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Nonlinear regime of a multimode Richtmyer—Meshkov instability:
A simplified perturbation theory

Marc Vandenboomgaerde, Serge Gauthier, and Claude Mugler
Commissariat d’Energie Atomique, Bruyes-Le-Chéel, Boie Postale 12,
91680 Bruyees-Le-Chéel, France

(Received 30 May 2001; accepted 11 December 2001

In this paper we present a drastic simplification of the perturbation method for the Richtmyer—
Meshkov instability developed by Zhang and SqRys. Fluids9, 1106 (1997)]. This theory is
devoted to the calculus of the growth rate of the perturbation of the interface in the weakly nonlinear
stage. In the standard approach, expansions appear to be power series in time. We build accurate
approximations by retaining only the terms with the highest power in time. This simplifies and
accelerates the solution. High-order expressions are then easily reachable. Furthermore,
computations for multimode interfaces become tractable. The accuracy of this approach is checked
against two-dimensional numerical simulations. The selection mode process is studied and the phase
between modes is shown to be as important as the wave number or the amplitude. Inferences for the
intermediate nonlinear regime are also proposed. In particular, a class of homothetic configurations
is inferred; its validity is verified with numerical simulations even as vortex structures appear at the
interface. ©2002 American Institute of Physic§DOI: 10.1063/1.1447914

I. INTRODUCTION amplitude and the wave number of the interface, respec-
tively. On the other hand, the advanced nonlinear stage may
When the interface between two materials of differentpe handled by bubble evolution modéts®
densities is not perfectly flat and is accelerated by a shock The pasis of this paper is the recent application of the
wave, it can become unstable. This interface instability isserturbation expansions performed by Zhang and Sdion

known as the Richtmyer—MeshkgRM) instability from the  the weakly nonlinear stage of the RM instability. Hereafter,
authors of the first theoreticabnd experimentélstudies. e shall refer to this work as the full perturbation theory. In

This instability_ is involve(_i in several physigal phenomena.ihis paper, we present a way to drastically simplify and ac-
For example, it may provide some explanations of SUpeMOgg|erate the calculus by retaining the most secular term at

vas behavior. It can also decrease the gain of inertial confinee—ach orde?:1” This new approach makes perturbation expan-
ment fusion(ICF) targets by breaking the sphericity of the gj,ns tor multimode configurations easily reachable and trac-

implosion. Indeed, if no particular care is taken, and since itﬁable even at high order. Furthermore, the simplicity of the

manufacturing is not perfect, the interface is usually per'writing has brought out some features of the nonlinear evo-

turbed. Its shape is a combination of numerous modes Wltp tion of the RM instability; they were previously hidden by

different amplitudes. The same phenomenon arises in sho . - I
) . e complexity of the results or the restriction to specific

tube experiments. After the shock passage through the inter- . .
: o . values of the Atwood number. It will be shown by comparing

face, the various modes of the perturbation first grow linearly . . . . .
. : ... these results with two-dimension&-D) numerical simula-

and independently. Afterward, harmonics appear and, Ilttle[. that th foat that h b derived within th
by little, influence the growth of other modes. After this early lons, that these leatures that have been derived within the

nonlinear stage, the competition between modes may b ramework of the weakly nonlinear theory hold for the inter-

come more important. In time, the emerging modes turn intdned'?]te nonlmgar stagg. ol "
complex structures and the interface becomes mushroom | N€ Paper is organized as follows. In Sec. Il, we detai

shaped. Dominant modes can still be identified in this interih® perturbation theory for a single-mode interface. First, the

mediate nonlinear stage. Then, the flow develops into a digull perturbation theory is summarized and its range of va-

ordered state; this highly nonlinear regime can be consideretflity is discussed. Then, we present a simplification of this
as a preturbulent stage. method. Finally, comparisons with 2-D simulations confirm

Several theoretical works have described the linear stagée accuracy of the theory. In Sec. llI, this approach is gen-
of the RM instability*>~8 Perturbation methodshave been eralized to multimode interaction. Theoretical and computa-

used by several authors to describe the weakly nonlinear réional results of mode competitions are compared. In Sec. IV,
gime of interfacial instabilities’~** In particular, the first Wwe propose some inferences derived from the present weakly

step has been carried out by Ingraham for the Rayleigh-onlinear theory. Simulations show that these conclusions
Taylor instability. In such methods, the small parameter isseem to remain valid at a later time, in the intermediate non-
the initial wave steepnesggk, wherea, andk are the initial  linear regime.

1070-6631/2002/14(3)/1111/12/$19.00 1111 © 2002 American Institute of Physics
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z The nth term of the serie$6) is of the order of §,k)". In
0 / 0 order to simultaneously solve Eg8)—(5), terms in series
A _m (6) are further expanded:
YO\ O
; 7M(x,)= 2> al”(t)cosjkx,
1<j=n
X z=Tm (Xat)
_ H —jk
FIG. 1. Sketch of the configuration. q)(n)(xlyt)—ogsn b}n)(t)COSjkxe e, )
Il. PERTURBATION EXPANSIONS FOR SINGLE-MODE ' M(x,z,t)= > b/"(t)cosjkxetikz,
CONFIGURATIONS O<j=n
A. Summary of the full perturbation theory  (Ref. 12) At the nth order, the terms of the order oadk)" are col-

lected and the resulting equations are projected on the cosine
ebase{cosjkx,Osjsn}. This leads to i+1) systems of
three differential equations that involve derivatives of the
quantitiesa{™(t), b{™(t), andb;"(t) with respect to time.
They are easily solved by integration. The unknowns are

One considers two different fluids separated by a sin
shape interface that is described by 7(x,t). At time t
=0, this shape is written ag=aycoskx. A shock wave
comes from positive and passes through the interface. The

flow is inviscid, |rrotat|on§I, and incompressible. As a result,found to be polynomials of theth degree. At thaith order,
the reflected and transmitted waves no longer influence thg(nJrl) integrations are needed in order to evaluate the (
interface. For cqnsistency and matching between theoriegt 1) coefficients of each polynomial. So, 8¢ 1)? coeffi-
the amplitude ofyp(x,0) can be put equal to the asymptotic cients must be computed and stored. '

velocity that is obtained from the compressible linear theory. The results up to the third order afe

A sketch of the interface is presented in Fig. 1. The equations
are written in the frame of the unperturbed interface; thisisa  7Y(x,t)=(ay+agot)coskx,

Galilean frame. The velocity potentials afe(x,z,t) and

®’(x,z,t) for the fluids 1 and 2, respectively. They satisfy 7@ (x,t)= }a3ko?At? cos XX, (8
the following equations:
AD(x,21)=0 in fluid 1, 0 7¥(x,t)=— Hk?ajo[ (4A%+1)c?t3+ 30t + 6t]
A®'(x,2,4)=0 in fluid 2. ) x coskx+ gk’agof (4A%—1)0?t?
The matching conditions at the interface are given by the —30t?]cos KX,

motion equations and the Bernoulli's equation, .
9 g where A is the post-shocked Atwood numbeA=(p’

In @ &_77+ @:0 at 7= 7, 3 —p)l(p'+p). The amplitude of the interface is defined as
gt oIx Jx 9z

1 T
an 9D’ In 9D’ a(t)IE[n(O,t)—n(E,t”. 9)

+ =0 atz=ry, (4
roxoax oz Let us remark that the set of Eq8)—(5) does not provide a
P’ b 1 ab'\2 [9d’\? value ofa. However, there are several ways to determine this
P trr o\ o]l value. First, the impulsive model may be uséd™ It has

been shown that this model is valid for low Mach numbers
and not too different adiabatic coefficierits’ The value ofo
is then given by the following expressidh:

1
7P

b —0 B .
I = at z=7. (5)

+ J—
0z

The boundary conditions aré(x,+«,t)=0 and ®’'(Xx, 1
—o0,t)=0. The initial conditions arep(x,0)=a, coskx and o= §kAU A+ AU |
7(x,0)=ayo coskx, whereo is a constant. 1- Wo
In order to derive a perturbation method, each quantity is '
expanded as a series of powers of a small parameter. Thighere AU, W;, and A~ are the velocities of the shocked
parameter is classically the initial wave steepnagls. By  interface, the incident shock wave and the pre-shocked At-
doing so, the interface shape and velocity potentials are writwood number, respectively. Second, 2-D simulations can be
ten as run in order to calculate the amplitu@gt). The value ofo
o o is then estimated bw(0™). Third, o can be given by the
(x,t) = E 7M(x1), D(x,zt)= E DM (x,2,1), asymptotic growth rate obtaine_d with any Iipear thédnf
n=1 n=0 based on the full Euler’'s equations, i.e., taking into account
o the compressibility. Indeed, such theories provide a constant
' (x,2,t)= 2 ' M(x,z,t). (6) _asymptotic growth rate. In this paper,is usually computed
n=0 in this way.

(10
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B. How to simplify the full perturbation theory only valid for O<t<t,, wheret, is some finite period not
aery large compared taagko) ! (see Ref. 20, p. 107O0ne
can see graphically by plotting series given (By up to the
11th order versusgykot, and for all Atwood numbers, that
b@ey diverge for agkot=1. So, we shall uset,
(apko) L.

In Egs.(3)—(5), the classical theory leads to some com-
plicated selection rule in order to select the terms of a given
order[see Eqs(16)—(18) in Ref. 12. Using only the most
secular term brings strong simplification. Indeed, the selec-

Recall that all physical quantities have been expanded
a series of power of the small parametggk. On the other
hand, results to the third order, Ed8), show that time ap-
pears explicitly in the coefficients. Then, such a series can be
considered as a series in the power of time. It is remarkable
that, at the orden, the leading term, i.e., the term with the
highest power of time, is written asgkot)"a,, wherea,
is a polynomial of the Atwood numbek and the function
coskx. The quantityagkot is the product of the small param- >~~~ . o
eter, agk W(i:![h the ):lgalferd timeqr? P tion is straightforward. At thenth order, the position of the

1 1 - . . n

It is well known that in such perturbation expansions, an![nterfacef,g(x,t%, 'S O(l)f4order oft™, ?O' tlhf moksttsne_cijlar
accurate approximation can usually be built with only the erms o as{3) an (4) are proportiona 940 ot)" =
most secular termssee, for example, Ref. 17The most ThIS is due to the first derivative of(x,t) with respect to
secular term is defined as the term with the highest untime. So, at theith order, the terms to be kept are the quan-

e . n71 .
bounded part. For example, retaining only the terms with thé't'els. t(;wat gE'V€5atTh d_eper(;denc:aj. The s%ar:e argumentlls
highest power in time in the full perturbation theory, Eqs.app €0 to .q.( ) e tlmngzepen ence o t € mo§t secuiar

terms in this equation i$"" <, as only the first derivatives

8), gives . ) . :
®. 9 with respect to the time ob and®’ are involved. Keeping

7P (x,t)~agot coskx, only these terms, a system of the following form is obtained:

M) K 1) e -
7?(x,t)= }asko?At? cos XX, B(aj™ by ,bj ™, cosjkx)o<j<n=0,
c(a™,bi" b/ ™, cosjkx)o<j<n=0, (12)
G (x,t)~k?aa3t3(— 4 (4A%+ 1)coskx b
7' (X,1) 0 (— 24 ( ) D(a](n),b}n),bj,(n),COSij)osjsn=0,
+ §(4A%—1)cos Kx). where B, C and D are combinations of the unknowns

(a](“) ,b](“) ybj,(n))OSjgn and the functions (cg&X)o<j<n. Let
This approximation gives an accurate time evolution pro-us emphasize that keeping only the most secular terms al-
vided the time is large enough. Discrepancies may occur neasws us to cancel the time dependence in the systE?h
the origint=0. Fortunately, for the RM instability, the ap- The projection of this system on the Fourier cosine orthogo-
proximate first- and second-order growth rates are identicahal system leads ton(+1) systems of three equations with
to those of the complete theory. So, it turns out that thehree real unknowns, at theh order. They are written as
approximation is also accurate ndat0. In order to get an B/(a™ b(™ b/ (M)y=0
expression valid at=0, we have to add the constant term e el '

ao. In the following expressions, we shall replace the sym-  C/(a{” ,b{" ,b/")=0, for O<i<n, (13
bol ~ by =.

g D/ (@™ b b; ™) =0,
C. Derivation of the approximate perturbation theory whereB/, C{, andD/ are combinations of the unknowns

@™ ,b{ b/(M)o_;—,. Since the systems¢l3d) are alge-

As already stated, in order to build an approximatebraic they do not require time integration anymore. The
theory, the terms with the highest power in time must be ' y q 9 y '

retained. By inspection of the results of the full perturbation,?h(nJr 1r? ;:O(jfflenlts %f e?(prefstlpmil)frf simply Ebtglne;jh i
theory!? up to the fourth order, we put as general forms for rough 30+1) algebraic solutions. Let us emphasize tha

the most secular part of™, &M, andd’ ™, the following the standard theory rqulres r1_3J(_1) time integrations in
expressions: order to calculate 3(+ 1)~ coefficients.

We now summarize the solution method.

n
kﬂ(”):(aokUt)”_Z ai" cosjkx, (i) Every quantity is expanded as a series of powers of
=t the small parametegkot. This leads to expressioi$l) for
K2 n _ 7™, &M andd’ ™,
—®M=(agk)"(ot)""* > bi" cosjkxe (12) (i) At the nth order, terms of order af'~! are retained
7 =0 in the expansions of the boundary conditions, E&$.and
K2 n (4). Terms of order ot"~? are kept in the expression of the
;(I)’(n):(aok)n(o't)n 12:0 bj’“‘) cosjkxetikz, Bernoulli’'s equation(5).

(iii) By using the orthogonality of the Fourier functions,

The unknowns &™ ,b{" ,b/ (M) are now real numbers. If the algebraic systems are obtained.

scaled time is of order ofapk) ! (ot=0[(ack) 1]), sec- The above procedure is very easily handled by symbolic
ond terms of the serie®) are of the same order of the first computation softwares. The approximate approach brings the
terms, contrary to our assumption that, for exampié) isa  following advantages compared with the classical perturba-
small correction ofy*) (see Ref. 9, p. 25 The serie$6) are  tion method.
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(@ Asimpler writing of the unknowns: one deals with real (a) Amplitude (m)
numbers instead of polynomials. 0.008 v . : —
(b) An easier solution and identification of terms of the 0.007 }
same order: the knowledge of the time exponent is only

0.006 }

needed.
(c) Afaster solution as no time integration is needed; only 9005 f

3(n+1) coefficients are computed instead ofn3( 0.004 }

+1)2. 0.003 }
(d) A smaller storage space for the results is necessary. 0.002 |
D. Numerical applications: Quantitative results 0.001

. . 0 :
The values of tha}') up to the seventh order are given 3rd harmonics ‘o)

in Appendix A. It can be verified for the first four orders that 0% ; 0.0005 0.001 0.0015 0.002

the approximate theory gives the terms with the highest
power in time of the full perturbation theotyWe have also
checked that tha{”’ (1<n=11) obtained from the approxi- (b)
mate perturbation theory are the same as those of(&q.
derived by Velikovich and Dimont& for A=1. Note that S
this equation is an analytic formula. For orders higher than 4 [
and an arbitrary Atwood number, no result is available from
the full perturbation theory. As noticed by Zhang and Sohn in
Ref. 13, “at this order [4th], the expansion is rather compli-
cated and inclusion of higher order terms is avoided

5 Growth rate (m/s)

From our results, it can be seen that the growth of the 4

amplitude of odd harmonics, i.e., modes the wave number of

which is written as (p+ 1)k, wherep is an integer, is an 0 3¢d harmonics

odd function ofagy; on the other hand, the growth of the

amplitude of even harmonics is an even functioragf So, -1 . 2 . 4 L(s)
. : " 0 0.0005 0.001 0.0015 0.002

whatever the sign ody, the even harmonics have a positive

amplitude. FIG. 2. Spectral analysis of a single-mode perturbation. (Bhamplitude

In order to test the accuracy of the approximatea”d(b) growth rate of the first three harmonics versus time: full, dashed, and
theory we have computed the growth of a single-mode in_dash—dotted lines represent data fronpmEE, the 11th-order approximate
f ' his is d b ical si lati ith th theory and the fourth-order full theory, respectively. The initial amplitude of
terface. This |321 one by numerical simulation with the 2-Dine perturbation is positive.
CADMEE codes™ In our simulations, the two fluids are con-

sidered inviscid and nondiffusive. Their mixing is described

within the single fluid approximation by a concentrati@  good agreement with the numerical simulation. However, it
governed by an advection equation. In order to compute thgeems that the slopes obtained from the 11th-order approxi-
growth of each mode, a Fourier analysis of the isoconcentramate theory are better than those given by the fourth-order
tion curvec=0.5 is performed. full perturbation theory. This point is confirmed by looking at
The values of the physical parameters are taken fronfig. 2(b), where the growth rates are plotted versus time. The
Benjamin's experiment. In these experiments, a 1.24 agreement between the approximate theory and numerical
Mach number shock wave moves from air tosSFhe initial  results is good as long @s:t,s=1.77x 10 3s. On the other
pressure of gases is x80° Pa. The post-shocked Atwood hand, the fourth-order full theory deviates from the simula-
number is 0.706. The wave number and the initial pretjon for t~10"%s. In order to quantify the discrepancy be-
shocked amplitude of the perturbation &e130m ' and  tween the two theories and the simulation, we have com-
a, = +0.72<10 3m, respectively. For these experiments, puted the quantity\,= 7k theon(1)/ 77k capmee(t) — 1, where
the asymptotic growth rate given by the linear théoiy 7(t) is the growth rate of the mode Figures 3a), 3(b),
a(t)=0.11%ka, W,. These values lead to a parameter and 3c) show the discrepancies,, A,c, andAg, for the
equal to 7451 s'. The value oft, for this configuration is  11th-order approximate perturbation theory and the fourth-
t,s=1.77<10 *s. The numerical simulations utilize 180 order full perturbation theory, versus time. We can see that
nodes in order to describe this wavelength and 30 nodes fanhost of the time, the discrepancies, and A,, remain
this peak-to-valley amplitude. The simulation shows that thesmaller than 2.5% and 10%, respectively, for the approxi-
value a(t)k=1 is reached fot=2x103%s. Figures 23 mate theory. Close tb,s, both discrepancies diverge. Con-
and 2b) give, respectively, the amplitudes and the growthcerning the third harmonics, the discrepanty, is quite
rates of the fundamental, second, and third mode that ardarge (but bounded Let us note that the growth rate of this
obtained from thecADMEE code, the 11th-order approximate harmonics is so small that the discrepancy might be mean-
theory and the fourth-order full perturbation theory. Figureingless. Figure 3 shows that the fourth-order full perturbation
2(a) shows that amplitudes obtained from both theories are itheory is less accurate than the 11th approximate theory.
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@ A (b} A 5 (a) b
0.2 " 0.2{ : Ax(m) ( ) Ax(m) i
/_r:.:'t:~—\\ ,‘ h
0.1 ! \ ______ IR 0.0 A /‘ I '*"*’\;1 ""\\" o . /
o N T L= L=y
0.0 TN -0.2 ., = =
-0.1 . \
-0-2{) N t(s) I A Hs) ] s
0.0005 0.0015 0.0005 0.0015 b= =
© A
3K n
- = =
2 g < =
t ////,';;/;‘\\\ ‘é §
of -0 e = 1=
v \
Y v 1(s) h !
0.0005 0.0015 Ly Z (M) | » z (M)
-0.01 -0.005 0.005 0.01 -0.01 -0.005 0,005 0.01

FIG. 3. Discrepancies between the growth rates given by theories and simu-
lation. Dashed and dash—dotted lines represent the 11th-order approXimgt®s 5 The shape of the interfacestat1.3x 103
theory and the fourth-order full perturbation theory, respectivy. (b),
and (c) stand for the first, second, and third harmonics, respectively.

s from theory(dashed
line) and simulation(full line). (a) The initial amplitude is positive(b) The
initial amplitude is negative.

Ip order to prove the in_fluence ,Of the.sign of the initial sions(11). Rearrangement brings the following form for the
amplitude of the perturbation, a simulation has been per:

formed using the same physical parameter values except f&mplltudea(t).
the initial amplitudea,, ; for the latter, the opposite value is
taken:a, = —0.72< 10 3m. Figure 4 gives the growth of
the amplitude of the first three modes. Once again, we obtain _ . .

a good agreement between theory and simulation. It can b\gherePi[A] are polynomials of théth degree with respect

seen from comparisons between Figéa)2and 4 that the to the AtWOOd numbe. These polyno.mials are giverj in
dAppend|x B up to the 11th order. In Fig. 6, the amplitude

a(t) is plotted versus time. The full line represents the
CADMEE data. Dashed and dash—dotted lines represent theo-
retical results at the ninth and 11th order, respectively. The
eadgreement between simulation and theory is good as long as
time remains smaller thar (see the vertical line in Fig.)6
After that time, the perturbation series diverges. It has been
checked in this example that terms that are not taken into
account in the theoretical approach are indeed negligible. On
Hﬁis configuration, the approximate perturbation method is
accurate, as it has been shown by comparing with 2-D nu-
erical simulations. In addition to the evolution of the peak-
to-valley amplitude, the approximate perturbation theory also
gives access to the expressions for the spike and bubble

1 .
a(h=ap+ > Pi[Al(agkat), (14)

even harmonics with respect & are verified. This means
that the shape of interfaces with positive or negative initial
amplitude are not symmetric with respect to thaxis. In-
deed, in the linear regime, the shape of an interface stemm
from a negative initial amplitude perturbation can be ob-
tained at any time by using the transfora{t) — —a(t), of
the same interface with a positive initial amplitude. In the
nonlinear regime, such a symmetry is broken. This is dis
played in Fig. 5, where the shape of the interfaces obtaine
with the theory and theADMEE code att=1.3x10 3s are
shown. Remark that the agreement about the shapes of t
perturbations is also good.

The expression of the half peak-to-valley amplitude,
a(t), defined by Eq(9), can be rewritten by using expan-

a (m)
0.014
Amplitude (m)
0.004 ) 0.012 L
2nd mode
0.002 1 e 0.01 } 1
0 4 0.008
.0.002 | 0.006 |
0.004 |
-0.004 |
0.002 t
-0.006 }
0 N . . . o . . t(s)
’ 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
-0.008 R L . > t(s)
0 0.0005 0.001 0.0015 0.002

FIG. 6. The half-peak-to-valley amplitude versus time in the single-mode
configuration. A full line represents numerical simulation data. Dashed line
FIG. 4. The same as in Fig(&, but the initial amplitude of the perturbation and dash—dotted lines represent theoretical results at the ninth and 11th
is negative. order, respectively.
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N
ﬂ(l)(x,t) = 2 agioit COSkiX.
i=1

In order to obtain expressions with the same form as Eqgs.
(11), a specific modé; is selected and factorized. Ag is
proportional to the wave numbég , the first-order expan-
sion of 5(x,t) can be written as

N

ki (x,t) = (agkyoit) >, ai coskix,
=1

with alV=(ag; /agy) (ki /k;). By analogy with Eqs(11), we
FIG. 7. Nondimensionalized growth rates for the spike and the bubbléASSUMe the followmg form for theth order 0f7](X,t):

against the scaled timekot. Results are from the 11th-order approximate I
theory. Full, dotted, and dash—dotted lines are plotted for three different K. 7MW (x 1) = (ank: o t)" a™ cosk(Mx 15
Atwood numbersA=0.1, 0.48, and 1. 17 (X0 = (Boiky04) 21 : b (15)

wherek(" are the wave numbers present at titfe order and
growths. In Fig. 7, we have plotted the nondimensionalized, is the mode count at the same order. These modes are
growth ratesk 7spike aNdK 7p,pe against the quantitgokot, obtained from two-by-two addition and subtraction of the
for three different Atwood numbersA=0.1, 0.48, and 1. modes present at thex{-1)th order. The same kind of fac-
Several conclusions can be drawn from Fig. 7. First, thdorization and analogy is used in order to obtain expressions
growth rate of the bubble is slightly dependent on the At-of ®™ and®’™ for the multimode case.
wood number. Second, for a small Atwood number, the The algorithm to solve Eqs(3), (4), and (5) for the
growths of spike and bubble have approximatively the sam@ultimode case is the same as for the single-mode case.
absolute value; this should lead to a symmetric patternSubscripts of summations now vary from 1lfoinstead of 1
Third, for large values of the Atwood number, the spike hago n. We now summarize this algorithm.
a higher growth rate than the one of the bubble. These con-
clusions about the influence of the Atwood number upon the (i) Expansions such as E(L5) are used in Eq¥3)—(5)
relative growth rates of spike and bubble are in qualitativefor 7, ®®, and®’ ™.
good agreement with the nonlinear RM experiments de- (i) At the nth order, only terms witht"~! dependence
scribed in Ref. 23. In these experiments, the growth rates dor Egs. (3) and (4), andt"~? dependence for Eq(5) are
two configurations with Atwood numbers=0.48 and 0.92 retained. This comes from the properties of the most secular
are presented. First, the growths of bubbles for both configuterms.
rations seem to be the same. Second, forAke0.48 con- (iii) The resulting system is projected on the cosine base
figuration, the growths of spike and bubble are similar. Third {cosk™x,0<i<l,}. Thel,+1 resulting systems are alge-
for the A=0.92 configuration, the spike grows faster than thebraic and linear. They are easily solved and thk, 3(1) real
bubble. So, even if these experiments are in the intermediatenknowns & ,b{" b/ (") are obtained.
nonlinear regime where the approximate perturbation theory
is no more valid, it seems that this theory brings qualitatively ~ From a technical point of view, the generalization from
reliable information about the relative growths of spike andthe single-mode algorithm to the multimode one only re-
bubble. Such a qualitative agreement beyond the weaklguires to change the subscripts of the series and to compute
nonlinear regime will also be presented in Sec. IV B. Thethe modes that appear at each order. This is easily handled by
variation of the spike growth rate versus the Atwood numbesymbolic computation softwares. We emphasize that the ap-

is not found by Volkovet al?* proximate theory does not require time integration and
strongly reduces storage space. This means that the evolution

IIl. PERTURBATION EXPANSIONS FOR MULTIMODE of a multimode interface can now be handled. The range of

CONFIGURATIONS validity, t,,, of this N-mode configuration is assumed to be

the smallest, ¢ of the N configurations, where the modes are

taken independently. Sot,, Iis written as t,,
We now study an interface that is initially composed of =Min{(agikio;) ~1,1<i<N}). We did check this assump-

N modes of wave numbek; with respective initial post- tion numerically.

shocked amplitudag; . The shape of this interface is written

A. Derivation of the approximate perturbation theory

as B. Numerical applications: Quantitative results
N We now study a three-mode interface. In order to in-
77(X,0)=21 agj cosk;X. crease the coupling between modes, we chdqse,, and
1=

ks such that k,+ks=k;. In this example, k;
According to the sign of the amplitudes, the modes have the=274.855m!, k,=3/7k,, andky;=4/7k,. By doing so, at
same or opposite phase. The linear growth rate of such atie second order, the modéte is generated by the harmonics
interface is given by k,+Kks. This generation may lead to a stronger influence
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FIG. 8. Single-mode dynamics. The half-peak-to-valley amplitude of theFIG. 10. The same as in Fig. 9, but the modes have positive initial ampli-
three modes versus time. The initial amplitudes are negative. Symbols regudes.

resent numerical data. Dashed lines represent seventh-order theoretical re-

sults. The range of validity of the theory ig,=0.67x 10 3s.

the same parameter values as in the previous case, except for
the sign of the amplitudes. We now hawg;=+0.35
on the modek;. The initial post-shocked amplitudes X10 3m, ag=+1.9055x10 °m, and ay=+1.072
areag,=—0.35x10 3m, ag,=—1.9055<10 m, anday,; X 10 >m. Figure 10 presents the evolution versus time of
=—-1.072<10 3m. In this configuration, a 1.0962 Mach the amplitude of the three interacting modes. By comparing
number shock wave moves from helium to air. The initial Fig. 9 with Fig. 10, different coupling effects can be seen:
pressure is 1.01810°Pa. The pre-shocked and post- the growth of the mod&; is now slightly reduced while the
shocked Atwood numbers are 0.757 and 0.764, respectivelynodek; seems to be unaffected. The behavior of the mode
With this choice of physical parameter valugs,,=0.67  k; is strongly linked to the value of the phase. As seen in
x 10 3s. In the following, theoretical results are producedSec. I D, the phase determines the sign of the amplitude of
by seventh-order perturbation expansions. the harmonics; depending of their sign, the harmonics will
Figure 8 shows the growth of the amplitude of eachreduce or not the growth of existing modes. This example
mode in a single-mode configuration, i.e., obtained fromillustrates the fact that the mode selection process is not only
separate numerical simulations. Symbols correspond to thdetermined by the values of the modes and their amplitudes,
CADMEE calculations and dashed lines to the approximatedut also by the phase of these modes.
theory. It can be checked that the theory is accurate as long
ast remains smaller thaty,,,. Figure 9 presents the evolu- IV. INFERENCES FOR THE INTERMEDIATE
tion versus time of each mode when they are initially putNONLINEAR STAGE
ftogether. The agreement betweer_1 theory and 2-D simulationg pggé approximants and perturbation theories
is good. The growth of the modgq is strongly reduced when ) _ )
it interacts with the two other modes. As previously under- ~ AS shown in Sec. II, the secular terms in perturbation
lined, this behavior is due to the fact that the wave number§€ries make these series to diverge at some finite time. One
satisfy k,+ks=k;. Indeed, the growth of this sum mode gxample of this divergence is present_ed in Fig. 6.. In order to
counteracts the evolution of the initial mokle. On the other ~ IMProve the convergence of such series, summation methods
hand, the two other modes seem to grow according to thef@"® commonly used. Since only a few terms are available,
single-mode dynamics. one has to resort to approprlate algorithms; one of them is
We now emphasize the role of the phase of the modedhne well-known Padapproximant.” For the growth rate of

To this end, a new three-mode simulation has been run Wichoe amplitgde of a single-mode interface, Pagproximants,
P7 and P53, can be calculated from the second- and the

fourth-order expansions, respectively. Zhang and Sohn com-

oAmplitude ) bine P{ and P obtained from the full perturbation theory in
_‘“».._,__________ _______ -7 order to obtain the following practical expression>
-0.001 [ 3~ e T Y
e e da_ ago
-0.002¢ S -\_‘_\ 1 dt 1+ (apk)?ot+Max{0,a5k’— A%+ 1/2}(agkat)?’
-0.003 | Tl e, 1 (16)
-0.004 ¢ J\'\.'\ . Equation(16) corresponds to Eq53) of Ref. 12 or Eq(87)
-0.005 | "\’\.v B of Ref. 13. Reasons for such a combination are detailed in
NSl Refs. 12 and 13. Indeed, a time singularity may occU?Qn
-0.006 o So, parameter regions defined bgk?<A?—% and azk?
-0.007 N — t(s) =A2-1 are differentiated. The Zhang and Sohn point of
0 0.0001 0.0002 0.0003 0.0004 T . ¢
view is that “there are two conventional ways to remove a
FIG. 9. The same as in Fig. 8 but the three modes interact. singularity. One is to reduce the order of accuracy by taking
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a(m) validity can be increased with summation algorithms such as
' ' " ' ' ) Padeapproximants. Let us remark that such methods provide
only approximate results and that discrepancies from 2-D
simulations can become very large at large tifsee, for
example, Fig. 1L Moreover, at such times, mushroom-like
structures may appear whereas the theory can only describe
single-mode interfaces.
On the other hand, an important issue in nonlinear inter-
action studies is to understand the mode selection process,
i.e., which modes become dominant or are suppressed during
the interaction. In this section, we will see that using the
approximate theory beyond the weakly nonlinear regime al-
lows us to obtain qualitative results about the selection mode
. . . . . . . t(s) process. As shown in Sec. Il B, Fourier modes already in-
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 teract in the early nonlinear stage. In order to study the late
FIG. 11. The half-peak-to-valley amplitude versus time in the single-modéiime interaction of two modes, we follow the same method-
configuration. The full line represents numerical data. Dash—dotted anglogy that the one used in Ref. 26 about the Rayleigh—Taylor
dashed lines are plotted from E4) and thePs Padeapproximant, respec-  jnstability. In this paper, 2-D numerical simulations provide
tvely the time evolution of the shape of the interfaces that are then
less terms and the other one is to take more teriisAs a  Fourier analyzed. Two cases are discussed: a nearby mode
result, they choos®? instead ofPJ in order to remove the configuration k,/k;= %) and a dissimilar mode configura-
singularity. It is better, as far as it is possible, to use highertion (k,/k;=3%). The growth of the competing modes is
order Padeapproximants. For example, 11th-order approxi-compared with their single-mode dynamics.
mate perturbation theory allows us to build tRg Padeap- For the RM instability, the range of validity of the ap-
proximant. One example of such an application is nowproximate theory, checked numerically, scaleskag. For
presented. . _ the dissimilar mode configuration, this greatly complicates
In numerous cases, E¢16) is enough to predict the o gygy at late time since the ranges of validity for the
nonllngar growth rate even if the order of the Pagproxi- single-mode and the two-mode configurations may be quite
mant is low. However, some cases can be found where . . .
ifferent. On the other hand, this constraint does not arise for

fourth-order Padeapproximant is not accurate enough. Inth b d d its study with th imat
order to illustrate that point, we use the same physical pa- € nearby mode case and 1is study wi € approximate

rameter value? as the ones used to obtain the results disth€ory is straightforward. Therefore and for practicality, we
played in Fig. 6. As mentioned above,Fé Padeapproxi- only present in this paper a nearby mode study. In a first step,
mant is used in order to improve the Convergencaab 2-D simulations of RM |nStab|l|ty are performEd with the
obtained from Eq(14). The growth rate is then time inte- CodeCADMEE. In these configurations, a 1.26 Mach number
grated in order to get the growth of the amplitude. In Fig. 11 shock wave moves from helium to air. The two wave num-
we have plotted the results that are obtained fanMEE. bers of the initial interface perturbation arek;
They have to be compared with time integrations of @) =274.889m?! andk,=314.159 m*. The initial amplitude
from the standard theory and tlﬁé Padeapproximant from  for each mode is eitherag,= 10°3m or ay,=0.35
the approximate theory. First, as expected, curves obtained 10-3m. The post-shocked Atwood number As=0.756.
with _Iiadeappr_oximants do not diverge beyongk=1.77  The ranges of validity for the following single-mod, &)
><_10 s (see Fig. 6 for a com_par|_s§1r1-|owever_, the growth configurations: Ky,a0), (1,259, (Kz,agy), (Ks,agy), are
given by Eq.(16) show; no S|gp|f|caqt decaying and there—dB_5>< 105 2.43<10° % 6.5%10°5, and 1.85 10 *s, re-
fore does not agree with the simulation. On the other han . . . . . .
. 4 . I spectively. The final time of the 2-D simulations is 1.8

the growth given by thePg Padeapproximant exhibits a s . . 4 .
saturation behavior and is in quite good agreement with the® 107"s. At time as early as=4.x 19 S mushroor'n-llk.e
2-D simulation. This decaying growth rate is a common fegfeatures appear at the interface. This can be seen in Fig. 12,
ture of nonlinear RM dynamics. Only the high-order PadeWhich shows the isocurves=0.25,¢=0.5, andc=0.75 at
approximant seems to be able to produce such a feature. Sdifferent times for the following two-mode configuration:
even if aP$ or aP? approximant can give good approxima- {(Ky,801),(K2,80,)}. In order to perform the spectral analy-
tions of the growth for numerous casés® for other ones, sis of such shapes, we use the same method as in Ref. 26.
higher-order Padapproximants are required in order to pro- The zintegrated density distribution is computegd(x)
duce reliable predictions. =[ p(z,x)dz. The Fourier transform of this distribution is
then taken. This procedure is accurate at early time. At late
time, when mushrooming appears, theintegration sup-

We have seen that the perturbation theory derived ipresses small structures and the growth of small wavelengths
previous sections has a finite range of validity. This range ofs roughly estimated; but we believe that this analysis re-
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B. Selection mode process: Qualitative results
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FIG. 12. One of the two-mode configurations: k;(ag,)

=(274.889 m1,0.35x 10 3 m)

0.8 ms(c), 1.2 ms(d) and 1.6 mge).

and  kp,a5)=(314.159m*,10 3 m).
The two gases are helium and air. Interface shapes=f@r (a), 0.4 ms(b),
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the simulation results, the values of the initial amplitudes
seem to dictate the selection process: the mode with the
lower initial amplitude is suppressed. When the initial am-
plitudes are the same, the growths of mo#lesand k, are
similarly reduced by the interaction. These conclusions are
the same as the ones obtained in Ref. 26 about the Rayleigh—
Taylor instability. Figures 1), 13(d), 13(f), and 13h) show

the growths ok, andk, that are obtained with thE‘% Pade
approximant of the fifth-order approximate perturbation ex-
pansion. Vertical bars on each curve indicate the range of
validity of the perturbation expansion. It can be verified that
theoretical and numerical results are in good agreement in
the range of validity of the theory. Beyond that time, Fh%
Pade approximant exhibits an oversaturated behavior: at
large time, the growth from the extended approximate theory
is roughly half the simulation values. However, the following
qualitative remarks can be drawn.

(i) Figures 18a) and 13b) deal with the configuration
(K1,80,) =(274.889m1,0.35<10 ®*m) and  K;,a9)
=(314.159m 1,10 ®m). For the single-mode dynamics,
the relative evolution of the two modes is qualitatively re-
covered by the theory. In the simulation of the two-mode

mains valid for the computations of the main components oflynamics, the modg; is suppressed, whereas the maége

the spectrum. Figures &, 13(c), 13(e), and 13g) show the

behavior is only slightly modified by the interaction. In the

results obtained from numerical simulations and compare theame way, theoretical results show that the growth of the

single-mode evolution with the two-mode growth lgf and
k, for various initial amplitudes. Full and dashed lines rep-

modek; saturates whereas the mokieis not perturbed.
(i) Figures 18c) and 13d) deal with the configuration

resent single- and two-mode dynamics, respectively. Fronfk;,ag;), (K2,ay,). The relative evolution of the modes in

(b) a(m)
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FIG. 13. Single- and two-mode con-
figurations. Growth of the modek,
and k, versus time. Full and dashed
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lines represent the single-mode and
two-mode dynamics, respectively.
Curves (a), (c), (e), and (g) are ob-
tained from caADMEE simulations.
Curves(b), (d), (f), and(h) are from
the approximate perturbation theory.
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their single-mode dynamics is similar in both theoretical and (a) a(m)
simulation results. When the two-mode dynamics is consid- 0.01
ered, the mode, saturates, whereas the mokg is only
slightly perturbed. These behaviors are also found theoreti-
cally.

(iii) Figures 18e) and 13f) deal with the configuration
(k1,a02), (ka,ag,). In this configuration, there is no domi-
nant mode. However, the growth of the two modes is low-
ered by the interaction. Note that the mddehas a higher
amplitude than the one of the mo#tg at large time in the
single-mode dynamics and a lower one in the two-mode dy- (b) a(m)
namics. These behaviors are recovered with the theory, de-

t(s)
0 0.001 0.002 0.003

spite the underestimated growths. 001
(iv) Figures 18g) and 13h) deal with the configuration 0.008
(kq,807), (kz,ap7). The same conclusions as in the previous 0.006
item can be drawn for this configuration. 0.004
We believe that the good qualitative agreement about the 0.002
mode behavior indicates that mechanisms of the selection 0 t(s)
0 0.001 0.002 0.003

process are already present at an early time, i.e., the mode
selection process is driven by early time dynamics. ThereriG. 14. Homothetic single-mode dynamics) Growths of the perturba-
fore, this nearby mode study shows that the approximatéons 1 and 2 are plotted with full and mark-dotted lines, respectively. Re-

perturbation theory can be a useful tool to understand théults are obtained with theapmee code.(b) The growth of the perturbation
origins of the late time selection of modes 1. The full line is from thecabpmee simulation. The mark-dotted curve is

obtained from perturbation 2 by using E4.9).

C. Class of homothetic interfaces

In this section, we describe some properties established
from the weakly nonlinear theory. The 2-D numerical simu- 5 ()= k_l(al(t)—a01)+a02 if agki=apks. (19
lations show that these properties are still valid in the inter- 2
mediate nonlinear stage. To this end, the expres&idnof  £quation(19) defines a class of homothetic configurations:
the amplitude of a single-mode interface is rearranged ag), 5 given set of physical parameters, the growth of one
follows: configuration allows us to determine the growth of all the
configurations of the same class.

In order to confirm this conclusion, we have run two
simulations with thecADMEE code.

The physical parameters are the same as those used in

with P;=0, for eveni. (17) Sec. llIB. The two configurations are the following:
(ag1,k1)=(0.35mm,274.856 and (@g,,k,)=(0.525mm,

The right-hand side of Eq(17) can be considered as the 224.418, which satisfies the equalitpyk?=ak3. The
Taylor expansion of a single functiof that depends on two simulations utilize the same number of nodes: the mesh size

k[a(t)_ao]:; Pi[Al(aokat)!,

variables,A andagkat, for the configuration 2 is, respectively, 1.5 and 1.225 times as
large as the one for configuration 1 in thandx directions,
1 dF _ respectively. Figure 14) shows the growths of the perturba-
f(A,aokat)ZiZl iTo(agkat)! O(aok‘f[)I tions obtained from the 2-D simulations. Full and mark-

dotted lines represent configurations 1 and 2, respectively.
Figure 14b) shows the growths of the perturbation 1 ob-

Il
M ¢

2, Pi[Al(agkat)’ tained either from the simulatioffull line) or from Eq.(19).
=t Agreement between the simulation and the transformed
=kla(t)—ag]. (18)  curve is excellent: the two results cannot be distinguished.

The range of validity of the approximate theory for these two
Equation (18) means that if two interfaces have the sameconfigurations ig,s=0.72< 10 3s. Figure 14b) shows that
Atwood numberA, and the same value of the prodagko, Eq. (19), which is drawn from a weakly nonlinear theory, is
their time history will be linked byF. An easy way to obtain still valid in the intermediate nonlinear regime. Furthermore,
such conditions is to deal with the same base flow. This leadesven when mushroom shapes appear, the homothetic trans-
to the same Atwood number. In order to obtain the samdorm allows us to determine one interface shape from the
value ofagko, aso is proportional td, it is sufficient to use  other one. Figure 18) shows the shapes of the interfaces 1
the same value ddigk?. So, when the same physical param-and 2 att=2.87x 103 s (full and mark-dotted lines, respec-
eter values are used, E(@.8) can be applied to two configu- tively). We have appliedz and x homotheties of scale
rations 1 and 2, and gives k,/k;=0.82 to the shape 2. The result is plotted in a mark-
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@ V. CONCLUDING REMARKS
We have developed an efficient way of deriving a per-
turbation method for the Richtmyer—Meshkov instability in
the nonlinear regime. This model holds provided the flows
are potential and incompressible. Solutions have been ob-
tained as perturbation expansions with respect to the small
parametemlgk, i.e., the wave steepness. As time derivatives
. are involved in the equations and since the linear growth rate
9.98 '9.99 10.00 10.01 10.02 is constant, previous perturbation expansions appear to be
series in integer powers of time. Such expansions can be

(b)27_" m drastically simplified by retaining, at each order, the terms
24 with the highest power in time. Nonlinear behavior of single-
214 mode interfaces can then be easily calculated, even if high-
184 order expansions are required. In a similar way, the calcula-
151 tion of the nonlinear regime of a multimode RM instability
1: becomes tractable. Several conclusions can be drawn from
6 this studly.

34
g e Vi (i) The range of validity of the theory, checked numeri-

cally, ist,s with agkot,s=1 for the single-mode case. The

FIG. 15. Homothetic single-mode dynamicstat2.87x 10" ° s. (a) Shapes convergence of series can be improved by summation tech-
of perturbations 1 and 2 are plotted with full and mark-dotted lines, respec-

tively. Results are obtained with theomee code.(b) Shape of the pertur- NIJUES such as Padpproximants.
bation 1. The full line is froncAbmEE simulation. The mark-dotted curve is (i) It is worth noticing thata(t,s)k~1. Note that the

obtained from a homothetic transform of shape 2. limit a(t)k=1 was previously and empirically used as the
end of the linear regime.

L . (iii) The nonlinear behavior of an interface strongly de-
dotted line in Fig. 1&). It has to be compared with the

h 1inafull line. O i th ) I ends on the sign of the amplitude of the modes. We have
shape Lin a full line. Once again, the agreement is excellenky, that, all other things being equal, changing the sign of

even for the vortex structures of the mushroom. As shown in . . .
. . .__the amplitudes leads to different dominant modes. Further-
the previous example, the class of homothetic perturbations

that was established in the weakly nonlinear regime stilfhore: s_trong interactions can occur since the weakly nonlin-
stand in a later time nonlinear regime. Previous conclusion§&" rgglme. . ) )
bring useful simplifications. First, from a numerical point of (V) ltturns out that the selection process in the nonlinear
view, a larger mesh size implies less limiting CFL régime can be predicted from the weakly nonlinear theory.
conditions?” The time step is larger and the simulation re- Padeapproximants, despite an oversaturated growth for the
quires less CPU time. This has been verified with the simumushroom-like stage, allow us to predict the wave number of
lations for the two previous configurations 1 and 2: the latteithe leading mode. This has been verified with comparisons
used 22% less CPU time than the former. This is consisteritetween theory and simulation for a two-mode interface.
with the scaling carried out on the mesh size. Second, from  (v) Within such theory, we are able to define homothetic
an experimental point of view, RM experiments have beerinterfaces. For single-mode configuration, homothetic inter-
conducted on laser facilities for ICF applicatici$®**The  faces have the same valuesagk? andA. For two perturba-
classical perturbation theory have already been used in ordgpns of the same class, the ratio of the time-dependent am-
to understand some of these experimental re8tilbomo-  piitudes is the ratio of the wavelengths. Moreover, 2-D
thetic configurations could palliate the limitation of spatial gjmylations in the intermediate nonlinear regime have shown

resolution of ICF diagnostics. Their typical resolution is 10hat the shapes of single-mode interfaces scale as the ratio of
pm. Thus, a perturbation with a wavelength=10.m and the wavelengths

an amplitudeay,=0.1um could not be studied with an

x-ray imager. On the other hand, the homothetic perturbation . . . I
X 5= 31.62.2m andan,=1 um could easily be studied. With The kind of solution technique that has been used in this

the use of Eq(19), it could give the growth of the former paper is appropriate to describe instabilities that steadily
perturbation. With the same reasoning, and if the same AtIrOW Versus time. On the other hand, others methods should
wood number and the same value of the procagito are be used in order to deal with chaotic solutions such as the
obtained, ICF-size RM instabilities could be studied with gasones occurring, for example, in subcritical transitions.

shock tubes: the two previous ICF-size perturbations could ~This approximate perturbation method can be extended
be replaced with the following perturbation;,=1 cm and to three-dimensional configurations. It can also be applied to
ag,=4 mm. Standard shock tube facilities can easily deaRayleigh—Taylor-like instabilities such as, for example,
with such perturbations. multi-interface configurations or ablation front instability.
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APPENDIX A: LIST OF COEFFICIENTS a!’=a[j,i] UP
TO THE SEVENTH ORDER FOR A SINGLE-
MODE PERTURBATION

All the values that are not specified below are null.

a[1,1]=1;

a[2,2|=A/2;

a[1,3]=(—1—4xA"2)/24;

a[3,3]=(—1+4xA"2)/8;

a[2,4]=—A"3/3;

a[4,4]=(A*(—1+2xA"2))/3;

a[1,5]=(1+60« A“2+ 16+ A™4)/960;

a[3,5]=(3*(5+ 40« AY2— 144 A"4))/640;

a[5,5]= (21— 296+ A“2 + 400~ A”4)/384;

a[2,6]=(A*(— 17+ 90~ A2+ 72+ A"4))/720;

a[4,6]=(11* A+ 277 A“3— 512 A"5)/360;

a[6,6]=(A* (23— 140~ A2+ 144+ A"4))/80;

a[1,7]=(—337- 7612 A2+ 3712 A"4
+1536¢ A"6)/322560;

a[3,7]=(107- 16106 A“2+ 15686 A"4
+43264 A"6)/107520;

a[5,7]=(—1129-10226- A"2+ 158224 A"4
—2000006 A"6)/64512;

a[7,7]=(— 1605+ 48988 A2 — 184246 A"4
+ 153664 A"6)/46080.

APPENDIX B: LIST OF POLYNOMIALS P[A]
INVOLVED IN THE EXPRESSION OF THE AMPLITUDE
OF A SINGLE-MODE INTERFACE

P1[A]=1;
P3[A]=(—1+2+A"2)/6;
P5[A]= (19— 125 AY2+ 92« AY4)/240;
P7[A]=(—264+3686-A"2—699% A 4
+ 3234 A"6)/5040;
PO[A]=(117663- 2855274 A"2+ 10086083 A"4
—11093856 A"6+ 3805728 A"8)/2903040;
P11 A]=(—5507319% 206796915A"2
—1168865775A 4+ 2250383605A6
—1755444326A8
+ 483163144 A”10)/159667200.
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