.e.,
self-similar behavior, scaling laws and spectrum.
7 On one hand, after the incident shock passage and before
the first reshock, large scales in the Richtmyer—Meshkov
mixing fronts evolve versus time according to scaling laws
Be+11 . ! \ L given by models based on bubble-rise dynarfi¢s®* for
045 0.46 0.47 0.48 0.49 the bubble fronts antf for the spike fronts These large
x{m) scales of the motion govern the thickening of the mixing
zone and retain memory of the initial conditions. In the lit-
FIG. 20. Comparison of the profiles of the dissipatihick full lines),  aratyre, this dependence to the initial conditions has still
baroclinic production(dotted line$ and compression ternighin full lines) . . . . . .
in the enstrophy budget at two instants after the incident shock—inten‘acpeen noticed in experiments, numerical simulations and
interaction. models. In experimentsthe thin membrane which forms the
initial interface has an influence on the initial growth rate of
the mixing-zone thickness. In numerical simulatiGhse-
Fig. 19, the maximum amplitude of these profi@s,,, de-  sults slightly depend on the initial interface perturbations
creases as the mixing zone moves in the shock tube arl@mplitudes and wavelengthand on the mesh size refine-
follows a (x—X,) ~2 power law, wherex, is the initial posi- ~ment. In modelg? the kinetic energy deposited at the inter-
tion of the unperturbed interface. As the mixing-zone averface by the impulsive acceleration is a function of the initial
aged velocity is almost constant, we obt&ip(t)at 2. This  conditions.
time dependency of the mean-square vorticity is in agree- On the other hand, a statistical processing of the numeri-
ment with the theoretical and numerical results of Batchelocal results shows that the decay of the turbulent kinetic-
in the context of a freely-decaying two-dimensional com-energy scales as' with «=—1.35 before the first reshock.
pressible turbulenc® In Eq. (13), the terms ¢w).(V?w)  However, the agreement with the value of the scaling law of
and (vw).(— (1/p) Vpx(V2?u+(1/3)V(V.u))) represent the decaying of a free-evolving three-dimensional isotropic
the incompressible and compressible contributions to the erfurbulence is certainly a pure coincidence. The enstrophy
strophy dissipation, respectively. After calculations of thesealso decays as a power law? that is in agreement with the
contributions, we observed that the compressible part is dheoretical and numerical results of Batchelor in the context
any time negligible towards the incompressible one. Figur®f a freely-decaying two-dimensional incompressible
20 displays a comparison between various terms in the eriurbulence’® although the flows simulated in this paper are
strophy budget at two instants after the incident shock-bounded. Moreover, spectral analysis of the mixing layer
interface interaction. The profiles of dissipation, baroclinicexhibits ak 2 enstrophy cascade which is in agreement with
production and compression show that the main contributioftheoretical studies of two-dimensional turbuledté But
to the enstrophy budget comes from the baroclinic term. Thisome results moderate the conclusion that the flow is fully
result is in agreement with numerical simulations of two-turbulent. We have seen that the turbulent kinetic-energy dis-
dimensional homogeneous flows performed by Passot arglpation rate scales as*#* but in a fully 3D turbulent flow
Pouquet"_9 On the other hand, Kida and Orsﬁgg;howed where dissipation plays an important role, we would have
that the main contributions to the enstrophy budget in threeexpected a*~* behavior wherex is the exponent of the
dimensional flow come from the stretching and the dissipascaling law for the turbulent kinetic energy. However, we
tion terms, which give a positive and a negative contributionhave to note that this agreement, using statistical turbulent
respectively. models, does not take into account the density fluctuations.
Moreover, let us recall that the theoretical scaling laws men-
tioned above give only an asymptotic limit in time and as-
sume that the turbulence is homogeneous and isotropic,
In this paper, we have presented the results of highwhich is not true in our case. Indeed, measurement of the
resolution 2D numerical simulations of shock-tube experi-longitudinal and transversal velocity variances have proved
ments of Sk incident on air performed by Poggt al”®In  that the flow is anisotropic in the mixing layer. Finally, be-
these experiments, measurements demonstrate that the initfate the first reshock, several quantities in the mixing zone
small scale perturbations of the interface develop into a turadopt a quasi self-similar behavior even if the flow is not
bulent mixing zone. The main result of this paper is to showfully turbulent but still in a strongly nonlinear or weakly
that 2D calculations exhibit a turbulent regime compatibleturbulent regime.
with the experimental data. In particular, we can see in nu-  After the interaction between the first reflected shock
merical simulations the decay of the turbulence before thevave with the mixing layer, the flow behavior is different.

de+11

2e+11

-2e+i1

-de+11™

Dissipation, production and compression

-Be+11 ! -

VI. CONCLUDING REMARKS

Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1798 Phys. Fluids, Vol. 12, No. 7, July 2000 C. Mugler and S. Gauthier

Because of the 2D character of the simulations, large stru¢?r. H. Holmes, J. W. Grove, and D. H. Sharp, “Numerical investigation of
tures are still growing with time but power-law evolutions Richtmyer—Meshkov instability using front tracking,” J. Fluid Me&Q1,

: " : . 51(1995.
for various quamltleibUbble and Splke fronts, trbulent ki R, M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M.

netic energy, _enstropmyare no more valid. This behavior  gygzinski, “Simulation of shock-generated instabilities,” Phys. Fluis
may be explained by the presence of a weak turbulence far2471(1996.
from equilibrium because the mixing layer has probably not‘R. L. Holmes, G. Dimonte, B. Fryxell, M. L. Gittings, J. W. Grove, M.

evolved over a sufficiently long time between two reshocks S¢hneider, D. H. Sharp, A. L. Velikovich, R. P. Weaver, and Q. Zhang,
Richtmyer—Meshkov instability growth: experiment, simulation and

to reach a spectral equilibrium. . . theory,” in Los Alamos National Laboratory, Report No. LA-UR-97-2606
Numerical simulations of these multimode Richtmyer— (1997.
Meshkov experiments have also shown the influence of tur=C. Migler and S. Gauthier, “Numerical simulations of single-mode
: ;- Richtmyer—Meshkov experiments,” Phys. Rev58 4548(1998.

bUIent_ boundary Iayers on mean flow VEIOCIty measured Ir16S. Gauthier and M. Bonnet, “A— e model for turbulent mixing in shock-
the_ middle of the tube. Indeed, turbulent t_)oundary layers tube flows induced by Rayleigh-Taylor instability,” Phys. Fluids 2\
which develop on the shock-tube walls confine the flow and 1685(1990.

accelerate it. Furthermore, the lambda-shock structure ob-F. L. Addesio, J. R. Baumgardner, J. K. Dukowicz, N. L. Johnson, B. A.

served in experiments is well reproduced by simulations. ~ Xashiva, R. M. Rauenzhan, and C. Zemach, “CAVEAa computer code
for fluid dynamics problems with large distortion and internal slip,” in

Finally, numerlca}I simulations presented in this PaPer | os Alamos National Laboratory, Report No. 106{390).
allow us to characterize and better understand the flow in th&J. 0. Hirschfelder, C. F. Curtiss, and R. B. BiMplecular theory of gases
Richtmyer—Meshkov instability induced mixing-zone. These_ and liquids(Wiley, New York, 1954.
1o INACAN : ) .,
2D calculations have been done as a precursor to futureC' R. Wilke, “A viscosity equation for gas mixtures,” J. Chem. Phy8,
) : . . . 517 (1950.
three-dimensional S|r_nulat|or_13 al’_ld the comparison betweeng A mason and S. C. Saxena, “Approximate formula for the thermal
2D and 3D results will permit to isolate effects that are due conductivity of gas mixtures,” Phys. Fluids 361 (1958.
0n|y to the 2D Character’ such as enstrophy Cascade’ or e2f1£ MUgIer, L. Hallo, S. Gauthier, and S. Aubert, “Validation of an ALE

. . - Godunov algorithm for solutions of the two-species Navier—Stokes equa-
fects that are allowed by the third direction, such as vortex fions.” AIAA Pap. 962068 (1996,

stretching. 223, K. Dukowicz, “A general non-iterative Riemann solver for Godunov's
method,” J. Comput. Phys$1, 119(1985.
ACKNOWLEDGMENTS 23). H. Williamson, “Low-storage Runge-Kutta schemes,” J. Comput.

Phys.35, 48 (1980.
We thank O. G'rgoire, F. Poggi, and D. Souffland for 24B. Baldwin and H. Lomax, “Thin layer approximation and algebraic
; ; model for separated turbulence flows,” AIAA PapB8-257, (1978.
useful discussions. 25). D. Ramshaw, “Simple model for linear and nonlinear mixing at un-
stable fluid interfaces with variable acceleration,” Phys. Re%8E5834
IR. D. Richtmyer, “Taylor instability in shock acceleration of compressible (1998.

fluids,” Commun. Pure Appl. Math13, 297 (1960. 26, Alon, J. Hecht, D. Ofer, and D. Shvarts, “Power laws and Similarity of
’E. E. Meshkov, “Interface of two gases accelerated by a shock wave,” Rayleigh—Taylor and Richtmyer—Meshkov mixing fronts at all density
Fluid Dyn. 4, 101(1969. ratios,” Phys. Rev. Lett74, 534 (1995.

3S. G. Zaytsev, E. V. Lazareva, V. V. Chernukha, and V. M. Belyaev, 2’G. |. Barenblatt, inNonlinear Dynamics and Turbulencedited by G. I.
“Intensification of mixing at the interface between media of different den- Barenblatt, G. loss, and D. D. Josefffitman, Boston, 1983p. 48.

sities upon the passage of a shock wave through it,” Sov. Phys. BBkl.  28C. Cherfils and A. K. Harrison, “Comparison of different statistical mod-
579(1985. els of turbulence by similarity methods,” ASME Fluids Engineering Di-
“M. Vetter and B. Sturtevant, “Experiments on the Richtmyer—Meshkov vision Summer meeting, Nevada, June 19—23 1994.

instability of an air—Sf interface,” Shock Waved, 247 (1995. 2°T. Pham and D. I. Meiron, “A numerical study of Richtmyer—Meshkov
5|. Galametz, “Visualisation et mesure de masse volumique dans ‘un me instability in continuously stratified fluids,” Phys. Fluids 3\ 344 (1993.
lange gazeux en tube @hoc,” these de I'Universitede Lille (France, 30D, L. Youngs, “Numerical simulation of mixing by Rayleigh—Taylor and
1994; see also G. Rodriguez, I. Galametz, M.-H. Thorembey, C. Rayer and Richtmyer—Meshkov instabilities,” Laser Part. Bead® 752 (1994).

J.-F. HaasVisualization of shocked mixing zones using differential inter- 3'G. Dimonte and M. Schneider, “Turbulent Richtmyer—Meshkov instabil-
ferometry and X-rays, 20th ISSW, Pasadena (U8difed by H. Hornung ity experiments with strong radiatively driven shocks,” Phys. Plashas

(World Scientific Press, Singapore, 1996 4347(1997).

8G. Jourdan, L. Houas, and M. Billiotte, “Density evolution within a shock ?R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys.
accelerated gaseous interface,” Phys. Rev. [#t.452 (1997). Fluids 10, 1417(1967.

F. Poggi, “Analyse par Viecimétrie d’un mdange gazeux Ceepar insta- 33G. K. Batchelor, “Computation of the energy spectrum in homogeneous
bilité de Richtmyer—Meshkov,” thee de I'Universitede PoitiersFrance, two-dimensional turbulence,” Phys. Fluids SuppliR, 233 (1969.

1997; see also F. Poggi, M.-H. Thorembey, J.-M. Koenig, G. Rodriguez3*U. Frisch, Turbulence, the legacy of A. N. Kolmogort@ambridge Uni-
and J.-F. Haas, “Measurements of velocity in the turbulent stage of gas- versity Press, Cambridge, 199pp. 241-243.

eous mixtures induced by shock waves,” Shock Waitesde publishef 353, C. McWilliams, “The emergence of isolated coherent vortices in turbu-
8F. Poggi, M.-H. Thorembey, and G. Rodriguez, “Velocity measurements lent flow,” J. Fluid Mech.146, 21 (1984).

in turbulent gaseous mixtures induced by Richtmyer—Meshkov instabil-*®A. N. Kolmogorov, “Decay of isotropic turbulence in incompressible vis-

ity,” Phys. Fluids 10, 2698(1998. cous fluids,” Dokl. Akad. Nauk SSSR1, 538(1941).

K. A. Meyer and P. J. Blewett, “Numerical investigation of the stability of 3’M. Lesieur, Turbulence in Fluids3rd revised and enlarged etluwer

a shock-accelerated interface between two fluids,” Phys. FlL&ls7/53 Academic Publishers, Dordrecht, 1997

(1972. 38M. S. Mohamed and J. C. Larue, “The decay power law in grid-generated
0L D. Cloutman and M. F. Wehner, “Numerical simulation of Richtmyer—  turbulence,” J. Fluid Mech219, 195 (1990.

Meshkov instabilities,” Phys. Fluids A, 1821(1992. 39T, Passot and A. Pouquet, “Numerical simulations of compressible homo-

113, W. Grove, R. H. Holmes, D. H. Sharp, Y. Yang, and Q. Zhang, “Quan- geneous flows in the turbulent regime,” J. Fluid Med81, 441 (1987.
titative theory of Richtmyer—Meshkov instability,” Phys. Rev. Lefd, 405, Kida and S. A. Orszag, “Enstrophy budget in decaying compressible
3473(1993. turbulence,” J. Sci. Compub, 1 (1990.

Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



