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Abstract

The Opalinus clay parameter identification at Mont Terri Underground Rock Laboratory (URL) is performed with inverse modeling.
This article focuses on a comparison between the global and local inverse approaches, in a deterministic framework, applied to the ther-
mal (HE-C) and diffusion (DI) experiments respectively. Each experiment presents a similar diffusion process described by the same equa-
tion. This simple forward model makes easier the comparison of each inverse approach and allows to easily apply different methods such
as the neural networks and the adjoint state method. The synthesis yields to valuable information about their merits and flaws, and high-
lights the importance of the parametrization. The singular value decomposition of the Jacobian matrix is presented to identify the best
parametrization. In each experiment, the numerically found parameter values are in good agreement with the experimental methods. In
DI experiment a spatial variability description of the medium is a hypothesis to explain the rapid decrease of the tracer in the injection
chamber.
Ó 2006 Published by Elsevier Ltd.
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1. Introduction

Various countries are considering consolidated clay for-
mations as suitable host rocks for the deep disposal of
radioactive waste. The main purpose of experiments per-
formed at the Mont Terri Underground Research Labora-
tory (Mont Terri Project – URL), in Switzerland, is to
develop experimental tools and modeling methods to char-
acterize the properties of the clay formations. The Mont

Terri Laboratory is located in a tunnel and the porous
medium is composed of Opalinus Clay.

Among all the experiments carried out, HE-C is dedi-
cated to the characterization of the thermal behaviour of
the rock, and DI is a diffusion tracer test. The HE-C exper-
iment has consisted in measuring the time evolution of the
rock temperature submitted to a heating source during 250
days in order to determine the thermal conductivity param-
eters of the Opalinus clay. The main components of the
experiment (Fig. 2) were a heating source with a heater
power regulation unit and several temperature sensors with
the required data acquisition and control components. The
heating source was first put in a long steel tube and then set
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up in a deep vertical borehole located close to the gallery
wall. Temperature sensors were set up in the surrounding
rock mass in two vertical boreholes. These two boreholes
were drilled parallel to the main borehole containing the
heating source. The design of the experiment and the first
results are described in Wileveau (2002).

In DI experiment, tritiated water (HTO) and stable
iodine (127Iÿ) were injected in a borehole between two
packers (3). The tracer concentration was weakly measured
and several readjustments of concentrations in the test
interval were necessary. Concentration has been monitored
in the injection system for 324 days. An over-coring of this
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Fig. 1. Set of profiles for the 3D model DI (Montarnal et al., 2002).
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diffusion experiment has been performed at the end of the
experiment to recover the whole rock volume around the
experimental area. The aim was to sample it, to measure
several concentration profiles of HTO and I in different
directions. These profiles were used as the basis for model-
ing an in-situ diffusion tensor for HTO and I. The field
work and the monitored data are presented in Fierz
(1999). A description of the sampling method and proce-
dure carried out in the over-core and the concentration
profile extractions can be found in Möri et al. (2000). A

synthesis on the modeling of DI experiment is presented
in Tevissen and Soler (2003) (see Fig. 3).

Phenomena such as temperature and concentration
propagation in the porous medium are described by a par-
tial differential equation which links parameters to state
variables. Initial and boundary conditions being given,
we consider the forward problem as solved when the
parameters are known and we wish to compute the mea-
surable quantity such as the temperature or the concen-
tration. However, in several problems, and particularly in

Fig. 3. Design of the DI experiment (Tevissen and Soler, 2003).

Fig. 2. Design of the HE-C experiment (Wileveau, 2002).
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geosciences, it is easier to measure the state variables than
to measure parameters. So in HE-C and DI experiments,
the temperature and concentration values are known and
we search to estimate the best parameter values to carry
out reliable simulations. This is what we call an inverse
problem.

Inverse methods are applied in several scientific area and
a lot of works have been done and many books published
on this subject. Let us cite Sun (1994) and de Marsily et al.
(1999) for the groundwater flow and contaminant trans-
port problems, and Özisik et al. (2000) for the inverse
heat transfer problems. A lot of approaches are well
documented for solving the inverse problem. They can be
classified in two main frameworks: probabilistic or deter-
ministic. In the probabilistic one, all the variables are seen
as random functions. The solution of the inverse problem is
to determine an a posteriori probability density function.
All the variables of the problem (mean value, correla-
tion, . . .) can be deduced from this function. A description
of probabilistic inverse approach can be found in Tarant-
ola (1987) and OFTA (1999). A comparison on seven
geostatiscally based inverse methods is presented in Zim-
merman et al. (1998). Another framework we use in this
paper is the maximum likelihood estimator (Carrera and
Neuman, 1986). The approach is inspired from the Bayes-
ian approach but the interpretation is quite different
because there is no underlying stochastic model. The solu-
tion of the inverse problem is a deterministic function, the
most probable in relation to the data.

In spite of these two different frameworks to solve the
inverse problem, the solution is usually found using an
identical approach. A criterion is defined to measure the
difference between computed and measured values and
the aim is to find the set of parameters associated to the
lowest criterion value. The methods used to find these «best
parameters» can be local or global. In the local approach a
starting point is given and a sequence of new parameters is
generated from this point until the criterion is minimized.
The stationary point found by the local method is a local
minimum depending on initial values. To deal with the
problem of local minima, we can use a global approach
based on a great number of simulations using several val-
ues from the parameter space. This work focuses on a com-
parison between global and local approaches to find the
lowest criterion value in the deterministic framework. Each
of them has been applied on HE-C and DI experiments
respectively. After a presentation of the forward models
(Section 2), the main steps of each method are described
(Section 3). A critical discussion on advantages and incon-
venients is exposed in Section 4. The discussion will focus
next on the parametrization and the sensitivity analysis
using the Singular Value Decomposition tool.

HE-C and DI experiments are interesting to perform
such a comparison because the physical situations are
described by the same partial differential equation, well
known and easy to solve. This simplicity for solving the
forward problem will allow us to focus on each step of

the global and local approaches. In spite of this simplicity,
the equations exhibit a non-linearity between the state vari-
ables and the parameters and complicates the computation
of the gradients. Modelings are performed on data mea-
sured with two different experimental protocols. As a con-
sequence we will have to deal with different forward
modelings and different inverse approaches. The descrip-
tion of each step will make the designation «inverse model-
ing» more comprehensible.

This work is a synthesis of several CEA and INRIA
reports about the inverse modeling of these experiments.
More details about the models and the numerical tools will
be found in Filippi (2003) for the neural network building
and the presentation of the global approach. The three fol-
lowing reports are dedicated to DI inverse modeling. A 3D
local approach is described in Montarnal et al. (2002). A
complete description of the adjoint state method applied
in a one-dimensional case can be found in Cartalade
et al. (2003) and the Singular Value Decomposition method
is presented in Clément et al. (2004).

2. Forward model

This section presents the common characteristics of the
two physical phenomena and the equation to be solved for
each experiment. The same notations will be used in both
modelings. Physical meanings of each term and hypothesis
applied in HE-C and DI models will be described in next
subsections. For more details about the numerical tools
(number of meshes, convergence, physical values for each
models and so on) the reader can refer to Mugler (2003)
for the HE-C forward modeling using the Finite Element
method, Montarnal and Lamoureux (2000) for a DI Mixed
Hybrid Finite Element modeling and Cartalade et al.
(2003) for the DI Finite Difference modeling.

2.1. General equation

DI and HE-C experiments were designed so that the
main process is the diffusion of temperature or concentra-
tion in the porous medium. This process is described by a
partial differential equation similar for the two phenomena.
Two main properties of the medium, the anisotropy and
the presence of a bedding plane, require a three-dimen-
sional modeling. An energy (resp. mass) balance is carried
out in a thermal problem (resp. diffusion). The equation to
be solved is a parabolic-type equation, linear with respect
to the state variable F(x, t). It has the following form:

WðxÞotF ðx; tÞ ¼ ÿ ~r �~qðx; tÞ þ Sðx; tÞ: ð1Þ

Integrated on a volume, Eq. (1) expresses the decrease in
time of the total conservative quantity, W(x)F(x, t), which
is equal to the outgoing flux through the surface surround-
ing the volume. In (1), F(x, t) is the state variable depending
upon position x = (x,y,z)T and time t [s]. The symbol
ot means the partial derivative with respect to the time,
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S(x, t) is a source term indicating a disappearance of the
conservative quantity if it is negative, and an addition if
it is positive. In HE-C and DI, this source term has two dif-
ferent forms and will be described more precisely below,
W(x) is the first parameter of the equation. It is a function
of space. The flux vector,~q, is given by the Fourier’s law in
the thermal problem and by the Fick’s law in the diffusion
problem. The mathematical form of these laws is identical.
The flux is given by the product of a medium property ��vðxÞ
and the gradient of the state variable (2). The negative sign
means that the flux direction is the opposite of the gradient
direction

~qðx; tÞ ¼ ÿ��vðxÞ ~rF ðx; tÞ: ð2Þ
In expression (2), ��vðxÞ is a second order symmetric tensor
to take into account the anisotropy of the medium. It is
possible to establish this tensor form by using the transfor-
mation rules of the tensor components in a rotation of the
cartesian coordinate system. Merging the Oy axis of the
two coordinate systems this tensor takes the following
form:

��vðxÞ ¼
vl cos

2 hþ vt sin
2
h 0 ðvl ÿ vtÞ sin h cos h

0 vl 0

ðvl ÿ vtÞ sin h cos h 0 vl sin
2
hþ vt cos

2 h

0

B@

1

CA;

ð3Þ
where h is the angle between the axis Ox and Ox 0 (Fig. 4),
vl(x) and vt(x) the longitudinal and transverse properties,
respectively. vl(x) and vt(x) are the other parameters and
also depend on the x-position.

To ensure the uniqueness of the solution, Eq. (1) must
be supplied with initial and boundary conditions. In the
two problems considered in this paper, the initial condition
is supposed to be constant on the whole domain X

F ðx; 0Þ ¼ F 0: ð4Þ
Boundary conditions are the following:

boundary condition depending on the experiment on C1;

U ¼ 0 on C2;

�

ð5Þ
the second boundary condition in relation (5), applied to
the external surface of the system C2, is null for the two

problems. The surface C1 and the boundary condition ap-
plied on it are different in the two models. They will be both
described in the next subsections.

Let us finish this section by indicating an important
property of diffusion problem. In isotropic and homoge-
neous media, it is possible to introduce a new quantityffiffiffiffiffi
jt

p
½m� where j is the diffusivity [m2 sÿ1] and t the time

[s]. It is possible to show that the solution of the diffusion
equation depends only on this quantity. It means that an
initial perturbation propagates on a distance of the order
l ¼

ffiffiffiffiffi
jt

p
after a time t. The linear ratio between the mean

diffusion distance and the time square root is an essential
characteristic of a diffusion problem. Such a property can
be represented by an adimensional number called the
Fourier number and defined by the ratio between js

and L2 where s is a characteristic time and L a character-
istic length. The Fourier number characterizes the propa-
gation of the diffusion (heat or concentration) in the
medium.

The general equation, similar for the two experiments,
being introduced, let us emphasize now the main differ-
ences between HE-C and DI models.

2.2. Thermal model applied to the HE-C experiment

In the HE-C modeling, F(x, t) is the temperature [K],
W(x) is the product of the mass per volume unit q [kg mÿ3]
and specific heat Cp [J kgÿ1 Kÿ1] of the porous medium
comprising water plus solid, ��vðxÞ is the thermal conductiv-
ity tensor [W Kÿ1 sÿ1], and S(x, t) is the power per volume
unit given by the source.

The HE-C modeling supposes an homogeneous med-
ium, so the parameters W and ��v are not space-dependent.
According to this modeling, S(x, t) is given by the product
of a dimensionless coefficient describing a loss of power a
and a time-dependent power per volume unit Q(x, t). The
equation has the following form:

WotF ðx; tÞ ¼ ~r � ð��v~rF ðx; tÞÞ þ aQðx; tÞ: ð6Þ

The initial temperature is supposed to be the same in the
whole domain and is equal to the mean value of the tem-
perature measured by the various probes at time t = 0:
F0 = 285.9 K (12.756 °C). The first boundary condition is
applied on the surface C1 separating the porous medium
and the tunnel gallery. Some measurements have shown
the temperature gallery influence on the porous medium
temperature, this is why the following boundary condition
is used:

Uðx; tÞ ¼ hðF ðx; tÞ ÿ F gðtÞÞ on C1; ð7Þ

with h the transfer coefficient [W mÿ2 Kÿ1] and Fg(t) the
time-dependent temperature in the gallery.

Eqs. (6) and (7) are solved numerically with Cast3M, a
CEA code. A finite element method is used to discretize
the spatial term and a Crank-Nicholson approximation
for the temporal term.

z

x

z′

x′

y′

y

θ

Fig. 4. Rotation of the cartesian coordinate system.
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2.3. Diffusion models applied to the DI experiment

In the diffusion problem, F(x, t) is the concentration
[mol mÿ3], W(x) is the accessible porosity (dimensionless),
��vðxÞ is the effective diffusion tensor [m2 sÿ1] and S(x, t)
expresses the tracer disappearance in the medium due to
the radioactive decay of the tracer symbolized by the coef-
ficient k [sÿ1]: S(x, t) = ÿkW(x)F(x, t).

The boundary condition on C1 is given by a mass bal-
ance performed in the injection chamber taking into
account the radioactive decay:

F ðx; tÞ ¼ F ðx; t0Þÿ
1

V

Z t

t0

Z

C1

~qðx; sÞ �~ndCdsÿ k

Z t

t0

F ðx; sÞds;

ð8Þ
where V is the total volume of the mixture water plus tracer
in the whole system comprising the injection chamber, the
pipes and the tanks. The concentration F(x, t) at the time t
is obtained from the initial concentration F(x, t0) minus the
quantity disappeared in the porous medium (second term
in the right hand side) and the quantity desappeared due
to the radioactive decay (last term). Two different models
have been applied for DI inverse modeling.

2.3.1. 3D modeling

The first one was performed in a three-dimensional
homogeneous case. The equation to be solved is then sim-
ilar to Eq. (6) with another expression for the source term:

WotF ðx; tÞ ¼ ~r � ð��v ~rF ðx; tÞÞ ÿ kWF ðx; tÞ: ð9Þ
Computations were performed with Cast3M using the
Mixed Hybrid Finite Element method (Dabbene, 1995).
At the initial time the concentration is supposed to be zero
in the whole domain (F(x, 0) = 0). The boundary condition
(8) is applied. A simulation result using a 40° bedding plane
is presented in Fig. 5. We notice the bedding plane effect on
the concentration field at the top and the bottom of the
injection interval.

2.3.2. 1D modeling

Although the Mont Terri geometry requires a three-
dimensional forward modeling because of the bedding
plane presence, the second model applied was only one
dimensional. This is because the inverse approach used
for this problem requires to develop a new system which
is much more easily and rapidly deduced and implemented
on a one-dimensional model. The 1D approximation is
however sufficient to introduce the parametrization con-
cept and to show the improvement on the results brought
by the zonation. The model is now one dimensional but
takes into account the spatial variability of parameters
W(r) and v(r).

In a one-dimensional cylindrical problem the diffusion
equation can be stated "r 2 [r1, r2]:

WðrÞotF ðr; tÞ ¼
1

r
orðrvðrÞorF ðr; tÞÞ ÿ kWðrÞF ðr; tÞ; ð10Þ

with the null initial condition (F(r, 0) = 0). The boundary
condition on C1 expressed in one dimension is given by
the following relation:

F ðr1; tÞ ¼ F ðr1; t0Þþrvðr1Þ
Z t

t0

orF ðr1;sÞdsÿk

Z t

t0

F ðr1;sÞds;

ð11Þ

where C1 is the surface between the injection chamber in
the borehole and the porous medium. In the Eq. (11), r
is the ratio between the injection chamber surface and the
volume V. Eqs. (10) and (11) are solved with a finite differ-
ence scheme for the spatial term and an implicit scheme for
the temporal term.

Let us mention that a semi-analytical solution in a one-
dimensional homogeneous case, taking into account this
boundary condition, can be found in Novakowski and
ven der Kamp (1996). We did not use this analytical solu-
tion in this work in order to take into account the variabil-
ity of parameters with the position.

3. Inverse models

Before beginning the description of the inverse
approaches, let us summarize the parameters to be identi-
fied in each model. For HE-C, three scalar values have to
be estimated: the longitudinal and transverse thermal con-
ductivities vl and vt and the a coefficient. In the three-
dimensional model for DI, three scalar parameters have
also to be estimated: the effective porosity W and the longi-

H

>3.69E09–9

< 6.29E05–5
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Fig. 5. Concentration field at the final time of the DI experiment.
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tudinal and transverse effective diffusion vl and vt. For the
DI one dimensional model, two functions of the position
have to be identified: W(r) and v(r).

3.1. Parametrization

One of the practical and difficult aspects in inverse prob-
lems is related to the description of the spatial variability of
the parameters W(r) and v(r). The number of parameters to
estimate depends upon the dimension of the problem and
the parametrization chosen to approximate the functions
W(r) and v(r). The amount of data is often not sufficient
to identify one parameter per mesh and the method used
to decrease the number of parameters is called the param-
etrization of the problem. Several methods have been
reviewed in Sun (1994) and an enlightening discussion on
advantages and inconveniences on different parametriza-
tions can be found in McLaughlin and Townley (1996).
The parametrization presents two main difficulties: the
parameter structure and its corresponding values inside
it. In most of inverse modelings the parameter structure
is supposed to be known and only the parameter values
are identified. However the parameter structure is impor-
tant because a wrong structure leads to a wrong parameter
estimation (Sun and Yeh, 1985).

In this work, the parametrization used is the classical
zonation method. The parameter structure is the number
and the position of each zone. For example inside a system
comprising N mesh points, the parameters WN ¼
ðw1;w2; . . . ;wN ÞT; �vlN ¼ ðvl1; vl2; . . . ; vlNÞ

T
and �vtN ¼ ðvt1; vt2;

. . . ; vtN Þ
T will be replaced by new vectors WM ¼ ðw1;

w2; . . . ;wMÞT, �vlM ¼ ðvl1; vl2; . . . ; vlMÞ
T and �vtM ¼ ðvt1;

vt2; . . . ; v
t
MÞ

T
with M very small compared to N. M is the

number of zones, and each zone contains several mesh
points.

In practice, the choice of M, called the dimension of
parametrization, and the positions of each zone are difficult
and depend upon the physical problem and the available
data. In this work the parameter structure is supposed to
be known, and only the parameter values inside them are
identified. A solution to get the best parametrization using
the measured data is given by the Singular Value Decom-
position (SVD) method and will be presented in Section 4.

The importance of the zonation, number and position of
each zone, will not be highlighted on the three-dimensional
HE-C and DI models because they are considered homoge-
neous. So the vectors W, �vl and �vt are reduced to a scalar
value w and vl and vt applied on the whole domain. The dif-
ficulties of parametrization will be more easily pointed out
with the one dimensional model.

In all the rest of this paper the parameter to identify will
be noticed by a vector p. For HE-C modeling the compo-
nents are the following: p = (vl,vt,a)

T. For the three dimen-
sional model of DI p expresses the vector (w,vl,vt)

T and for
the one dimensional model p ¼ ðWM ; �vMÞT. Although the
DI forward model is one dimensional compared to the

three dimensional models, the dimension of p could be
greater if MP 2.

3.2. Global approach applied on the HE-C experiment

3.2.1. Objective function

Inverse modeling requires to define a criterion called an
objective function (or performance function) measuring the
difference between experimental and computed data. In
HE-C and DI experiments, the objective functions are both
based on the least squares but are slightly different due to
the difference between the available data and the hypothe-
sis made in each modeling. In the thermal problem, the
objective function has the following form:

j ¼ 1Pns

j¼1lj

Xns

i¼1

liðF ðxiÞ ÿ bF ðxiÞÞ2; ð12Þ

where ns is the number of sensors, bF ðxiÞ is the ith measured
temperature, bF ðxiÞ is the ith computed temperature, xi, is
the position. li is a positive weight, different for each exper-
imental value, describing the degree of confidence on this
measure. We emphasize the fact that the objective function
is not time-dependent. A steady state inverse problem has
been solved in this study. Once the objective function is de-
fined, the problem to solve is the following: find the three
components of p = (vl,vt,a)

T to obtain the lowest value
of J.

The global strategy to find p is simple and almost intu-
itive. Lower and upper bounds of each component are fixed
and a great number of pk (k = 1, . . . ,N) are chosen inside
this parameter space. The choice of a parameter pk+1 is
independent from the previous one pk. A statistical law
can be used to generate all the pk in order to have an uni-
form repartition inside the parameter space. The objective
function is then computed for each parameter pk and when
all simulations are achieved, the set of parameters giving
the lowest cost function value is the solution of the
problem.

3.2.2. Neural network

The large computation time required by the global
approach leads us to build a Cast3M approximation using
a neural network, especially in this application because the
forward model is solved by a numerical method (3D finite
element). For each parameter pk, the neural network com-
putes a temperature according to the following equation:

F s ¼ fs0 þ
XNh

i¼1

fsif
XN in

j¼1

ws
ijpj þ ws

i0

 !

; ð13Þ

with Fs the computed temperature at the considered sensor
s. The superscript s indicates that one neural network is
built for each temperature sensor. Ten sensors were avail-
able in the experiment. fsi , w

s
ij and ws

i0 are some weights,
Nh is the number of hidden neurones, pj indicates the input
parameter (pj = vl,vt,a), and Nin their number. f ðxÞ ¼ 1

1þeÿx

is the logistic activation function.
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The neural networks were built with NeMo (CEA soft-
ware, Dreyfus et al. (2002)) from a sample training of 1100
Cast3M simulations. These simulations give some indica-
tions to choose the number of hidden neurones and for
each of them to fit the weights fi, wij and wi0. A simple neu-
ral network includes one hidden layer made of three hidden
neurones (6). The most simple neural network with no hid-
den layer has been tested but gave no satisfactory results.
(Fig. 6)

The very fast neural networks allowed to approximate
the Cast3M code and to compute the objective function
for 500,000 different values for the parameter
p = (vl,vt,a)

T. 100 values of vl in the range [1,4], 100 values
of vt between [0.5,3] and 50 values of a in the range [0.7,1].
This number of 500,000 instantaneous computations per-
formed with the neural network has to be compared with
the 1100 Cast3M preliminary direct simulations necessary
to the training of the neural network.

3.2.3. Results for HE-C experiment

The values of the thermal conductivities were estimated
separately using the probes located on each side of the
heating source. The triplet of optimized values p is quite
different on each side of the heating source. On one side,
we obtain vl = 1.84 ± 6%, vt = 055 ± 9% and a = 077 ±
3%, although we obtain on the other side vl = 1.90 ± 7%,
vt = 1.07 ± 11% and a = 0.77 ± 3%.

In order to check the validity of this method, some for-
ward numerical Cast3M simulations were performed with
various values of parameters p. Fig. 7 displays the temper-
ature evolution versus time measured with the five probes
on each side of the heating source, and calculated with
three value triplets on each side, equal to p

C2
1 ¼

ð1:727; 0:525; 0:718ÞT, p
C2
2 ¼ ð1:848; 0:550; 0:773ÞT and

p
C2
3 ¼ ð1:970; 0:601; 0:816ÞT on one side (C2 line) and equal

to p
C3
1 ¼ ð1:788; 1:005; 0:718ÞT, pC3

2 ¼ ð1:939; 1:081; 0:773ÞT
and p

C3
3 ¼ ð2:030; 1:131; 0:816ÞT on the other side (C3 line).

Experimental and numerical results are in good agreement.
The additional direct simulations prove that the neural net-

p
2
=χtp

1
=χ

l
p

3
=αp

0
=1

4

1 2

F
s

3

Fig. 6. Neural network with one hidden layer.

Fig. 7. Set of temperatures for the 3D model HE-C (Filippi, 2003).
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work correctly simulates Cast3M computations and that
parameters p obtained from the global approach yield to
the correct measured temperatures.

The functional values in the parameter space are pre-
sented in Fig. 8. The intervals of parameter values giving
the lowest objective function is represented by the yellow
zone.

3.3. Local approach applied on the DI experiment

3.3.1. Objective function

The inverse approach used in DI experiment is based on
the same deterministic theory but two main differences exist
between DI and HE-C and modify the inverse modeling.
The first one concerns the experimental protocol and the
data sampling. Two sets of concentration data are available
in DI experiment. The concentrations bF ðxi; tf Þ measured at
the final time tf of the experiment and varying with the posi-
tion xi belong to the first set of data. The concentrations
bF ðx1; tjÞ measured in the injection chamber x1 and varying
with the time tj belong to the second set of data. The relation
(14) gives the objective function for the DI problem:

J ¼
XI

i¼1

l2
i ðF ðxi; tf Þÿ bF ðxi;tf ÞÞ2þ

XJ

j¼1

b2
j ðF ðx1; tjÞÿ bF ðx1; tjÞÞ2:

ð14Þ
Two terms are embedded in the objective function, each
one describing one set of experimental data. In the first
term of the right hand side, the experimental concentra-
tions are described by a function depending on the posi-
tion, and in the second term the concentrations are
described by a function depending on the time. I is the
number of space data, J the number of temporal data, l2

i

and b2
j are positive weights.

3.3.2. Optimization

The minimization of criterion (14) is performed with an
optimization algorithm called an optimizer. A lot of books

were published on this subject: Fletcher (1987), Bonnans
et al. (1997), and Nocedal and Wright (1999). Many opti-
mization methods exist in the literature and it is out of
range of this paper to describe all of them. We only
mention the gradient algorithms, more robust and less
time-consuming than the others. Let us mention that the
optimization methods are found in many problems where
a stationary point of an objective function is searched
for. These methods are sometimes extended to the resolu-
tion of non-linear systems. For example, another applica-
tion is given by the coupling between the transport
equation and the chemistry (Bouillard et al., 2005).

The principle of these algorithms is simple. A search
sequence (p1, . . . ,pk, . . . ,pN) is generated from a starting
point p0, such as for the iterate k + 1, J(pk+1) < J(pk), pk
is the parameter vector at iterate k. The search sequence
between the iterate k and k + 1 is not independent contrary
to the global approach. The relation is given by pk+1 =
pk + nkdk where nk is a positive scalar indicating the length
of the step and dk is the kth descent direction.

A first class of gradient methods are the conjugate gra-
dient algorithms. The descent direction is given by dk =
ÿrk + bkdkÿ1 where rk is the residual and the scalar bk is
to be determined by requirements that dk and dk+1 must
be conjugate with respect to the discretization matrix of
the problem. Several forms of bk depending upon $Jk =
$J(pk) exist and distinguish the methods. The Fletcher–
Reeves and the Polak–Ribière (PR) methods are the most
popular conjugate gradient algorithms. In practice, the
PR method with automatic restarts out performs the
other methods (Bonnans et al., 1997; Nocedal and Wright,
1999).

In a second class of gradient methods, dk is given by the
relation dk ¼ ÿBÿ1

k rJ k with Bk a symmetrical matrix and
$Jk the gradient of the objective function. In the steepest
descent method, Bk is simply the identity matrix, whereas
in the Newton method, Bk is exactly the Hessian matrix
$
2Jk. In the quasi-Newton methods, Bk is an approxima-

tion of the Hessian matrix. The BFGS formula is one of
the most popular Hessian approximation. The Byrd et al.
algorithm (1995) was applied in DI inverse modeling. The
algorithm uses a BFGS method and a limited memory to
approximate directly the inverse Hessian matrix. Lower
and upper bounds can also be specified to impose a positive
constraints on parameters. Optimization with bound con-
straints is more difficult.

The Levenberg–Marquardt method is a very efficient
algorithm but it requires the computation of the sensitivity
matrix (or Jacobian matrix). It is possible to compute it for
the one-dimensional model but it is difficult for two or three
space dimensions. In Section 4 we will compute the Jaco-
bian matrix but in few points, whereas the Levenberg–Mar-
quardt optimization method needs to compute it for each
iteration. A good review of all these algorithms (conjugate
gradients, BFGS, Newton methods, Levenberg–Marquardt
. . .) with or without bound constraints, and a critical discus-
sion on the advantages and inconvenients about the main

0.7 0.72 0.74 0.76 0.78 0.8 0.82

1.5

1.6

1.7

1.8

1.9

2

2.1

λ
l (

W
/m

.K
)

Optima set (λl, λt, α)    |   fcout(∆Τ) < fcout(∆Tl) 

0.7 0.72 0.74 0.76 0.78 0.8 0.82
α (-)

0.4

0.5

0.6

0.7

0.8

λ
t (

W
/m

.K
)

C2+B1 : ∆T
C2

  =  0,15˚C, ∆T
B1

  =  1,5˚C 

C2+B1 : ∆T
C2

  =  0,10˚C, ∆T
B1

  =  1˚C 

C2        : ∆T
C2

  =  0,25˚C 

λ l,λt : thermal conductivity 
α : thermal power rate 
∆T = Texp. - Tcal.

CAST3M proof

Approximate solution zone

Fig. 8. Functional values in the parameter space (Filippi, 2003).
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classes of many methods (trust-region and line search meth-
ods) can be found in Nocedal and Wright (1999).

3.3.3. Results for the 3D inverse model

A first application of the local approach with a BFGS
algorithm has been performed on the 3D modeling using
Cast3M. The gradients of the cost function were computed
by the finite difference method and the optimization soft-
ware used was Kalif (Martinez et al., 2002). We refer Tevis-
sen et al. (2004) for a complete comparison between the
in situ and laboratory diffusion studies from the Mont
Terri. The laboratory measurements on the centimetric
core samples are described. We present in this paper only
the results for the HTO tracer in order to focus the discus-
sion on the parametrization in the following of this paper.

The simulations performed have shown that the entire
set of HTO data is consistent with due account to only a
diffusive process in the rock (Palut et al., 2003). The 3D
model explains the disappearance of the tracer from the
injection system over the time (Fig. 9), and its distribution
in the rock versus the distance from the borehole (Fig. 10).

The best estimate values for HTO are vl = 18 ·

10ÿ11 m2 sÿ1, vt = 1.2 · 10ÿ11 m2 sÿ1 and W = 12%. The
appendix presents the comparisons between all the experi-
mental profiles and the computed concentrations.

On the monitoring curve, only the first data are not well
fitted. Those differences between the experimental data and
the model, could be explained by the effect of a disturbed
zone around the injection borehole where the porosity
and diffusion coefficients are higher. As the tracers diffuse
further into the rock, the diffusion slows down. The tracer
disappearance in the injection borehole is more affected by
the disturbed zone than profiles in the rock, because the
tracer is mostly located near the borehole as illustrated
by the shape of the profiles. This hypothesis will be tested
in Section 3.3.5.

3.3.4. Adjoint state method

Another way to compute the gradients of the cost func-
tion, required by the BFGS algorithms, is to apply the
adjoint state method. It is based on the optimal control the-
ory (Lions, 1968) and was used in parameter identification
problems by Chavent (1971, 1975). The method computes
accurate gradients with respect to the parameters to iden-
tify. A complete description of the adjoint state method
is presented in Carrera and Neuman (1986) and Sun
(1994). The application is performed on a classical diffusion
equation and a convection–dispersion equations.

In DI problem, the adjoint state is slightly different due
to the boundary condition, which depends on the diffusion
to identify and to the time. Another difference for the
adjoint deduction comes from the objective function for-
mulation. Let us remember that the cost function in this
problem presents two terms, the first one for the monitor-
ing data and the second one for the profile data. The
adjoint system, deduced from the forward problem, has
to be solved according to the following equations:

ÿWðrÞot� ðr; tÞ ¼
1

r
orðrvðrÞor� ðr; tÞÞ ÿ kWðrÞ� ðr; tÞ; ð15Þ

� ðr; tf Þ ¼
XI

i¼1

2l2
i

Wr
ðF ðri; tf Þ ÿ bF ðri; tf ÞÞ; ð16Þ

1
a
ot� þ vor� jr1 ¼ ÿ

PJ

j¼1

2b2j
r1
ðF ðr1; tjÞ ÿ bF ðr1; tjÞÞ;

vor� jr2 ¼ 0:

8
><

>:
ð17Þ

This system is adjoint-qualified because the operators in its
definition are adjoint of state equation operators: ÿot as
adjoint of ot and

1
r
orðrvðrÞorÞ is the same because it is self

adjoint. c(r, t) is called the adjoint state of the concentra-
tion F(r, t). A final time (and not initial time) is given in
Eq. (16), consequently Eq. (15) must be solved backwards
in time. Because data are measured at the end of the exper-
iment (profile data) and in the injection chamber (monitor-
ing data), differences between computed and observed
concentrations are present in final condition and in the first
boundary condition respectively.Fig. 10. Experimental and computed profile.
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When F(r, t) and (r, t) are computed, the gradients of the
objective function can be deduced from the following
relations

dJ

dv
¼ ÿ

Z tf

0

Z r2

r1

orF ðr; tÞor� ðr; tÞrdrdt; ð18Þ

dJ

dW
¼ ÿ

Z tf

0

Z r2

r1

� ðr; tÞðotF ðr; tÞ þ kF ðr; tÞÞrdrdt: ð19Þ

Two possibilities are available to deduce the discretized ad-
joint system. The first one is to discretize the relations (15)–
(17) and (18), (19). Another way is to find the adjoint sys-
tem with the variational method from the primary problem
already discretized. This latter method is better as indicated
in Chavent (1979) and has been applied in this work.

The success of the gradient method depends strongly on
the possibility to accurately compute the gradients. The
adjoint state method is based upon an analytical derivation
of the gradients and allows to compute them efficiently.
This is the main advantage of adjoint state method com-
pared to the finite difference method. Indeed, in a compar-
ison between the gradients computed by an adjoint state
and a finite difference method several significant values of
the steps required by the finite difference, must be adjusted
to obtain the same values of the gradients. In this work,
this comparison has been performed to verify the develop-
ment of the relations (15)–(19).

3.3.5. Results for the 1D inverse model

The one-dimensional inverse model using the adjoint
state method has been applied on the DI experimental
data. Several inverse simulations have been performed
using one, two and three zones respectively. The lowest val-
ues of the cost function have been obtained with three
zones with two parameters per zone: one diffusion and
one porosity coefficient. Six parameters were optimized.
The inverse simulations performed with three zones gave
several admissible solutions. Figs. 11 and 12 present one
of them chosen from some physical considerations. As
already mentioned in Section 3.3.3, the diffusion and

porosity parameters could be higher near the injection
borehole.

The forward simulation results performed with these
parameter values are presented in Figs. 13 and 14.
The improvements brought by the spatial variability of
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parameters v(r) and W(r) on the monitoring are presented
in Fig. 13.

In spite of the one-dimensional modeling, the parameter
values found seem to be coherent with the experimental
data and the 3D inverse modeling. The range of the diffu-
sion is between 10ÿ11 and 1010 m2 sÿ1 for the diffusion. The
porosity presents a mean value of 5% high value over the
first two centimeters. The first two centimeters present a
high value of the porosity (greater than 35%) which could
be explained by the disturbed zone.

4. Discussion

The way to explore the parameter space } in order to
find the solution of the minimization problem is the main
difference between the global and local approaches.

In the global strategy } is scanned with a large number
of parameters. The larger is the set of {pk/k = 1, . . . ,N}, the
better is the chance to find the solution. However when
the simulations are performed with a numerical code, the
approach increases the computation time because one sim-
ulation must be carried out for each pk to obtain the corre-
sponding value of the cost function.

On the contrary, the local strategy searches to reduce the
computation time by scanning only a region of }, around
an initial point p0 given by the modeler. The choice of
pk+1 at iterate k + 1, is not independent from the previous
one pk. The local terminology is now clear. All the sequence
pk (k = 1, . . . ,N) is dependent from the starting point p0
and its choice is important for the final solution. Indeed,
if the cost function presents more than one stationary
point, an initial point p0 could lead to a local minimum.
The flaw of this approach is the local character of the solu-
tion. To ensure the finding of the global solution, several
optimizations should be performed with different values
of p0.

Let us emphasize that the problem is ill-posed: it may
not have an unique solution, or the solution may depend
non continuously on the data. Hence it leads to numerical
oscillations when the number of parameters is too high,
and Tichonov regularization by adding a penalizing term
cures the problem.

Another issue about the efficiency of the optimization
algorithms is the computation of the derivatives of the cost
function, or of the forward model. There are several ways
to compute derivatives: approximated or analytical, direct
or reverse mode, automatic or manual implementation.
The approximate computation of derivatives by finite dif-
ferences is very simple as it does not need any further code
development, but it provides the direct mode. Hence, it is
advisable to restrict its use to the validation of analytical
derivatives computations. The complexity of the direct
(or forward) mode is proportional to the number of inputs,
e.g. to the number of parameters, and the complexity of the
reverse (or backward, or adjoint) mode is proportional to
the number of outputs, eg to the number of measures.
So, when dealing with gradients, the reverse mode is obvi-

ously the most efficient way since there is only one output:
the value of the cost function. But when computing a Jaco-
bian (or sensitivity matrix), the choice of the cheapest mode
depends on which is higher between the number of lines
and the number of columns. Automatic differentiation
opens either through code transformation as Tapenade
(Hascoët and Pascual, 2004), or Adifor (Bischof et al.,
1992) or through operator overloading as AdolC (Walther
and Griewank, 2004). These high-level tools are very prom-
ising and their use is highly recommended for the direct
mode, but there are still some limitations: choice of the
programming language, access to the reverse mode, source
code requirements. Manual differentiation of the discrete
equations in the reverse mode is not difficult in principle
when using variational numerical schemes, but its imple-
mentation, and its validation, can be a long and tedious
task for large codes. Furthermore, it is even possible to dis-
cretize the continuous adjoint equations, but then one has
to be careful, eg by refining the mesh when getting closer to
the solution. We have chosen to compute the derivatives in
the reverse mode, and to implement them manually. Even
when computing the full Jacobian matrix for the singular
value decomposition in the next section.

No supplementary development is required in the global
approach. The direct simulation code is sufficient to obtain
a good estimation of the parameters. However the interpre-
tation is difficult especially when the dimension of the
parameter space is greater than 3. It is then not possible
to interpret graphically the results and it can be extremely
hard to distinguish several small values of the cost function
and to choose between a set of parameters and another.
Moreover the exploration of the parameter space with a
large number of p does not guarantee that the found solu-
tion is the global solution of the problem. But it highlights
rapidly the family of probable solutions and can be tested
afterwards with an optimization algorithm. A genetic algo-
rithm with multicriteria optimization techniques, could be
used to avoid these difficulties and interpret the results
(Gaudier and Dumas, 2005).

Because the neural network is efficient, it allows to scan
a large region of the parameter space and gives rapidly
some preliminary results. However its implementation is
not fast because four steps have to be performed: (1) train-
ing simulations, (2) neural network building, (3) verify the
suitability of the neural network with the simulation code,
(4) finding the minimum of the objective function, and (5)
validation of solutions with a simulation code. The first
step is the longest because it requires a lot of direct simula-
tions. Each neural network is next quite easy to build. Let
us emphasize that the relation (13) is a combination of non-
linear function depending on the parameters. It is a supple-
mentary approximation of a code which is already a
numerical approximation of physical equations. The initial
choice of the parametrization and the stationarity/transient
problem is important because the built neural network will
be dependent from these hypothesis. A modification of the
zonation requires to perform again the training simulations
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and to build new neural networks. Nevertheless, let us
remember that the neural network is an interesting tool
to obtain some results quickly. The solution of the minimi-
zation problem should be next validated with the simula-
tion code.

4.1. Singular value decomposition

The parametrization, introduced in Section 3.1, raises
several difficulties. As already mentioned, two notions are
hidden in the parametrization concept: the structure of
parameters and the values inside it. In this paragraph, the
position and the number of zones (in DI inverse modeling),
were supposed to be known. The presentation of methods
and the discussion were focused on the identification of
parameter values. However, in practice, the parameter
structure is not always known. So, to overcome this diffi-
culty, two possibilities exist. The first one tries to estimate
at the same time the structure of the zonation and the
parameter values inside it. Such a method has been applied
by Ben Ameur et al. (2002) in a two-dimensional case using
the refinement and coarsening indicators for an adaptive
parametrization.

A second possibility to find a good zonation, or even to
compare several parametrizations, is based on a sensitivity
analysis of the concentration measures with respect to the
parameters. The study of singular values and vectors, given
by the decomposition (SVD) of the Jacobian matrix, is a
powerful tool to define the identifiable degrees of freedom
and is very efficient to quantify the sensitivity of the system.
It gives indications to choose the best parametrization, to
test a new acquisition system, and to evaluate the non lin-
earity of the model. However, conclusions are valid only
locally around the considered point.

In DI experiment, the components of the Jacobian
matrix are the first partial derivatives of the concentration
with respect to the porosity and diffusion parameters. The
Jacobian matrix is computed row by row with the adjoint
state method. The difference between the adjoint equation
giving the gradient of the cost function is the right hand
side of the equation. The singular value decomposition is

a generalization of the diagonalization concept applied to
rectangular matrices. The singular values of the Jacobian
matrix A with I rows and J columns are the positive square
roots of the eigenvalues of the symmetric matrix ATA.
More precisely, the SVD of A is

A ¼ USVT; ð20Þ

with V, the singular vector matrix in the parameter space,
U, the singular vector matrix in the measure space, and
S, the diagonal singular value matrix in decreasing order.
Singular values are nonnegative and U and V are unitary
matrices.

Many simulations have been performed to test the sen-
sitivity of different parameter values and zonations. Param-
etrization with 20 and 3 zones have been studied. In the last
case, the sensitivity of zone positions have been studied
too. We focus the discussion in this paper on the interpre-
tation of singular value decomposition. We refer Clément
et al. (2004) for a presentation of other results.

We consider a parametrization with three zones. Fig. 15
displays the porosity and diffusion values associated with
each zone. 175 values of monitoring values and 22 profile
values (Fig. 16) are next computed with these 6 parameters
using the 1D simulation code. The derivatives of the 197
(=175 + 22) measures with respect to the 6 parameters
are then computed by the adjoint state method. A matrix
A with 197 rows and 6 columns is obtained. The singular
value decomposition (20) gives the unitary square matrices
U and V. The order of U and V is 197 and 6, respectively.
The dimension of the matrices A and S are identical. But
only the main diagonal of the matrix S is potentially non
null. It is composed of positive terms classified in decreas-
ing order.

The interpretation of the SVD is the following: for
i = 1,2, . . . , 6, a modification of the parameter in the vi
direction will affect the measures in the ui direction, propor-
tionally to the singular value si. Fig. 17 displayed on the
logarithmic scale presents the six relative singular values.
The ratio between the values are 30 meaning that the com-
ponent of parameter on m1 will be found with the same
noise level than the measures. The component on m6 will

 0

 1e-10

 2e-10

 3e-10

 4e-10

 5e-10

 0  10  20  30  40  50

D
if

fu
si

o
n
 (

m
2
/s

)

r (cm)

reference

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50

P
o
ro

si
ty

 (
%

)

r (cm)

reference

Fig. 15. Diffusion (left) and porosity (right) values (Clément et al., 2004).
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be found with a noise level 30 times higher. So the more the
singular value curve is near the constant curve 1, the more
the inversion will be better. In Fig. 17 the first four are in a
ratio 6.

Fig. 18 displays the singular vectors in the parameter
space VT. The influence of the parameters is the following:

porosity in the zone 1, porosity in the zone 3, diffusion in
the zone 1, the porosity in the zone 2, difference of the dif-
fusion in the zones 2 and 3; mean of the diffusion in the
zones 2 and 3. Fig. 19 displays the first six singular vectors
in the measure space. The classification in the decrease
order of the sensitivity of measures is the following: differ-
ence between the mean in the zone 1 of the profile at initial
time and the injection peaks in the monitoring; mean value
in the zone 3 of the profile at final time; mean between the
mean in the zone 1 of the profile at the final time and the
injection peaks in the monitoring; mean in the zone 2 of
the profile at the final time; difference between a mean at
the beginning of the zone 2 of the profile at the final time
and one value at the end of this zone; mean between the
beginning and the end of the zone 2 of the profile at the
final time.

Let us mention that the singular value decomposition
results depend greatly upon the weights l and m in the cost
function (14). They also depend upon normalization values
of porosity x0 and D0. So, before beginning the sensitivity
analysis, several simulations have been performed to
choose the best weight values l and m and the best normal-
ization values of diffusion and porosity. The simulation
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results shown in this paper are obtained with l = 1,
m = 10ÿ1, x0 = 10ÿ1 and D0 = 10ÿ10 m2/s. The choice of
these weight and normalization values is important and is
computation time consuming.

5. Conclusion

The existence of various methods to identify numerically
the parameters in a partial derivative equation complicates
the manner to proceed to solve the inverse problem. The
approach to use, global or local, and the optimization
methods to apply (algorithms with or without gradients
and methods of computation associated) depends on the
physical problem, the framework and the numerical tools
for modeling. The objective function is written differently
according to the experimental design and the available
data. Of course the overview is far to be exhaustive and
many methods have not been investigated. Let us mention
the genetic algorithms and all the methods based on the
Bayesian theory.

Global and local approaches have been applied to HE-C
and DI experiments, respectively. Rock properties were
determined using complementary laboratory measure-
ments on rock samples. Parameter values found with the
inverse modeling are in good agreement with the experi-
mental methods. This contribution allows us to synthesize
different approaches for inverse modeling and yields valu-
able information about their advantages and weaknesses.
In the global approach, interpretation in the parameter
space becomes difficult when the number of parameters is
greater than three. The global approach requires a great
number of computations (500,000). In order to drastically
reduce the CPU time of computations, a neural network,
using NeMo (software CEA), is built to approximate the
forward model. The neural network training requires
1100 forward simulations but a new parametrization of
forward model requires to build a new neural network.
In the local approach, the set of parameters is a local solu-

tion and is not necessarily the global minimum. To acceler-
ate convergence it is better to have gradients of the
objective function. It is time consuming when computed
by finite differences, particularly when the number of
parameters is important. Adjoint state method gives more
accurate gradients, but the adjoint system building requires
a long programming effort.

Appendix. Comparison between the data and models

for the DI experiment

See (Fig. 1).
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Optimisation numérique aspects théoriques et pratiques. Mathéma-
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Möri, A., Steiger, H., Bossart, P., 2000. DI experiment: sampling

documentation of boreholes BDI-1 and BDI-3. Geotechnical Institute

Ltd., Mont Terri Project, Technical note 2000-16.

Mugler, C, Transfert thermique dans un milieu argileux: simulation

directe 3D de l’expérience HE-C du Mont Terri. CEA Technical report

DEN/DM2S/SFME/MTMS/TR/03-006/A.

Nocedal, J., Wright, S., 1999. Numerical optimization. Springer Series in

Operations Research.

Novakowski, K.S., ven der Kamp, G., 1996. The radial diffusion method

2. A semianalytical model for the determination of effective diffusion

coefficients, porosity, and adsorption. Water Resources Research 32

(6), 1823–1830.
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