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Numerical simulations of single-mode Richtmyer-Meshkov experiments
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Two-dimensional numerical simulation of the fluid instability of a shock-accelerated interface between a
light fluid and a heavy one shows a flow pattern very similar to experimental pictures. Furthermore, numerical
and experimental amplitude growth rates are in good agreement and are decaying in time in a similar way.
Spectral analysis of the flow is performed with the help of two different methods. The peak-to-peak amplitude
can be reproduced with 50 mesh zones in the wavelength whereas the streamwise kinetic energy decay in time
due to molecular viscous dissipation requires 360 zones in the wavelength and a second-order accurate nu-
merical scheme in space and time to be correctly descr{l$d63-651X98)04410-9

PACS numbd(s): 47.20—k, 47.40.Nm

[. INTRODUCTION perturbation, which is measured between the first and second
shocks across the interface, was predicted in two-
When two different fluids are impulsively accelerated intodimensional calculations to be approximately a factor of 2
each other by a shock wave, small perturbations at the inteioo large, as compared with experimental dd,12. More
face grow first linearly and then evolve into nonlinear struc-recently, front-tracking numerical simulations produced
tures having the form of “bubbles” and “spikes.” This in- growth rates in much closer agreement to the experimental
stability was theoretically discovered and described byvalues[13].
Richtmyer[1], and confirmed experimentally by Meshkov ~ The present study uses the experimental conditions of
[2]. This phenomenon, known as the Richtmyer-MeshkowZaytsev and co-workerisl4,15, who performed shock tube
(RM) instability, is a typical mechanism for turbulent mixing €xperiments of krypton incident on xenon. In these experi-
of layered fluids. It may be related to the Rayleigh-Taylorments, a very thin membrane separates the two gases and
(RT) instability [3], which is the instability of a planar inter- provides a known initial interface perturbation. The experi-
face undergoing constant acceleration, such as caused by tRental images show well-resolved flow patterns, but do not
suspension of a heavy fluid over a lighter one in the earth’sead to other flow characteristics. In this paper, we simulate
gravitational field. RT and RM instabilities are of critical the nonlinear instability growth observed in the experiments.
importance to inertial confinement fusion. Indeed, the degre# the next two sections, we present experimental and nu-
of compression achievable in laser fusion experiments is ulmerical results. Finally, these results are discussed in Sec.
timately limited by RM and RT instabilities. V.
RM instability is often studied in shock tubes, where mea-
surements are easie.r to carry out than in. small pdjlfb%ﬁ]. _ Il. EXPERIMENTS
The major difficulty in shock-tube experiments is in main-
taining a well-controlled sharp initial boundary between two The experimental study of a two-dimensional RM insta-
gases. One solution to this problem is to initially separate thdility has been carried out in a shock tube of square cross
two gases using a thin membrane. The membrane has littigection of 7272 mn? [15]. At about 4.5 m from the dia-
strength and is expected to rupture upon passage of the firghragm separating the high- from the low-pressure rooms of
shock, although this is not always the c44]. To impose  the shock tube, two inert gases, a light dikeypton) and a
the membrane rupture, discontinuous interfaces are somé&eavy one (xenor), are initially separated by a two-
times made of a plastic membrane that is placed directlgimensional2D) sinusoidal interface. This interface is mod-
below a thin wire mesii5,6]. The membrane is broken into eled with a 2um-thick lavsan film. This film is pasted into a
small pieces by the incident shock wave passing through theatrix inserted in the driven section. The study of the shock
grid. Other shock-tube experiments have attempted to avoigave interaction with the 2D film has shown that the film
the effects of membranes by implementing systems in whicldloes not affect the interface evolutipi¥]. Just before each
gases are initially separated by a solid barrier, which is reexperiment, both parts of the driven section are pumped out
moved just prior to firing the shock tulp8,9]. However, this  to 0.01 mm Hg and then filled with test gases. The diagnos-
technique generates relatively thick diffuse interfaces. Thdics used during these experiments are some schlieren pic-
diffuse interface tends to stabilize all but the longest wavetures. A detailed description of the setup can be found in Ref.
lengths, thus greatly reducing the resulting instability growth[14].
rate. The initial amplitude of the perturbation at the Kr/Xe in-
A number of numerical studies have been performed onerface isa, =5 mm, the wavelength is 36 mm, and the
the RM instability [10,11. The initial growth rate of the pressure ahead of the shock is 0.5 bar. The Kr/Xe interface is
accelerated by a 3.5-Mach number shock wave moving from
Kr to Xe, i.e., from a light gas to a heavy one. The reflected
*Electronic address: mugler@bruyeres.cea.fr wave is a shock wave. To observe the evolution of the insta-
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bility on a sufficiently long time scale, three experimental
; y (m)
shots have been necessary. The Mach number is not exactly 4 surface
the same for the three experiments but does not differ too 0018 discontinuity ~ shock wave

much from 3.5.

ll. NUMERICAL METHOD shocked Kr
A. Motivation and description of the numerical choices
The codecApMEE, derived fromcrpLiB [16], was devel- o~ x (m)
oped in order to carry out two-dimensional numerical simu- 0.136 0.3%6
lations of compressible mixing flows, such as those occur- FIG. 1. Shock-tube geometry.

ring in shock tubes. Features of the numerical method are

detailed in Ref[17] but let us recall here the main charac-  The codecapMmee has been validated against numerous
teristics of the codeabMEE: (i) It solves the 2D unsteady configurations of compressible viscous floftd].

full Navier-Stokes equations, with physical viscosity and
thermal conductivity coefficients. (ii) Mixing of two gases

is described within the single fluid approximation by a con-
centration governed by an advection-diffusion equation, In this subsection, we will first study the influence of

B. Results of numerical simulations

written as spatial resolution and of the order of the temporal and spatial
P schemes on numerical results. The definition of the initial
A S = hydrodynamic conditions is based on shock-tube experi-
—+V-(ptc)=V-(pDVc), 1 ydrodynarn ! EXPS
ot (puc) (p ) @) ments previously described. The shock tube can be idealized

by considering a long tube as presented in Fig. 1. The mesh
extends fromx=0 to 39.6 cm along the length of the shock
tube and covers a quarter of the width of the square cross
section. Although mixing is described by a concentration, at
t=0, the concentration isovalue=0.5 can be seen as a
sharp interface. At later times, the mixing zone between
krypton and xenon remains very thin. So, we will still use the
word “interface.” The initial sinusoidal 2D interface be-
tween krypton and xenon is given by

wherep is the total density and the vector velocity. Partial
densities of fluids 1 and %; andp,, respectively, and the
total densityp are related by the equatign=p,+p,. The
concentration of fluid 1 in the mixing, labeleglis defined as
the ratiop,/p. By doing so, no numerical interface and no
mixed cells are needed.(iii ) Mixing is assumed perfect and
isothermal. The mixing model is then simply defined by
P=P,+P,, T=T;=T,, ande=ce;+(1—c)e,, wherep,

P, ande are the total density, pressure, and internal energy, 27y

respectively. The indices refer to the partial corresponding Xinterface™ Xm+ 89 COS——, 2
guantities of fluids 1 and 2. The equation of state of each

species is a perfect gas law(iv) The viscosity and molecu- ) ] o _

lar diffusion coefficients of each species of the mixture areVhere x,=13.6 cm is the location of this interfacay
calculated from Ref[18]. Thermal conductivity coefficients =9 Mm the initial amplitude of the perturbation, and
can be obtained directly from viscosity coefficients provided= 3-6 cm its wavelength. The dimensionless perturbation am-
the Prandtl number of each species is assumed to be cohlitude ayk is 0.87. The region to the left of the interface
stant. Mixture viscosity and molecular diffusion coefficients contains xenon while the region to the right contains kryp-
are then determined from Wilke’s mixture rUlé9] and the ton. The shock wave is initially in the krypton at
thermal conductivity coefficient of the mixture is calculated =14.8 cm and is moving to the left at Mach numiddr
from the model given if20]. Finally, all transport coeffi- =3.5. The fluid velocity behind the shock 1s55.5 m/s. The
cients (viscosity, diffusion, and thermal conductivitde-  shocked krypton has a density of 6.01 kd/ra pressure of
pend on the two thermodynamic quantities: concentra75.3x 10" Pa, and a ratio of specific heags-1.67. The un-
tion and temperature. (v) CADMEE uses structured meshes shocked krypton has a density of 1.87 kg/amd a pressure
made of quadrangular cells(vi) State variables are cell of 5.0x10% Pa. The unshocked xenon has a density of 2.95
centered. (vii) A Godunov method is used to accurately kg/m®, a pressure of 5010* Pa, and a ratio of specific
describe strong discontinuities such as shock waves. It uséwatsy=1.67. An ideal gas equation of state with constant
the approximate Riemann solver of DukowiZl]. Conse- specific heats is assumed. With such initial conditions, the
quently, no artificial viscosities are neededyiii) A interface is nearly stationary after shocking and is confined
second-order differencing technique in space can be used atalthe region 13 crEx<14 cm and 6sy=<18 cm, which we
second and third Runge-Kutta scheni@&2 and RK3 have  cover with square zones. The region frots 14 cm to X
been implemented. We shall see in the following sections the=39.6 cm is used only to contain the reflected shock in such
influence of the accuracy of numerical methodéx) The a way that no spurious numerical signal is reflected into the
computation is performed in two phases: a Lagrangian phasaixing region.

and a remapping phase in which conservative variables are The instantt=0 corresponds to the moment the shock
transferred from the Lagrangian mesh to an arbitrary specistrikes the right edge of the perturbation. The right and left
fied mesh. This approach is the so-called arbitraryboundaries are of flow through type. In this part, only a
Lagrangian-EuleriaALE) formulation. half-wavelength is simulated and the top and bottom bound-
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FIG. 4. Evolution of the perturbation amplitude vs time. This
amplitude is defined as the peak-to-peak amplitude of the isovalue

(©) (d) ¢=0.5 obtained from various gridéa) cell size=0.75x0.72 mn?,

(b) cell size=0.375<0.36 mnf, (c) cell size=0.1875<0.18 mnf,
FIG. 2. Isovalue of the concentratiar=0.5 for various grids:  (q) cell size=0.1x0.1 mn?.

(a) cell size=0.75x0.72 mnt, (b) cell size=0.375x0.36 mnt, ()
cell size=0.1875<0.18 mn#, (d) cell size=0.1x0.1 mn?. The nu-

) ) : . carried out with a zone size of 0.18%9.18 mnf. With a
merical scheme is second order accurate in space and time.

first-order method in space and in tirflgig. 3(@)], the nu-

aries are free-slip boundaries. The calculation is started wit| erical scheme is too diffusive and prevents the Kelvin-

a Lagrangian mesh with nodes located at the initial interface elmholtz instability development. With a second-order

and continued with a Eulerian grid before the shock reacheg"athOd in space and first order in tirfieig. (b)], 'the flow
the interface. By doing so, the development of undesiret?attem has completely changed and the Kelvin-Helmholtz

perturbations of wavelengths of the order of the mesh size i%(ortex has appeared. However, temporal accuracy effects are
avoided. ess spectacular than spatial accuracy ones: with a second-

Several runs were carried out with various zone size%’rder method in space, the increase of the accuracy in time

0.75¢ 0.72 mn?. 0.375¢0.36 mn?. 0.1875<0.18 mn?. and use of RK2 induces only small differencefFig. 3(c)].
0'1><0 1 mr? a;nd. with a. Courarylt-F.riedrich.s-Le ,number Moreover, we have checked to be sure that a higher-order
edual .to 0 9’ Such resolutions correspond to E\:\(l)y 100 202sPcheme in time such as a third Runge-Kutta scheme does not

and 360 zones in the wavelength, respectively. These calc ring any significant improvement. These results illustrate

lations have been performed with the second-order schemge Importance of the accuracy of numerical methods and of
Spatial resolution.

in space and time. Figure 2 shows the isovalue of the con- . . .

centrationc=05 att=1ms for each of these four zone . rom the four calculations performed with various zone

sizes. The sizés of the window are 3.5 cm width and 1.8 cny 2> W€ can measure a_nd plot t_he evoIL_Jtlon of_the pertur-
' ' ' bation amplitude versus tim@ee Fig. 4 This amplitude is

height for all figures in this paragraph. At a zone size of . . .
0.75x 0.72 mn? [Fig. 2@)], the mushroom develops but the Qeflned as_the peak—to—peak amphtude of the concent(at|on
isovalue c=0.5. The discrepancies between the various

Kelvin-Helmholtz instability along the shaft of each spike curves are less than the cell sizes. We can conclude that the

needs a thinner grid to be well describfelgs. 2b), 2(c), ) . ; i
and Zd)]. The thinner the grid, the greater the number c)fpeak-to—peak amplitude is converged in terms of zone sizes.
i ' However, the flow pattern, as shown in Fig. 3, is not con-

rolling-ups. . . L2 .
Fogr aF:‘ixed grid, we also studied the influence of the Spay.erged. Indeed, Kelvin-Helmholtz instability is very sensi-

tial and temporal accuracy of the numerical scheme on th ive to the shock description through the baroclinic term in

; o . : e vorticity equation. The thinner the grid, the stiffer the
development of the instabilitysee Fig. 3. This study was shock, the more developed the Kelvin-Helmholtz instability.

3.5¢em Convergence would require zone sizes smaller than the
—_— physical shock thickness. Such zone sizes are two or three
orders of magnitude smaller than those used in this paper. In
the next section, if it is not explicitly mentioned, numerical
results correspond to calculations performed with a zone size
of 0.1875<0.18 mnd.

1.8 cm

@ ®) ©
IV. COMPARISONS AND DISCUSSIONS
FIG. 3. Isovalue of the concentratiar+ 0.5 for various spatial
and temporal accuracy, with a fixed grid cell siZ®1875 Schlieren pictures of the RM instability evolution at the
x0.18 mnt: (a) first-order accuracy in space and tinﬁb) second Kr/Xe interface are presented in Fig. 5. These results corre-
order in space, first order in timég) second order in space and spond to the three experimental shots presented in Sec. Il. As
time. the incident shock wave travels from the light gas to the
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FIG. 6. Full numerical schlieren-type imagetat 108 us, with
a=10 in Eq.(3). The distortion of the shock reflected on the Kr/Xe
interface clearly appears.

its reflection on the perturbed interface clearly appears. We
can also observe crisscross lines between the Kr/Xe interface
and the reflected shock wave. Indeed, at the end of the inter-
action between the incident shock wave and the Kr/Xe inter-
face, the curved refracted and reflected shock waves generate
local high-pressure areas. Zaytseval. [14] have experi-
mentally shown that once the high-pressure regions have ap-

FIG. 5. Evolution of the flow pattern vs time: experimental Peared, they start “outspreading.” For sufficiently high val-
schlieren pictures of the RM instabilityleft) and numerical ues of the pressure amplitude in these regions, this
schlieren-type images with=2 in Eq. (3) (right). (a—(e) are for ~ outspreading is accompanied by the generation of secondary
t=0, 65, 108, 134, 276, and 464s, respectively. shock waves. In Fig. 6, two secondary shock waves traveling

behind the perturbed reflected shock wave have just inter-
heavy one, there is no inversion of concavity after the shoclacted. We have verified that after traveling a certain distance,
passage. As one can see in these pictures, the perturbatighe reflected shock wave becomes nearly flat. The numerous
amplitude grows first linearly and then in a nonlinear stageshock interactions result in changes in density and velocity.
There is apparition of structures called “bubbles” and For example, in Fig. 6, close to the Kr/Xe interface, very low
“spikes”: the heavy fluid penetrates in the light fluid. As the density variations of the order of 3% can be seen on the
Atwood number is smallA=0.22 andA=0.184 before and schlieren-type image obtained wih=10 in Eq. (3) be-
after the passage of the incident shock wabe difference  cause, with such a value of, this diagnostic is very sensi-
of structure between bubbles and spikes is not important angye. On the other hand, they do not appear on schlieren-type
the Kelvin-Helmholtz instability is well developed. In the jmages obtained witlx=2 (see Fig. 5.
above, the Atwood number is defined ap,{ p1)/(p2 From experimental schlieren pictures, the interface and
+p1), wherep, is the density of the first shocked fluid.  the refracted shock locations and the perturbation height are

Figure 5 also shows the time evolution of the numericalmeasured at various times. In order to compare experiments
patterns obtained from schlieren-type images. As the magniyith calculations on a quantitative way, we have plotted the
tude of the gradient of the density field near a shock wave igerturbation height time evolution. In experiments, the per-
very large, the following nonlinear shading functidn is  turbation height is defined as the longitudinal distance be-
used to accentuate weak flow features in numerical imagesiveen the spike and bubble tips. In numerical simulations,

- this height is defined as the largest distance between the is-
=1 p( Vol ovalues of the concentratiot=5% andc=95%. Experi-
=l-exp —a —
|Vp|max

, )

mental and numerical results are plotted in Fi¢g)7Error
bars of experimental data are equakt6%. As we can see,
wherea is a constantsee, for example, Reff22]). As shown  the perturbation height in the simulation is approximately the
in Fig. 5, the visual agreement between experimentabame as in experimental pictures. We have also plotted in
schlieren pictures and numerical schlieren-type images ifig. 7(b) the growth rate of the perturbation as obtained from
good. Such numerical images are particularly useful to siexperiments and numerical simulations. As can be seen from
multaneously visualize interface and shock structures. As athis figure, numerical simulation results are in agreement
example, Fig. 6 gives the full numerical schlieren-type imagewith experimental data even in the nonlinear regime. The
of the flow att=108 us. It shows locations and structures of growth rate of the perturbatiomiL/dt, can be used to cal-
the interface and of the refracted and reflected shock on theulate the Mach number of the perturbation, defined as
Kr/Xe interface. The distortion of the reflected shock due to(dL/dt)/cs wherecg is an average of the sound speeds in
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@ The nonlinear evolution of the perturbation has been stud-
) . ) ied by two different methods of modal analysis. In the first
£ spectral analysis, we isolate the concentration isovalue
I oo =0.5 and take its discrete Fourier transform. This first pro-
E cedure gives an accurate representation of the interface at
F] 0.015 small times but it is no more valid when the “interface”
S becomes distorted and multivalued by the development of
g “bubble” and “spike” structures. So, a second spectral
g oot 1 ] analysis has been developed. To this end, we introduce the
o new variablew=/pu where p is the density andu the
streamwise velocity component, and we consider the one-
0.005} V3¢ 1 dimensional transversal spectrum as done in (2,
0 0.0001 0.0002 0.0003 0.0004 0.0005
Time (s) 1 [+, 5
. ) ] ‘ | E(ky,t)= T fLX |W(x,ky,t)]“dx. (4)
7o} * In this expressiony(x,ky,t) is the longitudinal discrete
eol Fourier transform of the variable at a given abscisse
€ wof ) i
g ol w(x,ky,t)—w(x, NAy’t
| 1 Nt , p( 2l j)
20[ =N 2 W(X,JAy't)eX ==/ (5)
N =0 N
10
0 wherel=0,1,...N—1, N is the number of samples, andy
0 0.0001 00002  0.0003  0.0004  0.0005 the sample interval. The length.2<d corresponds to ar

Time (s) span on which the transversal spectrum is averaged. We will
, ) , __commonly chooseal equal to the shock-tube square section
FIG. 7. Evolu_tlon of the perturbation height _and perturbation and the length 2, greater than or equal to the perturbation
growth rate vs time. Plc’tos correspond to experimental data. The, ooy ot the final time. The advantage of this second spectral
error bars are equal ta5%. Full lines correspond to numerical analysis is to give information on all scales present in the
results obtained from codeDMEE. mixing zone, even if the flow develops into a turbulent re-
krypton and xenon. This Mach number rapidly decreasegime. Moreover, the quantity obtained is homogeneous to an
versus time, from the value of 0.16 just after the shock pasenergy, but, as it is calculated from only one velocity com-
sage, down to 0.04. We also noticed that the maximum valuponent, it is not the total kinetic energy.
d to 0.04. We al ticed that th | t, It t the total kinet
of the velocity divergence is always five orders of magnitude In Fig. 8, the first spectral analysis is used and the Fourier
smaller than the maximum value of the vorticity. These re-spectrum of the isovalue of the concentratma 0.5 is dis-
sults show that the RM unstable system rapidly evolves to glayed at four early increasing times. These times are the
vortical dominated flow. _ ~ same as those used in Fig. 5 where we have plotted the
The impulsive model first proposed by Richtmy@i is  corresponding physical space outline. In Fig. 8, the mode
commonly used to estimate the growth rate of a shock acce|pgex| =1 corresponds to the wavelength- 3.6 cm. Notice
feratedl n;terfﬁce In thre] Ilnearfpr?ase_. hHowever, ar?kew generglat even at early times the interface is no longer monomode.
ormula for the growth rate of the Richtmyer-Meshkov insta- 1,5 gjortness of the linear phase has been noticed on other
bility has been recently derived within the framework of thecalculations and with another numerical cd@J]. Indeed

impulsive model[23,24]. This formula, which allows us to the simulation with a 2D Lagrangian code of a monomode

predict the growth rate in both configuratiofiseavy-light . . - . e
and light-heavy configuratioptias been validated over more Richtmyer-Meshkov instability with an incident shock wave
a Mach number equal to 1.3 also showed the early growth

than one hundred cases with various values of both the sho 2} the first harmonic of the principal mod@7]. This muli-

strength parameterand the adiabatic exponents. It produces i , .
a good estimate of the growth rate of the RM instability mode behavior that shows the evolution of the amplitudes of

provided it is used within its range of validity, i.es=<0.4 the various modes versus time is more noticeable in Fig. 9. It

and a ratio of adiabatic exponents less than 1.5. In the exdeems that during the interaction, which occur$=a0, the
periments simulated in this paper, the shock strength paraniacident shock wave excites the first harmonic that after-
eter € is equal to 0.93 and the dimensionless perturbatioryvards slowly increases versus time.

amplitudea(0 ™)k is equal to 0.87. As a result, a compress- At later times, the flow enters into the nonlinear regime
ible and nonlinear theory is needed and the formulasvith the familiar asymmetry between bubble and spike re-
[1,23,24 can no longer be used. A quantitative nonlineargions (see Fig. $ We can no longer use the Fourier spec-
theory of compressible Richtmyer-Meshkov instability hastrum of the isovalue of the concentratior 0.5 and we now
recently been developg@5]. It gives predictions in good use the second spectral analysis. In this method, we calculate
agreement with the results of full numerical simulations fromthe one-dimensional transversal spectrum of the quawity
linear to nonlinear regimes. given by Eq.(4) and Eq.(5). Figure 10 gives the evolution of
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that becomes larger than molecular viscosity. The numerical
t=108.1 us viscosity v, is approximately 12 and 60 times larger than
the physical kinematic viscosity at a resolution of 200 and
100 zones in the wavelength, respectively, if we assume that
numerical dissipation is dominated by a Laplacian that is
written in the spectral space as2 v k>.

In order to verify that the exponential decay in time is
e really due to molecular viscous dissipation, we have per-
Mode index formed two other numerical simulations with the thinnest
0.006 spatial resolution and with greater values of the kinetic vis-
1=134.5 us cc_>sity. Figure 11 gives _the evolution of the_ norma_llized am-
0.004 plitude E(ky) of the main modek, versus time, with a In
scaling on they axis. The three different symbols correspond
to numerical results obtained from three viscosity coefficient
values: v=1x10"°m?%s (squares in Fig. 11 »=12

] X 10°° m?s (crossel and v=60x10"° m%s (diamonds.

0.004

0.002

Amplitude

Amplitude

0.002

o
-
N

3 4
Mode index T T T T

FIG. 8. Fourier transform of the concentration isovatire0.5
at four various times. At=0, the interface is single mode. The
mode index =1 corresponds to the wavelength 3.6 cm.

the normalized amplitudg&(k,) of the main mode, versus
time, with a In scaling on theg axis. The three different
symbols correspond to numerical simulations performed ® e

with three different spatial resolutions: a zone size of 0.375 08 MR N
x0.36 mnt (diamonds in Fig. 1) a zone size of 0.1875
X0.18 mn? (crosses and a zone size of 0x0.1 mnt
(squares Such resolutions correspond to 100, 200, and 360 . .
zones in the wavelength, respectively. In Fig. 10, the straight 1 2 3
line gives the theoretical decay of the kinetic energy due to t(ms)

the viscous dissipation: its slope is equal to the product

N %gko,zwhere the physmgl k,mematlc VISCOSIYS equal'to main modek, versus time, with a In scaling on tlyeaxis. The three

10" ms. Once again, this figure clearly stresses the imporgiterent symbols correspond to numerical results obtained from
tance of spatial resolution on the streamwise kinetic energy,ee different zone sizes: 0.3¥9.36 mn? (diamonds, 0.1875
decay: it needs a zone size of 8.0.1 mnt, i.e., 360 zones xq 18 mm? (crossel and 0.1<0.1 mn? (squares The straight

in the wavelength, to recover an exponential energy decajne represents the kinetic energy decay due to the main viscous
equal to molecular viscous dissipation. This result shows thajissipation term: its slope is equal to2vk2, where the physical
the one-dimensional transversal spectrum is very sensitive tnematic viscosityv is equal to 10° m%s. This figure clearly
the numerical resolution. At larger grids, the streamwise ki-shows the importance of spatial resolution on the streamwise ki-
netic energy decay gives an estimate of numerical viscosityietic energy decay.

FIG. 10. Evolution of the normalized amplitudg(k,) of the
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T T T T in a similar way. On one hand, this comparison shows that it
is possible to accurately simulate a RM instability provided
the experimental initial conditiongamplitude and wave
number of the 2D perturbatigpmre well known. On the other
hand, this result allows us to conclude that the initial pres-
ence of the membrane at the interface, which is not simu-
lated, has negligible effects on the development of the insta-
bility in this particular experiment. Simulations have been
performed with the codeADMEE. In this humerical method,
mixing is described by a concentration. This proves that
front tracking is not necessary to obtain good agreement with
experimental data.
At a sufficiently long time after the interaction between

L L d 1 the shock wave and the interface, spectral analysis showed

that the streamwise kinetic energy in the mixing zone decays

exponentially in time. This exponential decay is clearly due

to viscous dissipation. We have seen that we can recover the
different symbols correspond to numerical results obtained fronPhySlcal VISCOUS_’ dissipation b?“"’“"or if we use a Secpnd ac-
. . . - ~ s 5 curate scheme in space and time and very high spatial reso-
three different viscosity coefficient valuesy=1X10"° m?/s lution (360 in th | tH h hvsical
(squarel v=1.2x10"* m?s (crossel andv=6x 10" m?s (dia- u lon ; zqneg In the vyave engtfin S.UC "’?Case.’ p ys!ca .
monds. In each case, numerical results are well fitted with straightv'sc':Jus dls_S|pat|0n doml_nates r_1umer|caI viscosity, Wh.'Ch IS
lines of slope—2vk2 where » is the corresponding value of the not true W|th_ coarser grids. This result shows that higher-
kinematic viscosity. o_rder numgrlcal schemes would b(_e welcome to accurately
simulate Richtmyer-Meshkov experiments.

In each case, numerical results are well fitted with straight SPectral analysis also showed that the passage of an inci-
lines of slope—2vk? wherew is the corresponding value of dent shock wave through an initially single-mode interface

the kinematic viscosity. We can conclude that the stream€XCites the main mode but also the first harmonic. Conse-

wise kinetic energy decays exponentially in time and thag_uently, just aftgr the interaction,_the_interface is no longer
this decay is due to molecular viscous dissipation. single mode. It is clear that there is still much to learn about

the linear and nonlinear aspects of the Richtmyer-Meshkov
instability to better understand how compressibility affects
the fluid flow.

FIG. 11. Evolution of the normalized amplitudg(k,) of the
main modek, vs time, with a In scaling on thg axis. The three

V. CONCLUSION

2D numerical simulations of the fluid instability of a
shock-accelerated interface betW(_ae_n a light fIU|d_ and a he.avy ACKNOWLEDGMENT
one shows a flow pattern very similar to experimental pic-
tures. Furthermore, numerical and experimental amplitude One of the author§C.M.) is very grateful to Professor S.
growth rates are in good agreement and are decaying in tim&. Zaytsev for useful discussions on his experiments.
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