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Numerical simulations of single-mode Richtmyer-Meshkov experiments

Claude Mügler* and Serge Gauthier
Commissariat a` l’Energie Atomique, Bruye`res-le-Chaˆtel, Boı̂te Postale 12, 91680 Bruye`res-le-Chaˆtel, France

~Received 23 February 1998!

Two-dimensional numerical simulation of the fluid instability of a shock-accelerated interface between a
light fluid and a heavy one shows a flow pattern very similar to experimental pictures. Furthermore, numerical
and experimental amplitude growth rates are in good agreement and are decaying in time in a similar way.
Spectral analysis of the flow is performed with the help of two different methods. The peak-to-peak amplitude
can be reproduced with 50 mesh zones in the wavelength whereas the streamwise kinetic energy decay in time
due to molecular viscous dissipation requires 360 zones in the wavelength and a second-order accurate nu-
merical scheme in space and time to be correctly described.@S1063-651X~98!04410-9#

PACS number~s!: 47.20.2k, 47.40.Nm
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I. INTRODUCTION

When two different fluids are impulsively accelerated in
each other by a shock wave, small perturbations at the in
face grow first linearly and then evolve into nonlinear stru
tures having the form of ‘‘bubbles’’ and ‘‘spikes.’’ This in
stability was theoretically discovered and described
Richtmyer @1#, and confirmed experimentally by Meshko
@2#. This phenomenon, known as the Richtmyer-Meshk
~RM! instability, is a typical mechanism for turbulent mixin
of layered fluids. It may be related to the Rayleigh-Tay
~RT! instability @3#, which is the instability of a planar inter
face undergoing constant acceleration, such as caused b
suspension of a heavy fluid over a lighter one in the ear
gravitational field. RT and RM instabilities are of critica
importance to inertial confinement fusion. Indeed, the deg
of compression achievable in laser fusion experiments is
timately limited by RM and RT instabilities.

RM instability is often studied in shock tubes, where me
surements are easier to carry out than in small pellets@4–8#.
The major difficulty in shock-tube experiments is in mai
taining a well-controlled sharp initial boundary between tw
gases. One solution to this problem is to initially separate
two gases using a thin membrane. The membrane has
strength and is expected to rupture upon passage of the
shock, although this is not always the case@4,5#. To impose
the membrane rupture, discontinuous interfaces are so
times made of a plastic membrane that is placed dire
below a thin wire mesh@5,6#. The membrane is broken int
small pieces by the incident shock wave passing through
grid. Other shock-tube experiments have attempted to a
the effects of membranes by implementing systems in wh
gases are initially separated by a solid barrier, which is
moved just prior to firing the shock tube@8,9#. However, this
technique generates relatively thick diffuse interfaces. T
diffuse interface tends to stabilize all but the longest wa
lengths, thus greatly reducing the resulting instability grow
rate.

A number of numerical studies have been performed
the RM instability @10,11#. The initial growth rate of the
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perturbation, which is measured between the first and sec
shocks across the interface, was predicted in tw
dimensional calculations to be approximately a factor o
too large, as compared with experimental data@10,12#. More
recently, front-tracking numerical simulations produc
growth rates in much closer agreement to the experime
values@13#.

The present study uses the experimental conditions
Zaytsev and co-workers@14,15#, who performed shock tube
experiments of krypton incident on xenon. In these expe
ments, a very thin membrane separates the two gases
provides a known initial interface perturbation. The expe
mental images show well-resolved flow patterns, but do
lead to other flow characteristics. In this paper, we simul
the nonlinear instability growth observed in the experimen
In the next two sections, we present experimental and
merical results. Finally, these results are discussed in S
IV.

II. EXPERIMENTS

The experimental study of a two-dimensional RM ins
bility has been carried out in a shock tube of square cr
section of 72372 mm2 @15#. At about 4.5 m from the dia-
phragm separating the high- from the low-pressure room
the shock tube, two inert gases, a light one~krypton! and a
heavy one ~xenon!, are initially separated by a two
dimensional~2D! sinusoidal interface. This interface is mod
eled with a 2-mm-thick lavsan film. This film is pasted into
matrix inserted in the driven section. The study of the sho
wave interaction with the 2D film has shown that the fil
does not affect the interface evolution@14#. Just before each
experiment, both parts of the driven section are pumped
to 0.01 mm Hg and then filled with test gases. The diagn
tics used during these experiments are some schlieren
tures. A detailed description of the setup can be found in R
@14#.

The initial amplitude of the perturbation at the Kr/Xe in
terface isa0

255 mm, the wavelength is 36 mm, and th
pressure ahead of the shock is 0.5 bar. The Kr/Xe interfac
accelerated by a 3.5-Mach number shock wave moving fr
Kr to Xe, i.e., from a light gas to a heavy one. The reflect
wave is a shock wave. To observe the evolution of the ins
4548 © 1998 The American Physical Society
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PRE 58 4549NUMERICAL SIMULATIONS OF SINGLE-MODE . . .
bility on a sufficiently long time scale, three experimen
shots have been necessary. The Mach number is not ex
the same for the three experiments but does not differ
much from 3.5.

III. NUMERICAL METHOD

A. Motivation and description of the numerical choices

The codeCADMEE, derived fromCFDLIB @16#, was devel-
oped in order to carry out two-dimensional numerical sim
lations of compressible mixing flows, such as those occ
ring in shock tubes. Features of the numerical method
detailed in Ref.@17# but let us recall here the main chara
teristics of the codeCADMEE: ~i! It solves the 2D unstead
full Navier-Stokes equations, with physical viscosity a
thermal conductivity coefficients.~ii ! Mixing of two gases
is described within the single fluid approximation by a co
centration governed by an advection-diffusion equati
written as

]rc

]t
1¹W •~ruW c!5¹W •~rD¹W c!, ~1!

wherer is the total density anduW the vector velocity. Partia
densities of fluids 1 and 2,r1 andr2 , respectively, and the
total densityr are related by the equationr5r11r2 . The
concentration of fluid 1 in the mixing, labeledc, is defined as
the ratior1 /r. By doing so, no numerical interface and n
mixed cells are needed.~iii ! Mixing is assumed perfect an
isothermal. The mixing model is then simply defined
P5P11P2 , T5T15T2, ande5ce11(12c)e2 , wherer,
P, ande are the total density, pressure, and internal ene
respectively. The indices refer to the partial correspond
quantities of fluids 1 and 2. The equation of state of ea
species is a perfect gas law.~iv! The viscosity and molecu
lar diffusion coefficients of each species of the mixture
calculated from Ref.@18#. Thermal conductivity coefficients
can be obtained directly from viscosity coefficients provid
the Prandtl number of each species is assumed to be
stant. Mixture viscosity and molecular diffusion coefficien
are then determined from Wilke’s mixture rule@19# and the
thermal conductivity coefficient of the mixture is calculat
from the model given in@20#. Finally, all transport coeffi-
cients ~viscosity, diffusion, and thermal conductivity! de-
pend on the two thermodynamic quantities: concen
tion and temperature.~v! CADMEE uses structured meshe
made of quadrangular cells.~vi! State variables are ce
centered. ~vii ! A Godunov method is used to accurate
describe strong discontinuities such as shock waves. It
the approximate Riemann solver of Dukowicz@21#. Conse-
quently, no artificial viscosities are needed.~viii ! A
second-order differencing technique in space can be used
second and third Runge-Kutta schemes~RK2 and RK3! have
been implemented. We shall see in the following sections
influence of the accuracy of numerical methods.~ix! The
computation is performed in two phases: a Lagrangian ph
and a remapping phase in which conservative variables
transferred from the Lagrangian mesh to an arbitrary sp
fied mesh. This approach is the so-called arbitr
Lagrangian-Eulerian~ALE! formulation.
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The codeCADMEE has been validated against numero
configurations of compressible viscous flows@17#.

B. Results of numerical simulations

In this subsection, we will first study the influence
spatial resolution and of the order of the temporal and spa
schemes on numerical results. The definition of the ini
hydrodynamic conditions is based on shock-tube exp
ments previously described. The shock tube can be ideal
by considering a long tube as presented in Fig. 1. The m
extends fromx50 to 39.6 cm along the length of the shoc
tube and covers a quarter of the width of the square cr
section. Although mixing is described by a concentration
t50, the concentration isovaluec50.5 can be seen as
sharp interface. At later times, the mixing zone betwe
krypton and xenon remains very thin. So, we will still use t
word ‘‘interface.’’ The initial sinusoidal 2D interface be
tween krypton and xenon is given by

xinterface5xm1a0
2cos

2py

l
, ~2!

where xm513.6 cm is the location of this interface,a0
2

55 mm the initial amplitude of the perturbation, andl
53.6 cm its wavelength. The dimensionless perturbation a
plitude a0

2k is 0.87. The region to the left of the interfac
contains xenon while the region to the right contains kry
ton. The shock wave is initially in the krypton atx
514.8 cm and is moving to the left at Mach numberM
53.5. The fluid velocity behind the shock is255.5 m/s. The
shocked krypton has a density of 6.01 kg/m3, a pressure of
75.33104 Pa, and a ratio of specific heatsg51.67. The un-
shocked krypton has a density of 1.87 kg/m3 and a pressure
of 5.03104 Pa. The unshocked xenon has a density of 2
kg/m3, a pressure of 5.03104 Pa, and a ratio of specific
heatsg51.67. An ideal gas equation of state with consta
specific heats is assumed. With such initial conditions,
interface is nearly stationary after shocking and is confin
to the region 13 cm<x<14 cm and 0<y<18 cm, which we
cover with square zones. The region fromx514 cm to x
539.6 cm is used only to contain the reflected shock in s
a way that no spurious numerical signal is reflected into
mixing region.

The instantt50 corresponds to the moment the sho
strikes the right edge of the perturbation. The right and
boundaries are of flow through type. In this part, only
half-wavelength is simulated and the top and bottom bou

FIG. 1. Shock-tube geometry.
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4550 PRE 58CLAUDE MÜGLER AND SERGE GAUTHIER
aries are free-slip boundaries. The calculation is started w
a Lagrangian mesh with nodes located at the initial interfa
and continued with a Eulerian grid before the shock reac
the interface. By doing so, the development of undesi
perturbations of wavelengths of the order of the mesh siz
avoided.

Several runs were carried out with various zone si
0.7530.72 mm2, 0.37530.36 mm2, 0.187530.18 mm2, and
0.130.1 mm2, and with a Courant-Friedrichs-Lewy numb
equal to 0.9. Such resolutions correspond to 50, 100, 2
and 360 zones in the wavelength, respectively. These ca
lations have been performed with the second-order sch
in space and time. Figure 2 shows the isovalue of the c
centrationc50.5 at t51 ms for each of these four zon
sizes. The sizes of the window are 3.5 cm width and 1.8
height for all figures in this paragraph. At a zone size
0.7530.72 mm2 @Fig. 2~a!#, the mushroom develops but th
Kelvin-Helmholtz instability along the shaft of each spik
needs a thinner grid to be well described@Figs. 2~b!, 2~c!,
and 2~d!#. The thinner the grid, the greater the number
rolling-ups.

For a fixed grid, we also studied the influence of the s
tial and temporal accuracy of the numerical scheme on
development of the instability~see Fig. 3!. This study was

FIG. 2. Isovalue of the concentrationc50.5 for various grids:
~a! cell size50.7530.72 mm2, ~b! cell size50.37530.36 mm2, ~c!
cell size50.187530.18 mm2, ~d! cell size50.130.1 mm2. The nu-
merical scheme is second order accurate in space and time.

FIG. 3. Isovalue of the concentrationc50.5 for various spatial
and temporal accuracy, with a fixed grid cell size50.1875
30.18 mm2: ~a! first-order accuracy in space and time,~b! second
order in space, first order in time,~c! second order in space an
time.
th
e,
s

d
is

s

0,
u-
e

n-

m
f

f

-
e

carried out with a zone size of 0.187530.18 mm2. With a
first-order method in space and in time@Fig. 3~a!#, the nu-
merical scheme is too diffusive and prevents the Kelv
Helmholtz instability development. With a second-ord
method in space and first order in time@Fig. 3~b!#, the flow
pattern has completely changed and the Kelvin-Helmho
vortex has appeared. However, temporal accuracy effects
less spectacular than spatial accuracy ones: with a sec
order method in space, the increase of the accuracy in t
~use of RK2! induces only small differences@Fig. 3~c!#.
Moreover, we have checked to be sure that a higher-o
scheme in time such as a third Runge-Kutta scheme does
bring any significant improvement. These results illustr
the importance of the accuracy of numerical methods and
spatial resolution.

From the four calculations performed with various zo
sizes, we can measure and plot the evolution of the per
bation amplitude versus time~see Fig. 4!. This amplitude is
defined as the peak-to-peak amplitude of the concentra
isovalue c50.5. The discrepancies between the vario
curves are less than the cell sizes. We can conclude tha
peak-to-peak amplitude is converged in terms of zone si
However, the flow pattern, as shown in Fig. 3, is not co
verged. Indeed, Kelvin-Helmholtz instability is very sens
tive to the shock description through the baroclinic term
the vorticity equation. The thinner the grid, the stiffer th
shock, the more developed the Kelvin-Helmholtz instabili
Convergence would require zone sizes smaller than
physical shock thickness. Such zone sizes are two or th
orders of magnitude smaller than those used in this pape
the next section, if it is not explicitly mentioned, numeric
results correspond to calculations performed with a zone
of 0.187530.18 mm2.

IV. COMPARISONS AND DISCUSSIONS

Schlieren pictures of the RM instability evolution at th
Kr/Xe interface are presented in Fig. 5. These results co
spond to the three experimental shots presented in Sec. I
the incident shock wave travels from the light gas to t

FIG. 4. Evolution of the perturbation amplitude vs time. Th
amplitude is defined as the peak-to-peak amplitude of the isov
c50.5 obtained from various grids:~a! cell size50.7530.72 mm2,
~b! cell size50.37530.36 mm2, ~c! cell size50.187530.18 mm2,
~d! cell size50.130.1 mm2.
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PRE 58 4551NUMERICAL SIMULATIONS OF SINGLE-MODE . . .
heavy one, there is no inversion of concavity after the sh
passage. As one can see in these pictures, the perturb
amplitude grows first linearly and then in a nonlinear sta
There is apparition of structures called ‘‘bubbles’’ an
‘‘spikes’’: the heavy fluid penetrates in the light fluid. As th
Atwood number is small~A50.22 andA50.184 before and
after the passage of the incident shock wave! the difference
of structure between bubbles and spikes is not important
the Kelvin-Helmholtz instability is well developed. In th
above, the Atwood number is defined as (r22r1)/(r2
1r1), wherer1 is the density of the first shocked fluid.

Figure 5 also shows the time evolution of the numeri
patterns obtained from schlieren-type images. As the ma
tude of the gradient of the density field near a shock wav
very large, the following nonlinear shading functionF is
used to accentuate weak flow features in numerical imag

F512expS 2a
u“W ru

u“W rumax
D , ~3!

wherea is a constant~see, for example, Ref.@22#!. As shown
in Fig. 5, the visual agreement between experimen
schlieren pictures and numerical schlieren-type image
good. Such numerical images are particularly useful to
multaneously visualize interface and shock structures. As
example, Fig. 6 gives the full numerical schlieren-type ima
of the flow att5108ms. It shows locations and structures
the interface and of the refracted and reflected shock on
Kr/Xe interface. The distortion of the reflected shock due

FIG. 5. Evolution of the flow pattern vs time: experiment
schlieren pictures of the RM instability~left! and numerical
schlieren-type images witha52 in Eq. ~3! ~right!. ~a!–~e! are for
t50, 65, 108, 134, 276, and 464ms, respectively.
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its reflection on the perturbed interface clearly appears.
can also observe crisscross lines between the Kr/Xe inter
and the reflected shock wave. Indeed, at the end of the in
action between the incident shock wave and the Kr/Xe in
face, the curved refracted and reflected shock waves gen
local high-pressure areas. Zaytsevet al. @14# have experi-
mentally shown that once the high-pressure regions have
peared, they start ‘‘outspreading.’’ For sufficiently high va
ues of the pressure amplitude in these regions,
outspreading is accompanied by the generation of secon
shock waves. In Fig. 6, two secondary shock waves trave
behind the perturbed reflected shock wave have just in
acted. We have verified that after traveling a certain distan
the reflected shock wave becomes nearly flat. The nume
shock interactions result in changes in density and veloc
For example, in Fig. 6, close to the Kr/Xe interface, very lo
density variations of the order of 3% can be seen on
schlieren-type image obtained witha510 in Eq. ~3! be-
cause, with such a value ofa, this diagnostic is very sensi
tive. On the other hand, they do not appear on schlieren-t
images obtained witha52 ~see Fig. 5!.

From experimental schlieren pictures, the interface a
the refracted shock locations and the perturbation height
measured at various times. In order to compare experim
with calculations on a quantitative way, we have plotted
perturbation height time evolution. In experiments, the p
turbation height is defined as the longitudinal distance
tween the spike and bubble tips. In numerical simulatio
this height is defined as the largest distance between th
ovalues of the concentrationc55% andc595%. Experi-
mental and numerical results are plotted in Fig. 7~a!. Error
bars of experimental data are equal to65%. As we can see
the perturbation height in the simulation is approximately
same as in experimental pictures. We have also plotted
Fig. 7~b! the growth rate of the perturbation as obtained fro
experiments and numerical simulations. As can be seen f
this figure, numerical simulation results are in agreem
with experimental data even in the nonlinear regime. T
growth rate of the perturbation,dL/dt, can be used to cal
culate the Mach number of the perturbation, defined
(dL/dt)/cs wherecs is an average of the sound speeds

FIG. 6. Full numerical schlieren-type image att5108ms, with
a510 in Eq.~3!. The distortion of the shock reflected on the Kr/X
interface clearly appears.
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4552 PRE 58CLAUDE MÜGLER AND SERGE GAUTHIER
krypton and xenon. This Mach number rapidly decrea
versus time, from the value of 0.16 just after the shock p
sage, down to 0.04. We also noticed that the maximum va
of the velocity divergence is always five orders of magnitu
smaller than the maximum value of the vorticity. These
sults show that the RM unstable system rapidly evolves
vortical dominated flow.

The impulsive model first proposed by Richtmyer@1# is
commonly used to estimate the growth rate of a shock ac
erated interface in the linear phase. However, a new gen
formula for the growth rate of the Richtmyer-Meshkov ins
bility has been recently derived within the framework of t
impulsive model@23,24#. This formula, which allows us to
predict the growth rate in both configurations~heavy-light
and light-heavy configurations! has been validated over mor
than one hundred cases with various values of both the sh
strength parametere and the adiabatic exponents. It produc
a good estimate of the growth rate of the RM instabil
provided it is used within its range of validity, i.e.,e<0.4
and a ratio of adiabatic exponents less than 1.5. In the
periments simulated in this paper, the shock strength par
eter e is equal to 0.93 and the dimensionless perturbat
amplitudea(02)k is equal to 0.87. As a result, a compres
ible and nonlinear theory is needed and the formu
@1,23,24# can no longer be used. A quantitative nonline
theory of compressible Richtmyer-Meshkov instability h
recently been developed@25#. It gives predictions in good
agreement with the results of full numerical simulations fro
linear to nonlinear regimes.

FIG. 7. Evolution of the perturbation height and perturbati
growth rate vs time. Plots correspond to experimental data.
error bars are equal to65%. Full lines correspond to numerica
results obtained from codeCADMEE.
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The nonlinear evolution of the perturbation has been st
ied by two different methods of modal analysis. In the fi
spectral analysis, we isolate the concentration isovaluc
50.5 and take its discrete Fourier transform. This first p
cedure gives an accurate representation of the interfac
small times but it is no more valid when the ‘‘interface
becomes distorted and multivalued by the developmen
‘‘bubble’’ and ‘‘spike’’ structures. So, a second spectr
analysis has been developed. To this end, we introduce
new variablew[Aru where r is the density andu the
streamwise velocity component, and we consider the o
dimensional transversal spectrum as done in Ref.@26#,

E~ky ,t !5
1

2Lx
E

2Lx

1Lx
uŵ~x,ky ,t !u2dx. ~4!

In this expression,ŵ(x,ky ,t) is the longitudinal discrete
Fourier transform of the variablew at a given abscissax,

ŵ~x,ky ,t ![ŵS x,
l

NDy
,t D

5
1

N (
j 50

N21

w~x, j Dy,t !expS 2 i
2p l j

N D , ~5!

where l 50,1,...,N21, N is the number of samples, andDy
the sample interval. The length 2Lx<d corresponds to anx
span on which the transversal spectrum is averaged. We
commonly choosed equal to the shock-tube square secti
and the length 2Lx greater than or equal to the perturbatio
height at the final time. The advantage of this second spec
analysis is to give information on all scales present in
mixing zone, even if the flow develops into a turbulent r
gime. Moreover, the quantity obtained is homogeneous to
energy, but, as it is calculated from only one velocity co
ponent, it is not the total kinetic energy.

In Fig. 8, the first spectral analysis is used and the Fou
spectrum of the isovalue of the concentrationc50.5 is dis-
played at four early increasing times. These times are
same as those used in Fig. 5 where we have plotted
corresponding physical space outline. In Fig. 8, the mo
index l 51 corresponds to the wavelengthl53.6 cm. Notice
that even at early times the interface is no longer monomo
The shortness of the linear phase has been noticed on o
calculations and with another numerical code@27#. Indeed,
the simulation with a 2D Lagrangian code of a monomo
Richtmyer-Meshkov instability with an incident shock wav
at a Mach number equal to 1.3 also showed the early gro
of the first harmonic of the principal mode@27#. This multi-
mode behavior that shows the evolution of the amplitudes
the various modes versus time is more noticeable in Fig. 9
seems that during the interaction, which occurs att50, the
incident shock wave excites the first harmonic that aft
wards slowly increases versus time.

At later times, the flow enters into the nonlinear regim
with the familiar asymmetry between bubble and spike
gions ~see Fig. 5!. We can no longer use the Fourier spe
trum of the isovalue of the concentrationc50.5 and we now
use the second spectral analysis. In this method, we calcu
the one-dimensional transversal spectrum of the quantityw,
given by Eq.~4! and Eq.~5!. Figure 10 gives the evolution o

e
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the normalized amplitudeE(k0) of the main modek0 versus
time, with a ln scaling on they axis. The three differen
symbols correspond to numerical simulations perform
with three different spatial resolutions: a zone size of 0.3
30.36 mm2 ~diamonds in Fig. 10!, a zone size of 0.1875
30.18 mm2 ~crosses! and a zone size of 0.130.1 mm2

~squares!. Such resolutions correspond to 100, 200, and 3
zones in the wavelength, respectively. In Fig. 10, the stra
line gives the theoretical decay of the kinetic energy due
the viscous dissipation: its slope is equal to the prod
22nk0

2, where the physical kinematic viscosityn is equal to
1025 m2/s. Once again, this figure clearly stresses the imp
tance of spatial resolution on the streamwise kinetic ene
decay: it needs a zone size of 0.130.1 mm2, i.e., 360 zones
in the wavelength, to recover an exponential energy de
equal to molecular viscous dissipation. This result shows
the one-dimensional transversal spectrum is very sensitiv
the numerical resolution. At larger grids, the streamwise
netic energy decay gives an estimate of numerical visco

FIG. 8. Fourier transform of the concentration isovaluec50.5
at four various times. Att50, the interface is single mode. Th
mode indexl 51 corresponds to the wavelengthl53.6 cm.
d
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that becomes larger than molecular viscosity. The numer
viscositynnum is approximately 12 and 60 times larger tha
the physical kinematic viscosityn at a resolution of 200 and
100 zones in the wavelength, respectively, if we assume
numerical dissipation is dominated by a Laplacian that
written in the spectral space as22nnumk2.

In order to verify that the exponential decay in time
really due to molecular viscous dissipation, we have p
formed two other numerical simulations with the thinne
spatial resolution and with greater values of the kinetic v
cosity. Figure 11 gives the evolution of the normalized a
plitude E(k0) of the main modek0 versus time, with a ln
scaling on they axis. The three different symbols correspo
to numerical results obtained from three viscosity coeffici
values: n5131025 m2/s ~squares in Fig. 11!, n512
31025 m2/s ~crosses!, and n56031025 m2/s ~diamonds!.

FIG. 9. Evolution of the amplitudes of the first five Fourie
modes of the concentration isovaluec50.5 vs time.

FIG. 10. Evolution of the normalized amplitudeE(k0) of the
main modek0 versus time, with a ln scaling on they axis. The three
different symbols correspond to numerical results obtained fr
three different zone sizes: 0.37530.36 mm2 ~diamonds!, 0.1875
30.18 mm2 ~crosses!, and 0.130.1 mm2 ~squares!. The straight
line represents the kinetic energy decay due to the main visc
dissipation term; its slope is equal to22nk0

2, where the physical
kinematic viscosityn is equal to 1025 m2/s. This figure clearly
shows the importance of spatial resolution on the streamwise
netic energy decay.
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In each case, numerical results are well fitted with strai
lines of slope22nk2 wheren is the corresponding value o
the kinematic viscosity. We can conclude that the strea
wise kinetic energy decays exponentially in time and t
this decay is due to molecular viscous dissipation.

V. CONCLUSION

2D numerical simulations of the fluid instability of
shock-accelerated interface between a light fluid and a he
one shows a flow pattern very similar to experimental p
tures. Furthermore, numerical and experimental amplit
growth rates are in good agreement and are decaying in

FIG. 11. Evolution of the normalized amplitudeE(k0) of the
main modek0 vs time, with a ln scaling on they axis. The three
different symbols correspond to numerical results obtained fr
three different viscosity coefficient values:n5131025 m2/s
~squares!, n51.231024 m2/s ~crosses!, andn5631024 m2/s ~dia-
monds!. In each case, numerical results are well fitted with strai
lines of slope22nk0

2 where n is the corresponding value of th
kinematic viscosity.
n
if-

o

, i
o

d

o

t

-
t

vy
-
e
e

in a similar way. On one hand, this comparison shows tha
is possible to accurately simulate a RM instability provid
the experimental initial conditions~amplitude and wave
number of the 2D perturbation! are well known. On the othe
hand, this result allows us to conclude that the initial pr
ence of the membrane at the interface, which is not sim
lated, has negligible effects on the development of the in
bility in this particular experiment. Simulations have be
performed with the codeCADMEE. In this numerical method
mixing is described by a concentration. This proves t
front tracking is not necessary to obtain good agreement w
experimental data.

At a sufficiently long time after the interaction betwee
the shock wave and the interface, spectral analysis sho
that the streamwise kinetic energy in the mixing zone dec
exponentially in time. This exponential decay is clearly d
to viscous dissipation. We have seen that we can recove
physical viscous dissipation behavior if we use a second
curate scheme in space and time and very high spatial r
lution ~360 zones in the wavelength!. In such a case, physica
viscous dissipation dominates numerical viscosity, which
not true with coarser grids. This result shows that high
order numerical schemes would be welcome to accura
simulate Richtmyer-Meshkov experiments.

Spectral analysis also showed that the passage of an
dent shock wave through an initially single-mode interfa
excites the main mode but also the first harmonic. Con
quently, just after the interaction, the interface is no long
single mode. It is clear that there is still much to learn ab
the linear and nonlinear aspects of the Richtmyer-Mesh
instability to better understand how compressibility affe
the fluid flow.
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