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PHYSICS OF FLUIDS VOLUME 14, NUMBER 3 MARCH 2002
Nonlinear regime of a multimode Richtmyer–Meshkov instability:
A simplified perturbation theory

Marc Vandenboomgaerde, Serge Gauthier, and Claude Mügler
Commissariat a` l’Energie Atomique, Bruye`res-Le-Chaˆtel, Boîte Postale 12,
91680 Bruye`res-Le-Chaˆtel, France

~Received 30 May 2001; accepted 11 December 2001!

In this paper we present a drastic simplification of the perturbation method for the Richtmyer–
Meshkov instability developed by Zhang and Sohn@Phys. Fluids9, 1106 ~1997!#. This theory is
devoted to the calculus of the growth rate of the perturbation of the interface in the weakly nonlinear
stage. In the standard approach, expansions appear to be power series in time. We build accurate
approximations by retaining only the terms with the highest power in time. This simplifies and
accelerates the solution. High-order expressions are then easily reachable. Furthermore,
computations for multimode interfaces become tractable. The accuracy of this approach is checked
against two-dimensional numerical simulations. The selection mode process is studied and the phase
between modes is shown to be as important as the wave number or the amplitude. Inferences for the
intermediate nonlinear regime are also proposed. In particular, a class of homothetic configurations
is inferred; its validity is verified with numerical simulations even as vortex structures appear at the
interface. © 2002 American Institute of Physics.@DOI: 10.1063/1.1447914#
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I. INTRODUCTION

When the interface between two materials of differe
densities is not perfectly flat and is accelerated by a sh
wave, it can become unstable. This interface instability
known as the Richtmyer–Meshkov~RM! instability from the
authors of the first theoretical1 and experimental2 studies.
This instability is involved in several physical phenomen
For example, it may provide some explanations of super
vas behavior. It can also decrease the gain of inertial confi
ment fusion~ICF! targets by breaking the sphericity of th
implosion. Indeed, if no particular care is taken, and since
manufacturing is not perfect, the interface is usually p
turbed. Its shape is a combination of numerous modes w
different amplitudes. The same phenomenon arises in sh
tube experiments. After the shock passage through the in
face, the various modes of the perturbation first grow linea
and independently. Afterward, harmonics appear and, l
by little, influence the growth of other modes. After this ea
nonlinear stage, the competition between modes may
come more important. In time, the emerging modes turn i
complex structures and the interface becomes mushr
shaped. Dominant modes can still be identified in this in
mediate nonlinear stage. Then, the flow develops into a
ordered state; this highly nonlinear regime can be conside
as a preturbulent stage.

Several theoretical works have described the linear s
of the RM instability.1,3–8 Perturbation methods9 have been
used by several authors to describe the weakly nonlinea
gime of interfacial instabilities.10–14 In particular, the first
step has been carried out by Ingraham for the Rayleig
Taylor instability. In such methods, the small parameter
the initial wave steepness,a0k, wherea0 andk are the initial
11111070-6631/2002/14(3)/1111/12/$19.00
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amplitude and the wave number of the interface, resp
tively. On the other hand, the advanced nonlinear stage
be handled by bubble evolution models.15,16

The basis of this paper is the recent application of
perturbation expansions performed by Zhang and Sohn12 for
the weakly nonlinear stage of the RM instability. Hereaft
we shall refer to this work as the full perturbation theory.
this paper, we present a way to drastically simplify and
celerate the calculus by retaining the most secular term
each order.9,17 This new approach makes perturbation expa
sions for multimode configurations easily reachable and tr
table even at high order. Furthermore, the simplicity of t
writing has brought out some features of the nonlinear e
lution of the RM instability; they were previously hidden b
the complexity of the results or the restriction to speci
values of the Atwood number. It will be shown by comparin
these results with two-dimensional~2-D! numerical simula-
tions, that these features that have been derived within
framework of the weakly nonlinear theory hold for the inte
mediate nonlinear stage.

The paper is organized as follows. In Sec. II, we det
the perturbation theory for a single-mode interface. First,
full perturbation theory is summarized and its range of v
lidity is discussed. Then, we present a simplification of t
method. Finally, comparisons with 2-D simulations confir
the accuracy of the theory. In Sec. III, this approach is g
eralized to multimode interaction. Theoretical and compu
tional results of mode competitions are compared. In Sec.
we propose some inferences derived from the present we
nonlinear theory. Simulations show that these conclusi
seem to remain valid at a later time, in the intermediate n
linear regime.
© 2002 American Institute of Physics
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II. PERTURBATION EXPANSIONS FOR SINGLE-MODE
CONFIGURATIONS

A. Summary of the full perturbation theory „Ref. 12…

One considers two different fluids separated by a si
shape interface that is described byz5h(x,t). At time t
50, this shape is written asz5a0 coskx. A shock wave
comes from positivez and passes through the interface. T
flow is inviscid, irrotational, and incompressible. As a resu
the reflected and transmitted waves no longer influence
interface. For consistency and matching between theo
the amplitude ofḣ(x,0) can be put equal to the asymptot
velocity that is obtained from the compressible linear theo
A sketch of the interface is presented in Fig. 1. The equati
are written in the frame of the unperturbed interface; this
Galilean frame. The velocity potentials areF(x,z,t) and
F8(x,z,t) for the fluids 1 and 2, respectively. They satis
the following equations:

DF~x,z,t !50 in fluid 1, ~1!

DF8~x,z,t !50 in fluid 2. ~2!

The matching conditions at the interface are given by
motion equations and the Bernoulli’s equation,

]h

]t
2

]F

]x

]h

]x
1

]F

]z
50 at z5h, ~3!

]h

]t
2

]F8

]x

]h

]x
1

]F8

]z
50 at z5h, ~4!

2r8
]F8

]t
1r

]F

]t
1

1

2
r8F S ]F8

]x D 2

1S ]F8

]z D 2G
2

1

2
rF S ]F

]x D 2

1S ]F

]z D 2G50 at z5h. ~5!

The boundary conditions areF(x,1`,t)50 and F8(x,
2`,t)50. The initial conditions areh(x,0)5a0 coskx and
ḣ(x,0)5a0s coskx, wheres is a constant.

In order to derive a perturbation method, each quantit
expanded as a series of powers of a small parameter.
parameter is classically the initial wave steepnessa0k. By
doing so, the interface shape and velocity potentials are w
ten as

h~x,t !5 (
n51

1`

h~n!~x,t !, F~x,z,t !5 (
n50

1`

F~n!~x,z,t !,

F8~x,z,t !5 (
n50

1`

F8~n!~x,z,t !. ~6!

FIG. 1. Sketch of the configuration.
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The nth term of the series~6! is of the order of (a0k)n. In
order to simultaneously solve Eqs.~3!–~5!, terms in series
~6! are further expanded:

h~n!~x,t !5 (
1< j <n

aj
~n!~ t !cosjkx,

F~n!~x,z,t !5 (
0< j <n

bj
~n!~ t !cosjkxe2 jkz, ~7!

F8~n!~x,z,t !5 (
0< j <n

bj8
~n!~ t !cosjkxe1 jkz.

At the nth order, the terms of the order of (a0k)n are col-
lected and the resulting equations are projected on the co
base $cosjkx,0< j <n%. This leads to (n11) systems of
three differential equations that involve derivatives of t
quantitiesaj

(n)(t), bj
(n)(t), andbj8

(n)(t) with respect to time.
They are easily solved by integration. The unknowns
found to be polynomials of thenth degree. At thenth order,
3(n11) integrations are needed in order to evaluate then
11) coefficients of each polynomial. So, 3(n11)2 coeffi-
cients must be computed and stored.

The results up to the third order are12

h~1!~x,t !5~a01a0st !coskx,

h~2!~x,t !5 1
2 a0

2ks2At2 cos 2kx, ~8!

h~3!~x,t !52 1
24 k2a0

3s@~4A211!s2t313st216t#

3coskx1 1
8 k2a0

3s@~4A221!s2t3

23st2#cos 3kx,

where A is the post-shocked Atwood number;A5(r8
2r)/(r81r). The amplitude of the interface is defined a

a~ t !5
1

2 Fh~0,t !2hS p

k
,t D G . ~9!

Let us remark that the set of Eqs.~3!–~5! does not provide a
value ofs. However, there are several ways to determine t
value. First, the impulsive model may be used.1,18,19 It has
been shown that this model is valid for low Mach numbe
and not too different adiabatic coefficients.5,19The value ofs
is then given by the following expression:19

s5
1

2
kDUS A1

A2

12
DU

Wi

D , ~10!

where DU, Wi , and A2 are the velocities of the shocke
interface, the incident shock wave and the pre-shocked
wood number, respectively. Second, 2-D simulations can
run in order to calculate the amplitudea(t). The value ofs
is then estimated byȧ(01). Third, s can be given by the
asymptotic growth rate obtained with any linear theory1,4–8

based on the full Euler’s equations, i.e., taking into acco
the compressibility. Indeed, such theories provide a cons
asymptotic growth rate. In this paper,s is usually computed
in this way.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1113Phys. Fluids, Vol. 14, No. 3, March 2002 Nonlinear regime of a multimode RM instability
B. How to simplify the full perturbation theory

Recall that all physical quantities have been expande
a series of power of the small parameter,a0k. On the other
hand, results to the third order, Eqs.~8!, show that time ap-
pears explicitly in the coefficients. Then, such a series can
considered as a series in the power of time. It is remarka
that, at the ordern, the leading term, i.e., the term with th
highest power of time, is written as (a0kst)nan , wherean

is a polynomial of the Atwood numberA and the function
coskx. The quantitya0kst is the product of the small param
eter,a0k, with the scaled time,st.

It is well known that in such perturbation expansions,
accurate approximation can usually be built with only t
most secular terms~see, for example, Ref. 17!. The most
secular term is defined as the term with the highest
bounded part. For example, retaining only the terms with
highest power in time in the full perturbation theory, Eq
~8!, gives

h~1!~x,t !'a0st coskx,

h~2!~x,t !5 1
2 a0

2ks2At2 cos 2kx,

h~3!~x,t !'k2a0
3s3t3~2 1

24 ~4A211!coskx

1 1
8 ~4A221!cos 3kx!.

This approximation gives an accurate time evolution p
vided the time is large enough. Discrepancies may occur n
the origin t50. Fortunately, for the RM instability, the ap
proximate first- and second-order growth rates are ident
to those of the complete theory. So, it turns out that
approximation is also accurate neart50. In order to get an
expression valid att50, we have to add the constant ter
a0 . In the following expressions, we shall replace the sy
bol ' by 5.

C. Derivation of the approximate perturbation theory

As already stated, in order to build an approxima
theory, the terms with the highest power in time must
retained. By inspection of the results of the full perturbati
theory,12 up to the fourth order, we put as general forms
the most secular part ofh (n), F (n), andF8(n), the following
expressions:

kh~n!5~a0kst !n(
j 51

n

aj
~n! cosjkx,

k2

s
F~n!5~a0k!n~st !n21(

j 50

n

bj
~n! cosjkxe2 jkz, ~11!

k2

s
F8~n!5~a0k!n~st !n21(

j 50

n

bj8
~n! cosjkxe1 jkz.

The unknowns (aj
(n) ,bj

(n) ,bj8
(n)) are now real numbers. If the

scaled time is of order of (a0k)21 (st5O@(a0k)21#), sec-
ond terms of the series~6! are of the same order of the firs
terms, contrary to our assumption that, for example,h (2) is a
small correction ofh (1) ~see Ref. 9, p. 25!. The series~6! are
Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP l
as

e
le

n

-
e
.

-
ar

al
e

-

e

r

only valid for 0<t<tvs , wheretvs is some finite period not
very large compared to (a0ks)21 ~see Ref. 20, p. 107!. One
can see graphically by plotting series given by~6! up to the
11th order versusa0kst, and for all Atwood numbers, tha
they diverge for a0kst51. So, we shall use tvs

5(a0ks)21.
In Eqs.~3!–~5!, the classical theory leads to some com

plicated selection rule in order to select the terms of a giv
order @see Eqs.~16!–~18! in Ref. 12#. Using only the most
secular term brings strong simplification. Indeed, the se
tion is straightforward. At thenth order, the position of the
interface,h(x,t), is of order of tn. So, the most secula
terms of Eqs.~3! and ~4! are proportional to (a0kst)n21.
This is due to the first derivative ofh(x,t) with respect to
time. So, at thenth order, the terms to be kept are the qua
tities that give atn21 dependence. The same argument
applied to Eq.~5!. The time dependence of the most secu
terms in this equation istn22, as only the first derivatives
with respect to the time ofF andF8 are involved. Keeping
only these terms, a system of the following form is obtaine

B~aj
~n! ,bj

~n! ,bj8
~n! ,cosjkx!0< j <n50,

C~aj
~n! ,bj

~n! ,bj8
~n! ,cosjkx!0< j <n50, ~12!

D~aj
~n! ,bj

~n! ,bj8
~n! ,cosjkx!0< j <n50,

where B, C and D are combinations of the unknown
(aj

(n) ,bj
(n) ,bj8

(n))0< j <n and the functions (cosjkx)0<j<n . Let
us emphasize that keeping only the most secular terms
lows us to cancel the time dependence in the system~12!.
The projection of this system on the Fourier cosine ortho
nal system leads to (n11) systems of three equations wit
three real unknowns, at thenth order. They are written as

Bi8~aj
~n! ,bj

~n! ,bj8
~n!!50,

Ci8~aj
~n! ,bj

~n! ,bj8
~n!!50, for 0< i<n, ~13!

Di8~aj
~n! ,bj

~n! ,bj8
~n!!50,

whereBi8 , Ci8 , andDi8 are combinations of the unknown
(aj

(n) ,bj
(n) ,bj8

(n))0< j <n . Since the systems~13! are alge-
braic, they do not require time integration anymore. T
3(n11) coefficients of expressions~11! are simply obtained
through 3(n11) algebraic solutions. Let us emphasize th
the standard theory requires 3(n11) time integrations in
order to calculate 3(n11)2 coefficients.

We now summarize the solution method.

~i! Every quantity is expanded as a series of powers
the small parametera0kst. This leads to expressions~11! for
h (n), F (n), andF8(n).

~ii ! At the nth order, terms of order oftn21 are retained
in the expansions of the boundary conditions, Eqs.~3! and
~4!. Terms of order oftn22 are kept in the expression of th
Bernoulli’s equation~5!.

~iii ! By using the orthogonality of the Fourier function
algebraic systems are obtained.

The above procedure is very easily handled by symb
computation softwares. The approximate approach brings
following advantages compared with the classical pertur
tion method.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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~a! A simpler writing of the unknowns: one deals with re
numbers instead of polynomials.

~b! An easier solution and identification of terms of th
same order: the knowledge of the time exponent is o
needed.

~c! A faster solution as no time integration is needed; o
3(n11) coefficients are computed instead of 3n
11)2.

~d! A smaller storage space for the results is necessary

D. Numerical applications: Quantitative results

The values of theaj
( i ) up to the seventh order are give

in Appendix A. It can be verified for the first four orders th
the approximate theory gives the terms with the high
power in time of the full perturbation theory.12 We have also
checked that thean

(n) (1<n<11) obtained from the approxi
mate perturbation theory are the same as those of Eq~6!
derived by Velikovich and Dimonte14 for A51. Note that
this equation is an analytic formula. For orders higher tha
and an arbitrary Atwood number, no result is available fro
the full perturbation theory. As noticed by Zhang and Sohn
Ref. 13, ‘‘at this order [4th], the expansion is rather compl
cated and inclusion of higher order terms is avoided.’’

From our results, it can be seen that the growth of
amplitude of odd harmonics, i.e., modes the wave numbe
which is written as (2p11)k, wherep is an integer, is an
odd function ofa0 ; on the other hand, the growth of th
amplitude of even harmonics is an even function ofa0 . So,
whatever the sign ofa0 , the even harmonics have a positiv
amplitude.

In order to test the accuracy of the approxima
theory, we have computed the growth of a single-mode
terface. This is done by numerical simulation with the 2
CADMÉE code.21 In our simulations, the two fluids are con
sidered inviscid and nondiffusive. Their mixing is describ
within the single fluid approximation by a concentration~c!
governed by an advection equation. In order to compute
growth of each mode, a Fourier analysis of the isoconcen
tion curvec50.5 is performed.

The values of the physical parameters are taken fr
Benjamin’s experiments.22 In these experiments, a 1.2
Mach number shock wave moves from air to SF6 . The initial
pressure of gases is 0.83105 Pa. The post-shocked Atwoo
number is 0.706. The wave number and the initial p
shocked amplitude of the perturbation arek5130 m21 and
a0

2510.7231023 m, respectively. For these experimen
the asymptotic growth rate given by the linear theory5 is
ȧ(t)50.113ka0

2Wi . These values lead to a parameters
equal to 7451 s21. The value oftvs for this configuration is
tvs51.7731023 s. The numerical simulations utilize 18
nodes in order to describe this wavelength and 30 nodes
this peak-to-valley amplitude. The simulation shows that
value a(t)k51 is reached fort5231023 s. Figures 2~a!
and 2~b! give, respectively, the amplitudes and the grow
rates of the fundamental, second, and third mode that
obtained from theCADMEE code, the 11th-order approxima
theory and the fourth-order full perturbation theory. Figu
2~a! shows that amplitudes obtained from both theories ar
Downloaded 06 Jan 2012 to 132.166.74.247. Redistribution subject to AIP l
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good agreement with the numerical simulation. However
seems that the slopes obtained from the 11th-order appr
mate theory are better than those given by the fourth-or
full perturbation theory. This point is confirmed by looking
Fig. 2~b!, where the growth rates are plotted versus time. T
agreement between the approximate theory and nume
results is good as long ast,tvs51.7731023 s. On the other
hand, the fourth-order full theory deviates from the simu
tion for t'1023 s. In order to quantify the discrepancy b
tween the two theories and the simulation, we have co
puted the quantityDk5ḣk,theory(t)/ḣk,CADMEE(t)21, where
ḣk(t) is the growth rate of the modek. Figures 3~a!, 3~b!,
and 3~c! show the discrepanciesDk , D2k , andD3k for the
11th-order approximate perturbation theory and the fou
order full perturbation theory, versus time. We can see t
most of the time, the discrepanciesDk and D2k remain
smaller than 2.5% and 10%, respectively, for the appro
mate theory. Close totvs , both discrepancies diverge. Con
cerning the third harmonics, the discrepancyD3k is quite
large ~but bounded!. Let us note that the growth rate of th
harmonics is so small that the discrepancy might be me
ingless. Figure 3 shows that the fourth-order full perturbat
theory is less accurate than the 11th approximate theory

FIG. 2. Spectral analysis of a single-mode perturbation. The~a! amplitude
and~b! growth rate of the first three harmonics versus time: full, dashed,

dash–dotted lines represent data fromCADMÉE8 , the 11th-order approximate
theory and the fourth-order full theory, respectively. The initial amplitude
the perturbation is positive.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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In order to prove the influence of the sign of the initi
amplitude of the perturbation, a simulation has been p
formed using the same physical parameter values excep
the initial amplitudea0

2 ; for the latter, the opposite value i
taken: a0

2520.7231023 m. Figure 4 gives the growth o
the amplitude of the first three modes. Once again, we ob
a good agreement between theory and simulation. It can
seen from comparisons between Figs. 2~a! and 4 that the
conclusions that were drawn about the parity of odd a
even harmonics with respect toa0 are verified. This means
that the shape of interfaces with positive or negative ini
amplitude are not symmetric with respect to thex axis. In-
deed, in the linear regime, the shape of an interface stem
from a negative initial amplitude perturbation can be o
tained at any time by using the transform,a(t)→2a(t), of
the same interface with a positive initial amplitude. In t
nonlinear regime, such a symmetry is broken. This is d
played in Fig. 5, where the shape of the interfaces obtai
with the theory and theCADMÉE code att51.331023 s are
shown. Remark that the agreement about the shapes o
perturbations is also good.

The expression of the half peak-to-valley amplitud
a(t), defined by Eq.~9!, can be rewritten by using expan

FIG. 3. Discrepancies between the growth rates given by theories and s
lation. Dashed and dash–dotted lines represent the 11th-order approx
theory and the fourth-order full perturbation theory, respectively.~a!, ~b!,
and ~c! stand for the first, second, and third harmonics, respectively.

FIG. 4. The same as in Fig. 2~a!, but the initial amplitude of the perturbatio
is negative.
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sions~11!. Rearrangement brings the following form for th
amplitudea(t):

a~ t !5a01
1

k (
odd i

Pi@A#~a0kst ! i , ~14!

wherePi@A# are polynomials of theith degree with respec
to the Atwood numberA. These polynomials are given i
Appendix B up to the 11th order. In Fig. 6, the amplitud
a(t) is plotted versus time. The full line represents t
CADMÉE data. Dashed and dash–dotted lines represent t
retical results at the ninth and 11th order, respectively. T
agreement between simulation and theory is good as lon
time remains smaller thantvs ~see the vertical line in Fig. 6!.
After that time, the perturbation series diverges. It has b
checked in this example that terms that are not taken
account in the theoretical approach are indeed negligible.
this configuration, the approximate perturbation method
accurate, as it has been shown by comparing with 2-D
merical simulations. In addition to the evolution of the pea
to-valley amplitude, the approximate perturbation theory a
gives access to the expressions for the spike and bu

u-
ateFIG. 5. The shape of the interfaces att51.331023 s from theory~dashed
line! and simulation~full line!. ~a! The initial amplitude is positive.~b! The
initial amplitude is negative.

FIG. 6. The half-peak-to-valley amplitude versus time in the single-mo
configuration. A full line represents numerical simulation data. Dashed
and dash–dotted lines represent theoretical results at the ninth and
order, respectively.
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1116 Phys. Fluids, Vol. 14, No. 3, March 2002 Vandenboomgaerde, Gauthier, and Mügler
growths. In Fig. 7, we have plotted the nondimensionaliz
growth rateskḣspike andkḣbubbleagainst the quantitya0kst,
for three different Atwood numbers:A50.1, 0.48, and 1.
Several conclusions can be drawn from Fig. 7. First,
growth rate of the bubble is slightly dependent on the
wood number. Second, for a small Atwood number,
growths of spike and bubble have approximatively the sa
absolute value; this should lead to a symmetric patte
Third, for large values of the Atwood number, the spike h
a higher growth rate than the one of the bubble. These c
clusions about the influence of the Atwood number upon
relative growth rates of spike and bubble are in qualitat
good agreement with the nonlinear RM experiments
scribed in Ref. 23. In these experiments, the growth rate
two configurations with Atwood numbersA50.48 and 0.92
are presented. First, the growths of bubbles for both confi
rations seem to be the same. Second, for theA50.48 con-
figuration, the growths of spike and bubble are similar. Thi
for theA50.92 configuration, the spike grows faster than
bubble. So, even if these experiments are in the intermed
nonlinear regime where the approximate perturbation the
is no more valid, it seems that this theory brings qualitativ
reliable information about the relative growths of spike a
bubble. Such a qualitative agreement beyond the wea
nonlinear regime will also be presented in Sec. IV B. T
variation of the spike growth rate versus the Atwood num
is not found by Volkovet al.24

III. PERTURBATION EXPANSIONS FOR MULTIMODE
CONFIGURATIONS

A. Derivation of the approximate perturbation theory

We now study an interface that is initially composed
N modes of wave numberki with respective initial post-
shocked amplitudea0i . The shape of this interface is writte
as

h~x,0!5(
i 51

N

a0i coskix.

According to the sign of the amplitudes, the modes have
same or opposite phase. The linear growth rate of such
interface is given by

FIG. 7. Nondimensionalized growth rates for the spike and the bub
against the scaled timea0kst. Results are from the 11th-order approxima
theory. Full, dotted, and dash–dotted lines are plotted for three diffe
Atwood numbers:A50.1, 0.48, and 1.
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h~1!~x,t !5(
i 51

N

a0is i t coskix.

In order to obtain expressions with the same form as E
~11!, a specific modek1 is selected and factorized. Ass i is
proportional to the wave numberki , the first-order expan-
sion of h(x,t) can be written as

k1h~1!~x,t !5~a01k1s1t !(
i 51

N

ai
~1! coskix,

with ai
(1)5(a0i /a01)(ki /k1). By analogy with Eqs.~11!, we

assume the following form for thenth order ofh(x,t):

k1h~n!~x,t !5~a01k1s1t !n(
i 51

l n

ai
~n! coski

~n!x, ~15!

whereki
(n) are the wave numbers present at thenth order and

l n is the mode count at the same order. These modes
obtained from two-by-two addition and subtraction of t
modes present at the (n21)th order. The same kind of fac
torization and analogy is used in order to obtain expressi
of F (n) andF8(n) for the multimode case.

The algorithm to solve Eqs.~3!, ~4!, and ~5! for the
multimode case is the same as for the single-mode c
Subscripts of summations now vary from 1 tol n instead of 1
to n. We now summarize this algorithm.

~i! Expansions such as Eq.~15! are used in Eqs.~3!–~5!
for h (n), F (n), andF8(n).

~ii ! At the nth order, only terms withtn21 dependence
for Eqs. ~3! and ~4!, and tn22 dependence for Eq.~5! are
retained. This comes from the properties of the most sec
terms.

~iii ! The resulting system is projected on the cosine b
$coski

(n)x,0< i< l n%. The l n11 resulting systems are alge
braic and linear. They are easily solved and the 3(l n11) real
unknowns (ai

(n) ,bi
(n) ,bi8

(n)) are obtained.

From a technical point of view, the generalization fro
the single-mode algorithm to the multimode one only
quires to change the subscripts of the series and to com
the modes that appear at each order. This is easily handle
symbolic computation softwares. We emphasize that the
proximate theory does not require time integration a
strongly reduces storage space. This means that the evol
of a multimode interface can now be handled. The range
validity, tvm , of this N-mode configuration is assumed to b
the smallesttvs of theN configurations, where the modes a
taken independently. So tvm is written as tvm

5Min$(a0ikis i)
21,1< i<N%). We did check this assump

tion numerically.

B. Numerical applications: Quantitative results

We now study a three-mode interface. In order to
crease the coupling between modes, we choosek1 , k2 , and
k3 such that k21k35k1 . In this example, k1

5274.855 m21, k253/7k1 , andk354/7k1 . By doing so, at
the second order, the modek1 is generated by the harmonic
k21k3 . This generation may lead to a stronger influen
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1117Phys. Fluids, Vol. 14, No. 3, March 2002 Nonlinear regime of a multimode RM instability
on the mode k1 . The initial post-shocked amplitude
area01520.3531023 m, a02521.905531023 m, anda03

521.07231023 m. In this configuration, a 1.0962 Mac
number shock wave moves from helium to air. The init
pressure is 1.0133105 Pa. The pre-shocked and pos
shocked Atwood numbers are 0.757 and 0.764, respectiv
With this choice of physical parameter values,tvm50.67
31023 s. In the following, theoretical results are produc
by seventh-order perturbation expansions.

Figure 8 shows the growth of the amplitude of ea
mode in a single-mode configuration, i.e., obtained fr
separate numerical simulations. Symbols correspond to
CADMÉE calculations and dashed lines to the approxim
theory. It can be checked that the theory is accurate as
as t remains smaller thantvm . Figure 9 presents the evolu
tion versus time of each mode when they are initially p
together. The agreement between theory and 2-D simulat
is good. The growth of the modek1 is strongly reduced when
it interacts with the two other modes. As previously und
lined, this behavior is due to the fact that the wave numb
satisfy k21k35k1 . Indeed, the growth of this sum mod
counteracts the evolution of the initial modek1 . On the other
hand, the two other modes seem to grow according to t
single-mode dynamics.

We now emphasize the role of the phase of the mod
To this end, a new three-mode simulation has been run w

FIG. 8. Single-mode dynamics. The half-peak-to-valley amplitude of
three modes versus time. The initial amplitudes are negative. Symbols
resent numerical data. Dashed lines represent seventh-order theoretic
sults. The range of validity of the theory istvm50.6731023 s.

FIG. 9. The same as in Fig. 8 but the three modes interact.
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the same parameter values as in the previous case, exce
the sign of the amplitudes. We now havea01510.35
31023 m, a02511.905531023 m, and a03511.072
31023 m. Figure 10 presents the evolution versus time
the amplitude of the three interacting modes. By compar
Fig. 9 with Fig. 10, different coupling effects can be see
the growth of the modek3 is now slightly reduced while the
modek1 seems to be unaffected. The behavior of the mo
k1 is strongly linked to the value of the phase. As seen
Sec. II D, the phase determines the sign of the amplitude
the harmonics; depending of their sign, the harmonics w
reduce or not the growth of existing modes. This exam
illustrates the fact that the mode selection process is not o
determined by the values of the modes and their amplitud
but also by the phase of these modes.

IV. INFERENCES FOR THE INTERMEDIATE
NONLINEAR STAGE

A. Padé approximants and perturbation theories

As shown in Sec. II, the secular terms in perturbati
series make these series to diverge at some finite time.
example of this divergence is presented in Fig. 6. In orde
improve the convergence of such series, summation meth
are commonly used. Since only a few terms are availa
one has to resort to appropriate algorithms; one of them
the well-known Pade´ approximant.17 For the growth rate of
the amplitude of a single-mode interface, Pade´ approximants,
P1

0 and P2
0, can be calculated from the second- and t

fourth-order expansions, respectively. Zhang and Sohn c
bine P1

0 andP2
0 obtained from the full perturbation theory i

order to obtain the following practical expression:12,13

da

dt
5

a0s

11~a0k!2st1Max$0,a0
2k22A211/2%~a0kst !2 .

~16!

Equation~16! corresponds to Eq.~53! of Ref. 12 or Eq.~87!
of Ref. 13. Reasons for such a combination are detailed
Refs. 12 and 13. Indeed, a time singularity may occur inP2

0.
So, parameter regions defined bya0

2k2,A22 1
2 and a0

2k2

>A22 1
2 are differentiated. The Zhang and Sohn point

view is that ‘‘there are two conventional ways to remove
singularity. One is to reduce the order of accuracy by taki

e
p-
re-

FIG. 10. The same as in Fig. 9, but the modes have positive initial am
tudes.
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less terms and the other one is to take more terms.’’ 13 As a
result, they chooseP1

0 instead ofP2
0 in order to remove the

singularity. It is better, as far as it is possible, to use high
order Pade´ approximants. For example, 11th-order appro
mate perturbation theory allows us to build theP6

4 Padéap-
proximant. One example of such an application is n
presented.

In numerous cases, Eq.~16! is enough to predict the
nonlinear growth rate even if the order of the Pade´ approxi-
mant is low. However, some cases can be found whe
fourth-order Pade´ approximant is not accurate enough.
order to illustrate that point, we use the same physical
rameter values22 as the ones used to obtain the results d
played in Fig. 6. As mentioned above, aP6

4 Padéapproxi-
mant is used in order to improve the convergence ofȧ(t)
obtained from Eq.~14!. The growth rate is then time inte
grated in order to get the growth of the amplitude. In Fig.
we have plotted the results that are obtained fromCADMÉE.
They have to be compared with time integrations of Eq.~16!
from the standard theory and theP6

4 Padéapproximant from
the approximate theory. First, as expected, curves obta
with Padéapproximants do not diverge beyondtvs51.77
31023 s ~see Fig. 6 for a comparison!. However, the growth
given by Eq.~16! shows no significant decaying and ther
fore does not agree with the simulation. On the other ha
the growth given by theP6

4 Padéapproximant exhibits a
saturation behavior and is in quite good agreement with
2-D simulation. This decaying growth rate is a common fe
ture of nonlinear RM dynamics. Only the high-order Pa´
approximant seems to be able to produce such a feature
even if aP2

0 or a P1
0 approximant can give good approxim

tions of the growth for numerous cases,12,25 for other ones,
higher-order Pade´ approximants are required in order to pr
duce reliable predictions.

B. Selection mode process: Qualitative results

We have seen that the perturbation theory derived
previous sections has a finite range of validity. This range

FIG. 11. The half-peak-to-valley amplitude versus time in the single-m
configuration. The full line represents numerical data. Dash–dotted
dashed lines are plotted from Eq.~14! and theP6

4 Padéapproximant, respec-
tively.
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validity can be increased with summation algorithms such
Padéapproximants. Let us remark that such methods prov
only approximate results and that discrepancies from 2
simulations can become very large at large time~see, for
example, Fig. 11!. Moreover, at such times, mushroom-lik
structures may appear whereas the theory can only des
single-mode interfaces.

On the other hand, an important issue in nonlinear in
action studies is to understand the mode selection proc
i.e., which modes become dominant or are suppressed du
the interaction. In this section, we will see that using t
approximate theory beyond the weakly nonlinear regime
lows us to obtain qualitative results about the selection m
process. As shown in Sec. III B, Fourier modes already
teract in the early nonlinear stage. In order to study the
time interaction of two modes, we follow the same metho
ology that the one used in Ref. 26 about the Rayleigh–Tay
instability. In this paper, 2-D numerical simulations provid
the time evolution of the shape of the interfaces that are t
Fourier analyzed. Two cases are discussed: a nearby m
configuration (k2 /k15 8

7) and a dissimilar mode configura
tion (k2 /k15 7

2). The growth of the competing modes
compared with their single-mode dynamics.

For the RM instability, the range of validity of the ap
proximate theory, checked numerically, scales ask22. For
the dissimilar mode configuration, this greatly complica
the study at late time since the ranges of validity for t
single-mode and the two-mode configurations may be q
different. On the other hand, this constraint does not arise
the nearby mode case and its study with the approxim
theory is straightforward. Therefore and for practicality, w
only present in this paper a nearby mode study. In a first s
2-D simulations of RM instability are performed with th
codeCADMÉE. In these configurations, a 1.26 Mach numb
shock wave moves from helium to air. The two wave nu
bers of the initial interface perturbation arek1

5274.889 m21 andk25314.159 m21. The initial amplitude
for each mode is eithera01

2 51023 m or a02
2 50.35

31023 m. The post-shocked Atwood number isA50.756.
The ranges of validity for the following single-mode (k,a0

2)
configurations: (k1 ,a01

2 ), (k1 ,a02
2 ), (k2 ,a01

2 ), (k2 ,a02
2 ), are

8.531025, 2.4331024, 6.531025, and 1.8531024 s, re-
spectively. The final time of the 2-D simulations is 1
31023 s. At time as early ast54.31024 s, mushroom-like
features appear at the interface. This can be seen in Fig
which shows the isocurvesc50.25, c50.5, andc50.75 at
different times for the following two-mode configuration
$(k1 ,a01

2 ),(k2 ,a02
2 )%. In order to perform the spectral analy

sis of such shapes, we use the same method as in Ref
The z-integrated density distribution is computed,r(x)
5* r(z,x)dz. The Fourier transform of this distribution i
then taken. This procedure is accurate at early time. At
time, when mushrooming appears, thez integration sup-
presses small structures and the growth of small wavelen
is roughly estimated; but we believe that this analysis

e
d
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1119Phys. Fluids, Vol. 14, No. 3, March 2002 Nonlinear regime of a multimode RM instability
mains valid for the computations of the main components
the spectrum. Figures 13~a!, 13~c!, 13~e!, and 13~g! show the
results obtained from numerical simulations and compare
single-mode evolution with the two-mode growth ofk1 and
k2 for various initial amplitudes. Full and dashed lines re
resent single- and two-mode dynamics, respectively. F

FIG. 12. One of the two-mode configurations: (k1 ,a02
2 )

5(274.889 m21,0.3531023 m) and (k2 ,a01
2 )5(314.159 m21,1023 m).

The two gases are helium and air. Interface shapes fort50 ~a!, 0.4 ms~b!,
0.8 ms~c!, 1.2 ms~d! and 1.6 ms~e!.
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the simulation results, the values of the initial amplitud
seem to dictate the selection process: the mode with
lower initial amplitude is suppressed. When the initial a
plitudes are the same, the growths of modesk1 and k2 are
similarly reduced by the interaction. These conclusions
the same as the ones obtained in Ref. 26 about the Rayle
Taylor instability. Figures 13~b!, 13~d!, 13~f!, and 13~h! show
the growths ofk1 andk2 that are obtained with theP2

1 Padé
approximant of the fifth-order approximate perturbation e
pansion. Vertical bars on each curve indicate the range
validity of the perturbation expansion. It can be verified th
theoretical and numerical results are in good agreemen
the range of validity of the theory. Beyond that time, theP2

1

Padé approximant exhibits an oversaturated behavior:
large time, the growth from the extended approximate the
is roughly half the simulation values. However, the followin
qualitative remarks can be drawn.

~i! Figures 13~a! and 13~b! deal with the configuration
(k1 ,a02

2 )5(274.889 m21,0.3531023 m) and (k2 ,a01
2 )

5(314.159 m21,1023 m). For the single-mode dynamics
the relative evolution of the two modes is qualitatively r
covered by the theory. In the simulation of the two-mo
dynamics, the modek1 is suppressed, whereas the modek2

behavior is only slightly modified by the interaction. In th
same way, theoretical results show that the growth of
modek1 saturates whereas the modek2 is not perturbed.

~ii ! Figures 13~c! and 13~d! deal with the configuration
(k1 ,a01

2 ), (k2 ,a02
2 ). The relative evolution of the modes i
-

d
d
.

FIG. 13. Single- and two-mode con
figurations. Growth of the modesk1

and k2 versus time. Full and dashe
lines represent the single-mode an
two-mode dynamics, respectively
Curves ~a!, ~c!, ~e!, and ~g! are ob-
tained from CADMÉE simulations.
Curves~b!, ~d!, ~f!, and ~h! are from
the approximate perturbation theory.
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their single-mode dynamics is similar in both theoretical a
simulation results. When the two-mode dynamics is cons
ered, the modek2 saturates, whereas the modek1 is only
slightly perturbed. These behaviors are also found theo
cally.

~iii ! Figures 13~e! and 13~f! deal with the configuration
(k1 ,a02

2 ), (k2 ,a02
2 ). In this configuration, there is no dom

nant mode. However, the growth of the two modes is lo
ered by the interaction. Note that the modek1 has a higher
amplitude than the one of the modek2 at large time in the
single-mode dynamics and a lower one in the two-mode
namics. These behaviors are recovered with the theory,
spite the underestimated growths.

~iv! Figures 13~g! and 13~h! deal with the configuration
(k1 ,a01

2 ), (k2 ,a01
2 ). The same conclusions as in the previo

item can be drawn for this configuration.

We believe that the good qualitative agreement about
mode behavior indicates that mechanisms of the selec
process are already present at an early time, i.e., the m
selection process is driven by early time dynamics. The
fore, this nearby mode study shows that the approxim
perturbation theory can be a useful tool to understand
origins of the late time selection of modes.

C. Class of homothetic interfaces

In this section, we describe some properties establis
from the weakly nonlinear theory. The 2-D numerical sim
lations show that these properties are still valid in the int
mediate nonlinear stage. To this end, the expression~14! of
the amplitude of a single-mode interface is rearranged
follows:

k@a~ t !2a0#5(
i 51

`

Pi@A#~a0kst ! i ,

with Pi50, for even i . ~17!

The right-hand side of Eq.~17! can be considered as th
Taylor expansion of a single functionF that depends on two
variables,A anda0kst,

F~A,a0kst !5(
i 51

`
1

i !

] iF
]~a0kst ! iU

0

~a0kst ! i

5(
i 51

`

Pi@A#~a0kst ! i

5k@a~ t !2a0#. ~18!

Equation ~18! means that if two interfaces have the sam
Atwood number,A, and the same value of the producta0ks,
their time history will be linked byF. An easy way to obtain
such conditions is to deal with the same base flow. This le
to the same Atwood number. In order to obtain the sa
value ofa0ks, ass is proportional tok, it is sufficient to use
the same value ofa0k2. So, when the same physical param
eter values are used, Eq.~18! can be applied to two configu
rations 1 and 2, and gives
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a2~ t !5
k1

k2
~a1~ t !2a01!1a02 if a01k1

25a02k2
2. ~19!

Equation~19! defines a class of homothetic configuration
for a given set of physical parameters, the growth of o
configuration allows us to determine the growth of all t
configurations of the same class.

In order to confirm this conclusion, we have run tw
simulations with theCADMÉE code.

The physical parameters are the same as those use
Sec. III B. The two configurations are the following
(a01,k1)5~0.35 mm,274.855! and (a02,k2)5(0.525 mm,
224.418!, which satisfies the equalitya01k1

25a02k2
2. The

simulations utilize the same number of nodes: the mesh
for the configuration 2 is, respectively, 1.5 and 1.225 times
large as the one for configuration 1 in thez andx directions,
respectively. Figure 14~a! shows the growths of the perturba
tions obtained from the 2-D simulations. Full and mar
dotted lines represent configurations 1 and 2, respectiv
Figure 14~b! shows the growths of the perturbation 1 o
tained either from the simulation~full line! or from Eq.~19!.
Agreement between the simulation and the transform
curve is excellent: the two results cannot be distinguish
The range of validity of the approximate theory for these t
configurations istvs50.7231023 s. Figure 14~b! shows that
Eq. ~19!, which is drawn from a weakly nonlinear theory,
still valid in the intermediate nonlinear regime. Furthermo
even when mushroom shapes appear, the homothetic tr
form allows us to determine one interface shape from
other one. Figure 15~a! shows the shapes of the interfaces
and 2 att52.8731023 s ~full and mark-dotted lines, respec
tively!. We have appliedz and x homotheties of scale
k2 /k150.82 to the shape 2. The result is plotted in a ma

FIG. 14. Homothetic single-mode dynamics.~a! Growths of the perturba-
tions 1 and 2 are plotted with full and mark-dotted lines, respectively.
sults are obtained with theCADMÉE code.~b! The growth of the perturbation
1. The full line is from theCADMÉE simulation. The mark-dotted curve i
obtained from perturbation 2 by using Eq.~19!.
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dotted line in Fig. 15~b!. It has to be compared with th
shape 1 in a full line. Once again, the agreement is excell
even for the vortex structures of the mushroom. As shown
the previous example, the class of homothetic perturbat
that was established in the weakly nonlinear regime s
stand in a later time nonlinear regime. Previous conclusi
bring useful simplifications. First, from a numerical point
view, a larger mesh size implies less limiting CF
conditions.27 The time step is larger and the simulation r
quires less CPU time. This has been verified with the sim
lations for the two previous configurations 1 and 2: the la
used 22% less CPU time than the former. This is consis
with the scaling carried out on the mesh size. Second, f
an experimental point of view, RM experiments have be
conducted on laser facilities for ICF applications.25,28,29The
classical perturbation theory have already been used in o
to understand some of these experimental results.25 Homo-
thetic configurations could palliate the limitation of spat
resolution of ICF diagnostics. Their typical resolution is
mm. Thus, a perturbation with a wavelengthla510mm and
an amplitudea0a50.1mm could not be studied with an
x-ray imager. On the other hand, the homothetic perturba
lb531.62mm anda0b51 mm could easily be studied. With
the use of Eq.~19!, it could give the growth of the forme
perturbation. With the same reasoning, and if the same
wood number and the same value of the producta0ks are
obtained, ICF-size RM instabilities could be studied with g
shock tubes: the two previous ICF-size perturbations co
be replaced with the following perturbation:lg51 cm and
a0g54 mm. Standard shock tube facilities can easily d
with such perturbations.

FIG. 15. Homothetic single-mode dynamics att52.8731023 s. ~a! Shapes
of perturbations 1 and 2 are plotted with full and mark-dotted lines, resp
tively. Results are obtained with theCADMÉE code.~b! Shape of the pertur-
bation 1. The full line is fromCADMÉE simulation. The mark-dotted curve i
obtained from a homothetic transform of shape 2.
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V. CONCLUDING REMARKS

We have developed an efficient way of deriving a p
turbation method for the Richtmyer–Meshkov instability
the nonlinear regime. This model holds provided the flo
are potential and incompressible. Solutions have been
tained as perturbation expansions with respect to the s
parametera0k, i.e., the wave steepness. As time derivativ
are involved in the equations and since the linear growth
is constant, previous perturbation expansions appear to
series in integer powers of time. Such expansions can
drastically simplified by retaining, at each order, the ter
with the highest power in time. Nonlinear behavior of sing
mode interfaces can then be easily calculated, even if h
order expansions are required. In a similar way, the calc
tion of the nonlinear regime of a multimode RM instabili
becomes tractable. Several conclusions can be drawn f
this study.

~i! The range of validity of the theory, checked nume
cally, is tvs with a0kstvs51 for the single-mode case. Th
convergence of series can be improved by summation te
niques such as Pade´ approximants.

~ii ! It is worth noticing thata(tvs)k'1. Note that the
limit a(t)k51 was previously and empirically used as t
end of the linear regime.

~iii ! The nonlinear behavior of an interface strongly d
pends on the sign of the amplitude of the modes. We h
shown that, all other things being equal, changing the sign
the amplitudes leads to different dominant modes. Furth
more, strong interactions can occur since the weakly non
ear regime.

~iv! It turns out that the selection process in the nonlin
regime can be predicted from the weakly nonlinear theo
Padéapproximants, despite an oversaturated growth for
mushroom-like stage, allow us to predict the wave numbe
the leading mode. This has been verified with comparis
between theory and simulation for a two-mode interface.

~v! Within such theory, we are able to define homothe
interfaces. For single-mode configuration, homothetic int
faces have the same values ofa0k2 andA. For two perturba-
tions of the same class, the ratio of the time-dependent
plitudes is the ratio of the wavelengths. Moreover, 2
simulations in the intermediate nonlinear regime have sho
that the shapes of single-mode interfaces scale as the rat
the wavelengths.

The kind of solution technique that has been used in
paper is appropriate to describe instabilities that stea
grow versus time. On the other hand, others methods sh
be used in order to deal with chaotic solutions such as
ones occurring, for example, in subcritical transitions.

This approximate perturbation method can be exten
to three-dimensional configurations. It can also be applied
Rayleigh–Taylor-like instabilities such as, for examp
multi-interface configurations or ablation front instability.

c-
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APPENDIX A: LIST OF COEFFICIENTS aj
„ i …Æa† j , i ‡ UP

TO THE SEVENTH ORDER FOR A SINGLE-
MODE PERTURBATION

All the values that are not specified below are null.

a@1,1#51;

a@2,2#5A/2;

a@1,3#5~2124* A∧2!/24;

a@3,3#5~2114* A∧2!/8;

a@2,4#52A∧3/3;

a@4,4#5~A* ~2112* A∧2!!/3;

a@1,5#5~1160* A∧2116* A∧4!/960;

a@3,5#5~3* ~5140* A∧22144* A∧4!!/640;

a@5,5#5~212296* A∧21400* A∧4!/384;

a@2,6#5~A* ~217190* A∧2172* A∧4!!/720;

a@4,6#5~11* A1277* A∧32512* A∧5!/360;

a@6,6#5~A* ~232140* A∧21144* A∧4!!/80;

a@1,7#5~233727612* A∧213712* A∧4

11536* A∧6!/322560;

a@3,7#5~107216100* A∧2115680* A∧4

143264* A∧6!/107520;

a@5,7#5~21129210220* A∧21158224* A∧4

2200000* A∧6!/64512;

a@7,7#5~21605148988* A∧22184240* A∧4

1153664* A∧6!/46080.

APPENDIX B: LIST OF POLYNOMIALS Pi†A ‡

INVOLVED IN THE EXPRESSION OF THE AMPLITUDE
OF A SINGLE-MODE INTERFACE

P1@A#51;

P3@A#5~2112* A∧2!/6;

P5@A#5~192125* A∧2192* A∧4!/240;

P7@A#5~226413686* A∧226997* A∧4

13234* A∧6!/5040;

P9@A#5~11766322855274* A∧2110086083* A∧4

211093856* A∧613805728* A∧8!/2903040;

P11@A#5~255073191206796915* A∧2

21168865775* A∧412250383605* A∧6

21755444326* A∧8

1483163144* A∧10!/159667200.
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