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We present an upscaled model for the vertical migration of a CO2 plume through a vertical column filled with
a periodic layered porous medium. This model may describe the vertical migration of a CO2 plume in a
perfectly layered horizontal aquifer. Capillarity and buoyancy are taken into account and semi-explicit
upscaled flux functions are proposed in the two following cases: (i) capillarity is the main driving force and
(ii) buoyancy is the only driving force. In both cases, we show that the upscaled buoyant flux is a bell-shaped
function of the saturation, as in the case of a homogeneous porous medium. In the capillary-dominant case,
we show that the upscaled buoyant flux is the harmonic mean of the buoyant fluxes in each layer. The
upscaled saturation is governed by the continuity of the capillary pressure at the interface between layers. In
the capillary-free case, the upscaled buoyant flux and upscaled saturation are determined by the flux
continuity condition at the interface. As the flux is not continuous over the entire range of saturation, the
upscaled saturation is only defined where continuity is verified, i.e. in two saturation domains. As a
consequence, the upscaled buoyant flux is described by a piecewise continuous function. Two analytical
approximations of this flux are proposed and this capillary-free upscaled model is validated for two cases of
heterogeneity. Upscaled and cell averaged saturations are in good agreement. Furthermore, the proposed
analytical upscaled fluxes provide satisfactory approximations as long as the saturation set at the inlet of the
column is in a range where analytical and numerical upscaled fluxes are close.
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1. Introduction

Potential geological storage sites for the sequestration of carbon
dioxide (CO2), like deep saline aquifers or gas and oil reservoirs, are
heterogeneous [8]. Two types of heterogeneity can be considered [4]:
sedimentary heterogeneity and structural heterogeneity due to faults
or fractures. These two types are classically described as a spatial
hierarchy of architectures. Ringrose et al. [31], distinguish the
lithofacies scale (10−2–100 m), the geological scale (100–102 m)
and the reservoir scale. Structural heterogeneities are typically
incorporated in the models at the reservoir scale. We consider here
sedimentary heterogeneity at the lithofacies and geological scales
only. They describe respectively recognizable association of lamina
and laminasets and the spatial arrangement of lithofacies or rock units
[31]. Indeed, this nested hierarchy controls phase flow parameters
such as porosity, absolute permeability, relative-permeability and
capillary pressure curves.

Numerical models have been developed and applied to synthetic
or natural storage sites to assess the impact of the spatial variability of
these parameters [14–16,22]. For memory and computational time
reasons, these reservoir models cannot account for the multi-scale
variability, i.e. from the lamina-scale to the stratigraphic unit scale
[27,31]. Because of their complexity they also cannot be used for site
performance and risk assessment studies.

As reservoir models in petroleum engineering full-scale models of
CO2 storage sites need to be upscaled. Much of the upscaling
approaches and techniques developed in reservoir modeling
[1,10,11,31] can be used for this purpose. Nevertheless, gravity is
often neglected, at least in oil water systems, and viscous forces are
considered to be dominant at the reservoir scale [1]. Injected as a
supercritical fluid, CO2 is buoyant with respect to the site porewater;
therefore gravity plays an important role in CO2 injection and
migration [8].

CO2 sequestration in deep saline aquifers, such as the Utsira
aquifer at the Sleipner site [37], is an option studied by many
countries. Indeed, these geological formations offer the advantages of
having more volume capacity than other types of formation and being
the more abundant in the subsurface. Seismic profiles have tracked
since the beginning of the injection in 1996 the CO2 plume migration
in Utsira sands [2]. They show that the plume rises buoyantly in the
aquifer, ponds beneath low-permeability shale layers, and migrates
progressively upwards through leaks in these layers. In many
modeling studies Utsira is idealized as a 200 m thick stratified aquifer
composed of high-permeability sand layers (≈10−12 m2) separated
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periodically by four to nine low-permeability shale layers [5,20].
These shale layers are considered either as continuous, but with
microfractures represented by a homogenized absolute permeability
of 10−14 m2, or discontinuous and impermeable. In the first case, i.e.
continuous layers, the plume is driven through the different layers
mainly by capillarity and buoyancy and, far from the injection point,
i.e. above the first lowest shale layer, the plume migration can be
modeled as a one-dimensional vertical process. In the second case, i.e.
discontinuous layers, the CO2 plume is essentially buoyancy-driven
and migrates through tortuous high-permeability pathways. Indeed
the migration process is, in this last case, fully multi-dimensional.
Recently Hesse and Woods [19] showed that the flux partitioning
through a two dimensional periodic system of discontinuous
impermeable barriers may be modeled as a dispersion process and,
Green and Ennis-King [17] studied the statistics of high-permeability
pathways in the case of a two dimensional random system. Other
authors have modeled CO2 migration as gravity currents [7] and, for
instance, Neufeld and Huppert [25] developed such a model for Utsira
assuming that CO2 migration through continuous shale layers may be
represented as a drainage process.

Nothing is known on the plume migration at a smaller scale,
namely in the high-permeability layers. Saadtpoor et. al. [32] analyzed
the two dimensional migration of a CO2 plume in geostatistical
realizations of permeability distributed log-normally. The horizontal
correlation length was equal to 1.5 m or 15.0 m and the vertical
direction was assumed uncorrelated. They showed that, when
capillarity is neglected, the plume migrates along tortuous vertical
pathways of less hydraulic resistance, determined by the spatial
correlation of permeability, andwhen capillarity is taken into account,
and scaled to the permeability, the plume migrates along pathways of
low capillary entry pressure. Introduction of this capillary heteroge-
neity leads to a new trapping mechanism that the authors call
capillary trapping.

All these works show that CO2 migration in a two- or three-
dimensional heterogeneous aquifer is a complex process and the
upscaling of this problem, recognized as an important issue for carbon
sequestration, has not been tackled for the moment in the literature.
In this paper, we consider the problem for a one-dimensional
geometry: a vertical column filled with a periodic layered porous
medium. As discussed previously, this uni-dimensional representa-
tion of a perfectly layered aquifer may be relevant for site modeling,
and particularly in risk assessment models. More importantly it
provides a basis for generalizations to higher dimensions.

To the authors knowledge, the upscaling of two-phase flow driven
by injection, capillarity and gravity through a vertical periodic layered
porous column has never been published, neither in the case where
the injected phase is light (CO2) nor in the case where it is dense, like
dense nonaqueous phase liquids (DNAPL).

Van Duijn et al. [40] studied the injection of oil into a horizontal
column filled initially with water. In this case, gravity is absent and
capillarity is the only driving force. They considered a capillary
pressure described by the Leverett model with a non zero entry
pressure [38,39]. The objective was to derive and validate with
numerical simulations an effective saturation transport equation
which accounts for capillary oil trapping at the microscale, or lamina-
scale, during water-drive in an oil reservoir. This trapping mechanism
comes from the entry pressure discontinuity at the interface between
a high and a low-permeability layer which induces an oil saturation
discontinuity. To derive the effective saturation transport equation,
van Duijn et al. followed the homogenization procedure introduced
initially by Bensoussan et al. [6] or Sanchez Palencia [33] for periodic
structures and applied to multiphase flow problems in periodic
porous media by many authors such as Amaziane et al. [3] or Panfilov
and Floriat [26] for two-phase flow in oil reservoirs, and Lewan-
dowska et al. [23] for the upscaling of unsaturated flow. Later on, van
Duijn et al. improved their upscaled model by considering higher
order terms in the asymptotic expansion of the capillary pressure
continuity condition at the layer interface [41].

Quintard and Whitaker [29] studied also the case of a horizontal
columnwith their original volume averaging technique based on scale
separation [28]. They neglected dynamic effects associated with flow
and transient effects and considered a capillary pressure curve with
zero entry pressure. They proposed an effective saturation transport
equation and effective relative-permeability and capillary pressure
curves. Then, they discussed by means of numerical simulations how,
far from the injection point, their upscaling approach can reproduce
the space averaged saturation. Dale et al. [13] proposed effective
curves in the steady state, based on an analytical solution of the
steady-state saturation equation. The applicability of these para-
meters was evaluated by means of numerical simulations. In
particular, they showed that their upscaled curves recover the
capillary equilibrium condition when the injection rate tends to
zero, and inversely the viscously dominated flow limit when the rate
tends to infinity.

When gravity is added, i.e. the column is vertical and filled with a
light phase (CO2) and a dense phase (water), upscaling is expected to
become a more complex task, essentially because the two-phase flow
at the interface between two layers is complex and may follow
different flow regimes [35]. Indeed, as the gravity (buoyant) flux
depends on the absolute permeability and is a bell-shaped function of
the saturation, it cannot be continuous at the layer interface over the
entire range of saturation and, moreover, saturation is discontinuous
in the range of flux where continuity is respected [18,34]. When
capillarity is neglected, this leads to a CO2 plume dynamics described
as a succession of shocks and rarefaction waves. See Hayek et al. [16]
for a description of the problem in 1D and 2D with an injection point
at the bottom of the domain. Therefore consideration of capillarity
and buoyancy leads to a general problem where both the total flux –

equal to the sum of the viscous, buoyant and capillary fluxes – and the
capillary pressure must be continuous at each interface. This imposes
discontinuities of both saturation and saturation gradients at the
interfaces. To the authors knowledge, Siddiqui and Lake [35] are the
only authors who studied this issue for the analysis of secondary
migration of hydrocarbon, i.e. from the reservoir into a seal, in the
petroleum engineering context.

In this paper, we propose an upscaled model for the buoyant
migration of a CO2 plume in a vertical column filled with a periodically
layered porous medium. Buoyancy and capillarity are considered, but
injection is neglected. Following the work of van Duijn et al., we adopt
the homogenization technique for periodic media of Bensoussan et al.
[6]. We consider two cases: one, where capillarity is dominant and the
other with no capillarity. This last case is often called the Buckley–
Leverett problem with gravity [18]. The case where buoyancy and
capillarity are of the same order of magnitude in a layer is much more
complex and will be studied in a forthcoming paper. We show that in
the first case, the upscaled CO2 saturation transport equation is a
nonlinear convection–diffusion type equation and, in the second one,
a non linear convection type equation. In each case, upscaled flux
functions must be determined numerically but in the second case, we
propose two analytical approximations. Finally, the validity of the
capillary-free upscaled model is studied by means of numerical
experiments and the saturations obtained with numerical and
analytical flux functions are compared and discussed.

2. The model

We consider a 1D-vertical column filled with a periodic layered
porous mediummade up of low and high-permeability layers (Fig. 1).
Without any loss of generality, we assume that the layers have the
same constant porosity, ϕ, and the same thickness equal to δ. The
absolute permeabilities of the low and high-permeability layers are
k− and k+, respectively. The column length is H and supposed to be



Fig. 1. Vertical column with high and low-permeability layers.
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much greater than δ, and consequently the small parameter ε=δ/H is
much smaller than one, εbb1.

The flow of two immiscible and incompressible phases, water
and CO2, in the 1D-column is described by the mass balance
equations:

ϕ
∂Sα
∂t +

∂uα

∂z = 0 ð1Þ

and by the modified Darcy's laws:

uα = − kðzÞk rα Sαð Þ
μ α

∂pα
∂z −ρα g

� �
ð2Þ

where α=g for CO2, called gas phase, and α=w for water, called
liquid phase. Here Sα, uα, pα, krα, μα, and ρα are the saturation, Darcy
velocity, pressure, relative-permeability, viscosity, and density of
phase α, respectively. g is the acceleration due to gravity, ϕ the
porosity and the absolute permeability k(z) is equal to either k− or k+.

The most used relative-permeability models for CO2 migration in
geological media are the Brooks-Corey [9] and van Genuchten models
[42]. In the present paper, the Brooks-Corey formula for relative-
permeability is used

krw Sg
� �

= 1−Seg
� �2 + 3λ

λ

k rg Sg
� �

= S2
eg 1− 1−Seg

� �2 + λ
λ

" # ð3Þ

where λ is the pore size distribution index. In Eq. (3), Seg is the
effective gas phase saturation given by:

Seg =
Sg−Srg

1−Srg−Srw
ð4Þ

where Srα α = g;wð Þ is the residual saturation of phase α.
The phase saturations are constrained by:

Sw + Sg = 1: ð5Þ

This constraint and Eq. (1) yield to the total velocity

ug + uw = uðtÞ ð6Þ

which must be constant in space but may vary with time.
Capillary pressure is defined as

pcðSg; zÞ = pg−pw ð7Þ

and is given by the Leverett relationship [24]

pcðSg; zÞ = σ

ffiffiffiffiffiffiffiffiffi
ϕ

kðzÞ

s
JðSgÞ ð8Þ

where σ is the interfacial tension between water and CO2 and, J is the
Leverett function. The porosity ϕ is assumed to be constant in the
column. Here again, Brooks-Corey or van Genuchten models may be
used for the J function. Only Brooks-Corey is considered here:

JðSgÞ = 1−Seg
� �−1=λ ð9Þ

The entry pressure is defined as:

pcð0; zÞ = σ

ffiffiffiffiffiffiffiffiffi
ϕ

kðzÞ

s
ð10Þ

This pressure is the minimum pressure that CO2 must exert on
water before it can enter into a fully water saturated column. Index g
is now omitted and S≡Sg

Eqs. (2), (6) and (7) lead to CO2 Darcy velocity

ug =
uðtÞ

krw Sð Þ f Sð Þ + 1
μw

kðzÞf Sð Þ ρw−ρg
� �

g−∂pc
∂z

� �
ð11Þ

where

f Sð Þ = krg Sð Þkrw Sð Þ
krg Sð Þ + Mkrw Sð Þ ð12Þ

with M=μ g/μw, the viscosity ratio. The three terms in Eq. (11)
correspond to the contributions of, respectively, injection, buoyancy
and capillarity to the CO2 flux. One should notice that buoyancy is
described by a bell-shaped function, f Sð Þ, whereas injection is
described by a “S”-shaped function, f Sð Þ = k rw Sð Þ, usually called
fractional flow function of the wetting phase. This difference of
shape has a fundamental impact on the CO2 plume dynamics [18]. In
this paper, we assume that the flow is countercurrent, u(t)=0, which
means that there is no phase injection in the column. The flow of the
gas and water phases is only driven by buoyancy and capillarity
forces: due to density contrast, CO2 is moving upwards and water
downwards. The case u(t)≠0 will be briefly discussed in Section 3.

Substitution of Eq. (11) into Eq. (5) yields to the non linear
advection–diffusion transport equation:

ϕ
∂S
∂t +

∂
∂z

1
μw

kðzÞf Sð Þ ρw−ρg
� �

g−∂pc
∂z

� �� �
= 0: ð13Þ

This equation has been studied, from a physical and/or numerical
point of view, by different authors, mainly in the homogeneous
porous medium case. Among them, we can cite Cunha et al. [12] who
performed a laboratory experiment to analyze the motion of gas
(atmospheric air) and liquid in a vertical column and used a numerical
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scheme of Godunov type to model the experiment. More recently,
Sillin et al. [36] analyzed the vertical motion of a gas plume by means
of travelling-wave solutions and proposed their method to study CO2

leaks from deep geological formations. It is important to emphasize
that the bell shape of the flux function leads to a gas plume migration
described as a sequence of shock and rarefaction waves at the top and
the bottom of the plume. This sequence depends strongly on the
relative-permeability relationships and on the initial plume saturation
distribution.

As discussed in the introduction, very few works has been done on
the heterogeneous porous medium case. To the authors knowledge,
Siddiqui and Lake [35] are the only authors who addressed this issue.
When capillarity is neglected, Eq. (13) reduces to the Buckley–Leverett
equation with gravity. Among the few authors who studied this
equation in heterogeneous porous media, we can cite, for instance,
Kaasschieter [21] who studied extensively, from amathematical point
of view, the case of a permeability discontinuity. Recently Hayek et al.
[18] analyzed the vertical motion of a CO2 plume in a layered porous
medium in 1D and in 2D. They proposed an explanation to the vertical
CO2 stratification observed at the Sleipner site [2].

Let us introduce the dimensionless variables k̂ = k = k0, ẑ = z = H
and t̂ = t

T 1−Srg−Srwð Þ where H is a macroscopic length, the column

height for instance, T=H/ug0 is a characteristic travel time, with

ug0 = 1
ϕμw

k0 ρw−ρg
� �

g, and k0 is a characteristic absolute permeabil-

ity. In what follows, to simplify the notation, we will note the
dimensionless variables without hats, all the variables and unknowns
having no dimension. These new variables bring Eq. (13) to the
dimensionless form

∂S
∂t +

∂
∂z F z; Sð Þð Þ = 0: ð14Þ

In Eq. (14), the dimensionless flux function F(z,S)is given by:

Fðz; SÞ = kðzÞf Sð Þ 1− Ncffiffiffiffiffiffiffiffiffi
kðzÞ

p J′ðSÞ ∂S∂z

 !
ð15Þ

where J′ðSÞ = dJ
dS and

Nc =
σ

ρw−ρg
� �

gH

ffiffiffiffiffi
ϕ
k0

s
ð16Þ

is called the capillary number. This dimensionless number, analogous
to the reciprocal Bond number as pointed out by Silin et al. [36],
measures the ratio between capillary and buoyancy forces. When
Nc=0 capillarity is neglected and Eq. (14) reduces to the Buckley–
Leverett equation with gravity

∂S
∂t +

∂
∂z kðzÞf Sð Þð Þ = 0: ð17Þ

With the parameter values adopted bymodelers for the simulation
of CO2 injection into the Utsira aquifer [5], one finds that Nc is of the
order of 0.1 for a sand layer (H≈25 m, k0≈3×10−12 m2 and
ϕ≈45%) and greater than one for a shale layer (H≈5 m, k0≈10−14

m2 and ϕ≈10%).
From now, we will consider two models: the general model which

takes into account buoyancy and capillarity and the capillary-free
model where Nc=0.
2.1. The model with capillarity and buoyancy

In this case, CO2 saturation in a high-permeability layer is
described by

∂S
∂t +

∂
∂z Fþ
� �

= 0 ð18Þ

where FþðSÞ = kþf Sð Þ 1− Ncffiffiffiffi
kþ

p J′ðSÞ ∂S∂z
� �

is the associated flux. In the

low-permeability layer:

∂S
∂t +

∂
∂z F−ð Þ = 0 ð19Þ

where F−ðSÞ = k−f Sð Þ 1− Ncffiffiffiffiffi
k−

p J′ðSÞ ∂S∂z
� �

:

The continuity of the capillary pressure given by Eq. (8), at the
interface between a high and a low-permeability layer implies that

JðSint;−Þffiffiffiffiffiffi
k−

p =
JðSint; + Þffiffiffiffiffiffi

kþ
p ð20Þ

where S int,+ and S int,− are the saturation values on the high-
permeability and low-permeability sides of the interface, respectively.
As the entrypressuredependson the absolutepermeability, this pressure
is discontinuous at the interface and correlatively, the saturation at the
interface is also discontinuous. Let us suppose that CO2 ismigrating from
a high to a low-permeability layer, then the entry pressure discontinuity
defines a threshold saturation S* which satisfies:

JðS�Þffiffiffiffiffiffi
kþ

p =
Jð0Þffiffiffiffiffiffi
k−

p : ð21Þ

As long as S int,+bS*, CO2 pressure is below the entry pressure of
the low-permeability layer and CO2 cannot enter into the low-
permeability layer; the interface is a zero flux boundary and S int,− =0
and S int,+ increases with time. When S int,+ ≥S*, CO2 pressure is
greater or equal to the entry pressure of the low-permeability layer
and CO2 can enter into the low-permeability layer. Capillary pressure
continuity is verified and saturations at the interface are ruled by
Eq. (20). Moreover, fluxmust be continuous at the interface, therefore
the saturations at the interface must also obey the relationship

Fþ Sint;+
� �

= F− Sint;−
� �

: ð22Þ

2.2. The model without capillarity

When capillary effects are neglected, the CO2 saturation in the
column is described by the Buckley–Leverett equation with gravity
given by Eq. (17). In a high-permeability layer, Eq. (14) reads

∂S
∂t +

∂
∂z Fþ
� �

= 0 ð23Þ

where F+(S)=k+f(S) is the flux in the high-permeability layer. In the
low-permeability layer:

∂S
∂t +

∂
∂z F−ð Þ = 0 ð24Þ

where F−(S)=k−f(S). The flux continuity at the interface between
two layers implies

Fþ Sint;+
� �

= F− Sint;−
� �

ð25Þ
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where S int,+ and S int,− are the saturation values on each side of the
interface. Indeed, as the global flux function Fðz; SÞ = kðzÞf Sð Þ
depends on the absolute permeability, flux continuity at the interface
leads to a saturation discontinuity [18].

3. The upscaled model

To upscale the model, we adopt the homogenization procedure
introduced initially by Bensoussan et al. [6] or Sanchez Palencia [33]
for periodic structures and applied to multiphase flow problems in
periodic porous media by many authors [3,23,26]. More precisely, we
follow in this work the modeling approach of van Duijn et al. [40,41]
who studied the homogenization of two-phase flowwith capillarity in
a horizontal column and proposed an upscaled transport equation
accounting for capillary trapping at the microscale.

In our problem, the small parameter is ε=δ/H, the ratio of the layer
thickness δ to the column height H. We first introduce two spatial
variables, the macroscale variable z and the microscale variable ζ=z/ε,
which describe migration at the column scale and layer scale,
respectively. Next, we expand asymptotically the saturation in powers
of ε

Sðz; tÞ≡ Sðz; ζ; tÞ = S0ðz; ζ; tÞ + εS1ðz; ζ; tÞ + ε2S2ðz; ζ; tÞ + … ð26Þ

where the functions S i(z, ζ, t) are periodic in ζ. The upscaled
saturation, noted Sðz; tÞ, is defined as the integral of S0(z,ζ, t) on a
periodic cell:

P
Sðz; tÞ = 1

2
∫
−1

+1
S0ðz; ζ; tÞdζ ð27Þ

where the cell contains a low-permeability and a high-permeability
layer : for instance, k=k− for −1bζb0 and k=k+ for 0bζb1.

The derivation operator with respect to z is rewritten

∂
∂z≡

∂
∂z +

1
ε
∂
∂ζ : ð28Þ

We substitute the expansion, Eq. (26), and the derivation operator,
Eq. (28), into Eq. (14):

∂ S0 + εS1 + …
� �

∂t +
∂
∂z +

1
ε
∂
∂ζ

� �
Fðζ; SÞð Þ = 0 ð29Þ

where the flux function, Eq. (15), is

Fðζ; SÞ = Aðζ; SÞ−Bðζ; SÞ ∂S
∂z +

1
ε
∂S
∂ζ

� �
ð30Þ

with

Aðζ; SÞ = kðζÞf Sð Þ
Bðζ; SÞ = Nc

ffiffiffiffiffiffiffiffiffi
kðζÞ

p
f Sð ÞJ′ðSÞ ð31Þ

The functions f(S), J′ Sð Þ, A(ζ,S) and B(ζ,S) are expanded in powers
of ε

f Sð Þ = f S0 + εS1 + ε2S2…
� �

= f S0
� �

+ εS1f ′ S0
� �

+ ε2
1
2

S1
� �2

f ″ S0
� �

+ S2f ′ S0
� �� �

+ …

J′ðSÞ = J′ S0
� �

+ εS1J″ S0
� �

+ …

A ζ; Sð Þ = A ζ; S0
� �

+ εS1A′ ζ; S0
� �

+ …

B ζ; Sð Þ = B ζ; S0
� �

+ εS1B′ ζ; S0
� �

+ …:

ð32Þ
These expansions are inserted into the flux expression, Eq. (30),
and the terms of the same power εn are brought together. This leads to
the flux expansion

Fðζ; SÞ = ε−1F−1ðζ; S0Þ + ε0F 0ðζ; S0
; S1Þ + ε1F1ðζ; S0

; S1
; S2Þ + …

ð33Þ

where

ε−1: F−1ðζ; S0Þ = −B ζ; S0
� � ∂S0

∂ζ

ε0: F 0ðζ; S0; S1Þ = A ζ; S0
� �

−B ζ; S0
� � ∂S0

∂z +
∂S1

∂ζ

 !
−S1B′ ζ; S0

� � ∂S0

∂ζ
ð34Þ

Finally, we obtain the following saturation equations for the
different orders

ε−2:
∂F−1

∂ζ = − ∂
∂ζ B ζ; S0

� � ∂S0

∂ζ

 !
= 0

ε−1:
∂F−1

∂z +
∂F 0

∂ζ = − ∂
∂z Bðζ; S0Þ

∂S0

∂ζ

 !

+
∂
∂ζ Aðζ; S0Þ−Bðζ; S0Þ

∂S0

∂z +
∂S1

∂ζ

 !
−S1B′ðζ; S0Þ

∂S0

∂ζ

 !
= 0

ε0:
∂S0

∂t +
∂F0

∂z +
∂F1

∂ζ = 0:

ð35Þ

According to Section 2, if CO2 is injected at the bottom of the column,
the flow is no more countercurrent and the total velocity u(t)≠0 in
Eq. (11). Therefore an additional scalar flux component which depends
on saturation must be added to the buoyant component. Let us call this
component αqu(S) where q is the injection rate, assumed to be constant
with time, u(S)= f(S)/krg(S) and α is a constant which depends on the
problem parameters but not on permeability. We see that all the
upscaling procedure remains unchanged when this component is
added: the zeroth order flux reads F 0ðζ; S0Þ = kðζÞf S0

� �
+ αquðS0Þ

and the upscaled variables and equations do not change. Nevertheless,
the dimensionless variables may change as one may prefer to define a
characteristic travel time governed by injection, T=H/q, rather than
buoyancy as it is the case here.

As previously mentioned in Section 2.1, we consider two models:
(i) a model which takes into account buoyancy and capillarity and,
(ii) a capillary-free model with Nc=0. Moreover, we assume that in
the first case, capillarity is dominant, that isNc≥1. As amatter of fact,
in this case, the lowest order in ε of the flux expansion, Eq. (33),
represents capillary diffusion in a layer; this case is called the
capillary limit by van Duijn et al. [40]. When Nc≈ε, case called
balance case by the same authors, it is easy to see from the previous
expansions in powers of ε that the flux expansion is F(ζ,S)=ε0F 0(ζ,
S 0)+… where F 0ðζ; S0; S1Þ = A ζ; S0

� �
−B ζ; S0
� � ∂S 0

∂ζ which describes
capillary diffusion and buoyancy in a layer. This case is much more
complex to analyze than the capillary-dominant case and is not
studied in this paper.

3.1. The capillary-dominant model

The ε−2 order of the saturation equation, Eq. (35), shows that
the ε− 1 order of the flux, given by Eq. (34) and equal to
F−1ðζ; S0Þ = −B ζ; S0

� � ∂S 0

∂ζ , is constant in each layer of a cell and
depends only on the macroscale variable z. Moreover, flux continuity
at the interface between the two layers of a cell imposes that this flux,
F−1, is constant in a cell. Following van Duijn demonstration [40],
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this constant flux condition and the periodicity of S0 lead to the
result F−1=0. Therefore S0 is constant in each layer and we write
S−
0 ≡S−

0 (z, t) (−1bζb0) and S+
0 ≡S+

0 (z, t) (0bζb1).
As for the ε− 2 order, the ε− 1 order of the saturation equation,

Eq. (35), shows that the ε 0 order of the flux, noted F 0 in Eq. (34), is
constant in each cell and depends only on the macroscale variable
z. Coming back to the initial variables given by Eq. (31), we can
write:

−1bζb0: F 0ðz; tÞ = k−f ðS0
−Þ−Nc

ffiffiffiffiffiffi
k−

p
f S0

−

� �
J′ðS0

−Þ ∂S0
−

∂z +
∂S1−
∂ζ

 !

0bζb1: F0ðz; tÞ = kþ f ðS0
þÞ−Nc

ffiffiffiffiffiffi
kþ

p
f S0

þ
� �

J′ðS0
þÞ

∂S0
þ

∂z +
∂S1þ
∂ζ

 !

ð36Þ

where S−
1 ≡S−

1 (ζ,z, t) for −1≤ζ≤0 and S+
1 ≡S+

1 (ζ,z, t) for 0≤ζ≤1.
The saturation expansion, Eq. (26), is also inserted into the capillary

pressure continuity relationship at the layers interface, Eq. (20):

J S0
− + εS1−ð0; z; tÞ + …

� �
ffiffiffiffiffiffi
k−

p =
J S0

þ + εS1þð0; z; tÞ + …
� �

ffiffiffiffiffiffi
kþ

p ð37Þ

The J functions are expanded and the following relationships are
obtained [33]:

ε0:
JðS0

−Þffiffiffiffiffiffi
k−

p =
JðS0

þÞffiffiffiffiffiffi
kþ

p
ε1: S1−ð0; z; tÞ J

′ðS0
−Þffiffiffiffiffiffi
k−

p = S1þð0; z; tÞ
J′ðS0

þÞffiffiffiffiffiffi
kþ

p
ð38Þ

Periodicity and continuity of capillary pressure lead to another
relationship linking the values of the ε order capillary pressure
expansion at the two cell endpoints, ζ=±1, [41]:

S1−ð−1; z; tÞ J
′ðS0

−Þffiffiffiffiffiffi
k−

p = S1þð + 1; z; tÞ J
′ðS0þÞffiffiffiffiffiffi
kþ

p ð39Þ

With the help of Eqs. (38) and (39), saturation profiles S−
1 andS+1

and gradients ∂S1−
∂ζ and ∂S1þ

∂ζ of Eq. (36) are found and the ε0 order of the

flux, defined as F0 in Eq. (36), finally reads:

F 0ðz; tÞ = 2
1

k− f ðS 0
−Þ + 1

kþ f ðS 0
þÞ

1−Nc

2
J′ðS0

−Þffiffiffiffiffiffi
k−

p ∂S0
−

∂z +
J′ðS0þÞffiffiffiffiffiffi

kþ
p ∂S0þ

∂z

 ! !
: ð40Þ

The integration over a cell of the ε0 order saturation equation,
Eq. (35), leads to the following upscaled transport equation:

∂–S
∂t +

∂–Fð–SÞ
∂z = 0 ð41Þ

where, due to the periodicity condition, the third term of the ε0

equation, ∂F
1

∂ζ , is null after integration. The upscaled saturation, Eq. (27)

is:

P
Sðz; tÞ = 1

2
S0− + S0þ
� �

ð42Þ
and the upscaled flux function –Fð–Sðz; tÞÞ≡F0ðz; tÞ is defined as:

0≤ –S≤ –S
�
: –Fð–SÞ = 0

–S
�≤ –S≤1: –Fð–SÞ = –Gð–SÞ 1−Nc

∂–Pcð–SÞ
∂z

 ! ð43Þ

where –S
�
= S� = 2. The upscaled buoyant flux function is:

–Gð–SÞ = 2
1

k−f ðS 0
−Þ +

1
kþ f ðS 0

þÞ
ð44Þ

and the upscaled dimensionless capillary pressure:

–Pcð–SÞ =
JðS0

−Þffiffiffiffiffiffi
k−

p =
JðS0

þÞffiffiffiffiffiffi
kþ

p : ð45Þ

Following the definition of the threshold saturation S*, Eq. (21), as
long as S+

0bS*, the CO2 cannot enter into the low-permeability layer,
then S−

0 =0ð–Sb –
S
�
= S� = 2Þ and the flux F 0=0 ð–Fð–SÞ = 0Þ. Finally,

the upscaled equation, Eq. (41), may be rewritten as a non linear
diffusion–advection transport equation

∂–S
∂t +

∂
∂z

–Gð–SÞ− –Dð–SÞ ∂
–S

∂z

 !
= 0 ð46Þ

where the upscaled diffusivity is

–Dð–SÞ = –Gð–SÞdPcð
–
SÞ

d
–
S

: ð47Þ

The upscaled buoyant flux function –
Gð–SÞ can be interpreted as the

harmonic cell average of the low and high-permeability layer buoyant
flux functions, i.e. k+f and k−f. This is an expected result for a
migration process perpendicular to the layering of a porous medium.
Harmonic averaged functions have also been obtained by van Duijn et
al. [41] for the horizontal column.

The functions –
Pcð–SÞ, –Gð–SÞ and –

Dð–SÞare plotted in Figs. 2 and 4 for
two different permeability ratios: k−/k+=0.3 (Figs. 2a, 3a and 4a)
and k−/k+=0.05 (Figs. 2b, 3b and 4b), with k+=1. In these figures,
the function f(S) is normalized against its maximum value. The fluid
properties and relative-permeability values are given in Table 1. The
threshold saturation values are S*=0.505(–S

�
= 0:2775) and

S*=0.6675(–S
�
= 0:3587) for k−/k+=0.3 and k−/k+=0.05, respec-

tively (Fig. 2). We see that –Gð–S Þ is a bell-shaped curve, as in the case of
a homogeneous porous medium, but it is much more asymmetric in
the layered case (see Fig. 5 which shows k+f(S) and k−f(S) for k−/
k+=0.3). The contributions of each layer to –

Gð–SÞ, i.e. 2k−f(S−0 ) and
2k+f(S+0 ) with –S = S0

− + S0
þ

� �
= 2, are also plotted in Fig. 3. It shows

that the vertical migration of the CO2 plume is mainly controlled by
the low-permeability layer in the ascending part of the curve, i.e. for –S
close to –S

�
, and by the high-permeability layer in the descending part.

The maximum of –Gð–SÞ for k−/k+=0.05 (Fig. 3b) is approximately
three orders of magnitude lower than for k−/k+=0.3 (Fig. 3a). This
ratio, which is lower than that of the low-permeability layer
permeabilities for the two cases, i.e. k−/k−=0.16, is mainly explained



Fig. 2. Upscaled, low and high-permeability layer capillary pressure curves for
(a) k−/k+=0.3 and for (b) k−/k+=0.05.

Fig. 3. Upscaled buoyant flux function –
Gð–SÞ and its two contributions 2k−f(S−0 ) and

2k+f(S+0 ) with –
S = S0− + S0þ

� �
= 2 for (a) k−/k+=0.3 and for (b) k−/k+=0.05.

Fig. 4. Upscaled diffusivity –Dð–SÞ for (a) k−/k+=0.3 and for (b) k−/k+=0.05.
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by the function f(S+0NS*) which decreases rapidly when the threshold
saturation value S* increases, i.e. when k− decreases (Fig. 2).

3.2. The capillary-free model

In this Section,we investigate the caseNc=0. According to Eqs. (30)
and (31) B(ζ,S)=0 and the flux is Fðζ; SÞ = Aðζ; SÞ = kðζÞf Sð Þ. The flux
expansion given in Eq. (33) reduces to F(ζ,S)=ε0F0(ζ,S0)+… and the
saturation equation for the different orders given by Eq. (35)
becomes:

ε−1:
∂F 0ðζ; S0Þ

∂ζ =
∂ kðζÞf ðζ; S0Þ
� �

∂ζ = 0

ε0:
∂S0

∂t +
∂F 0

∂z +
∂F1

∂ζ = 0

ð48Þ

The ε−1 order equation shows that the flux at the ε0 order F0(ζ,
S0)=k(ζ) f(ζ,S0) is constant on a cell and depends only on the
Table 1
Fluids properties.

Parameters Units Values

Gas viscosity μg [kg·m−1·s−1] 4.38×10−5

Liquid viscosity μw [kg·m−1·s−1] 0.25×10−3

Residual saturation of gas phase Srg [–] 0.05
Residual saturation of liquid phase Srw [–] 0.3
Pore size distribution index λ [–] 2

image of Fig.�2
image of Fig.�3
image of Fig.�4


Fig. 5. Buoyant flux functions of the low and high-permeability layers, F− and F+,
respectively, and upscaled gravity flux function for k−/k+=0.3. Flux functions are
normalized against the maximum of f(S).
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macroscale variable z. Therefore, saturation S0 is constant in each
layer and can be written as:

−1bζb0: F 0ðz; tÞ = k−f−ðS0
−ðz; tÞÞ

0bζb1: F 0ðz; tÞ = kþfþðS0
þðz; tÞÞ

ð49Þ
Fig. 6. Upscaled, first and second order buoyant flux functions, k−/k+=0.3. (a) convex
hull and (b) concave hull.
where S+
0 and S−

0 are the saturation values in the high- and low-
permeability layers, respectively. Integration of the ε0 equation on a
cell leads to the upscaled transport equation

∂–S
∂t +

∂–Fð–SÞ
∂z = 0 ð50Þ

where, due to the periodicity condition, the third term of the ε 0

equation is null after integration. For a couple of saturations S+0 and S−
0

satisfying the flux continuity condition given by Eq. (49), the upscaled
saturation, is given by Eq. (42) and the upscaled flux function is
–Fð–Sðz; tÞÞ≡F 0ðz; tÞ.

To determine the upscaled flux function, we assume that, first, S+0

and the associated flux F0=k+ f+(S+0 (z, t)) are known, then the flux
continuity condition, Eq. (49), is inverted to obtain the corresponding
S−
0 and finally the upscaled flux function is described by the couple

ð–S; F 0Þ.
As for the capillary-dominant model described in Section 3.1, two

permeability ratios k−/k+ are considered: k−/k+=0.3 and k−/
k+=0.05. The fluid properties and the relative-permeability values
are given in Table 1. Hayek et al. [18] showed that flux continuity
cannot be verified for the whole range of S+0 values but only on two
segments: 0≤S+

0 ≤S1 and S2≤S+
0 ≤1−Srw. The two saturations S 1

and S2 are given by the relationship:

FþðS1Þ = FþðS2Þ = F−ðSMÞ ð51Þ

where SM is the saturation at which function f is maximum and the
flux functions are F−≡F0=k−f−(S−) and F+≡F0=k+ f+(S+). Fig. 5
shows the flux continuity for the case k−/k+=0.3.

This constraint defines two ranges of upscaled saturation
0≤ –S≤ –S1 and –S2≤

–S≤1−Srw where –S1 = S1 + SMð Þ = 2 and
–S2 = S2 + SMð Þ = 2 wi th –Fð–S1Þ = –Fð–S2Þ = F−ðSMÞ. The re f o re
upscaled saturations lying between –S1 and –S2 do not exist (Fig. 5).
This is a direct consequence of the non-monotonicity of the flux
function (i.e. bell-shaped function). Indeed, if one thinks of a
monotone flux function depending on absolute permeability, one
can easily see that the upscaled flux function is a continuous
monotone function defined in a single saturation domain. When the
ratio k−/k+→0 we have –S1→Srg and –S2→ 1−Srwð Þ and inversely
when k−/k+→1 we have –S1 and –S2→SM.

The upscaled flux functionmust be computed numerically for each
permeability ratio k−/k+. Nevertheless an analytical approximation of
this function can be proposed as follows. Let us write S0

− = –S + δ–S
and S0

þ = –
S−δ–S, then the flux continuity, Eq. (49), may be written

kþf ð–S−δ–SÞ = k−f ð–S + δ–SÞ. Let us expand the f function up to the
second order in δS:

f ð–SFδ–SÞ≃ f ð–SÞFδ–Sf ′ð–SÞ + 1
2
δ–S2f ″ð–SÞ: ð52Þ

Eliminating δS leads to the upscaled flux function

–Fð–SÞ = Kðkþ; k−Þ
2 f ′ð SÞ
� �2
f ″ð SÞ

1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2f ð–SÞf ″ð–SÞ

f ′ð–SÞ� �2 Rðkþ; k−Þ� �2
vuut

0
@

1
A ð53Þ

w h e r e Kðkþ; k−Þ = σðkþ ;k−Þ
δðkþ ;k−Þð Þ2 a n d Rðkþ; k−Þ = δðkþ ;k−Þ

σðkþ;k−Þ w i t h

δðkþ; k−Þ = 1
kþ
− 1

k−
and σðkþ; k−Þ = 1

kþ
+ 1

k−
. We call Eq. (53) second

order approximation.
If we neglect the second order derivative f″, we obtain the first

order approximation

–
Fð–SÞ = KHðkþ; k−Þf ð–SÞ ð54Þ
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Fig. 7. Upscaled, first and second order buoyant flux functions for k−/k+=0.05.
(a) convex hull and (b) concave hull.

Fig. 8. Saturation distributions before the plume reaches the top of the column.
Saturation at the bottom set to S1. (a) k−/k+=0.3 and (b) k−/k+=0.05.
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where KH(k+,k−)=2/σ(k+,k−) is the harmonic mean of the
permeabilities of the low and high-permeability layers. It should be
noticed that in this last approximation, the dependency of the
upscaled flux on the upscaled saturation is not affected by upscaling,
which is not the case in the second order approximation. A harmonic
mean as an effective permeability is not a surprising result for a
transport process normal to the layering [30].

The upscaled fluxes computed numerically and obtained from the
first and second order approximations are plotted in Figs. 6 and 7 for
k−/k+=0.3 and k−/k+=0.05, respectively. In these figures, the flux
functions are normalized against the maximum of f(S). As expected
the second order gives a better approximation of the upscaled flux for
saturations not too close to S1 and S2, and is above the exact flux,
particularly in the neighbourhood of S1 and S2. Inversely the first
order is below the exact flux function. None of the approximations
restitute the curvature of the upscaled flux in the neighbourhoods of
–S1 and –S2.

An interesting asymptotic case is k−≪k+. In this case, we see that
when k−/k+→0 we have S→S0

− = 2 where S+
0 →0, and the upscaled

flux function FðSÞ→k−f ð2SÞ.
Following the remarkmade at the end of Section 3 on injection, we

see that if injection is taken into account, the upscaled flux function
depends on the injection rate q. This dependence cannot be isolated
explicitly in the upscaled flux under the form of an upscaled injection
term like αquðSÞ. An expansion of the flux in δS like in Eq. (52) leads
to nonlinear and fractional terms with respect to the injection rate q,
even in the first order approximation.
3.3. Validation of the upscaled capillary-free model

In this Section, we compare the upscaled model with the small-
scale model in the capillary-free case. Three upscaled flux functions
are considered: the exact flux function, obtained numerically, and the
first order and second order approximations, discussed previously
that we call first order flux function and second order flux function. All
the models are solved analytically and the solutions are exact [16].
Two permeability ratios k−/k+ are studied, 0.05 and 0.3, and the small
parameter ε, ratio of the layer thickness to the column height is set to
1/50. CO2 saturation is imposed at the bottom of the column at z=0,
although the top of the column at z=1 is a zero flux boundary.

The saturation profiles obtained before and after the CO2 plume
have reached the top of the column are displayed in Figs. 8 and 9.
Figs. 8a and 9a, and 8b and 9b correspond to the cases k−/k+=0.3 and
k−/k+=0.05, respectively. CO2 saturation at the bottom of the
column is set to S1, where S1 = 0:21 for k−/k+=0.3 and S1 = 0:18
for k−/k+=0.05. The piecewise periodic shape of the small-scale
saturation distributions has been discussed in [18]. The exact upscaled
saturation distributions fit perfectly well with the cell averaged
solution. These two distributions are described by a shock between
S = 0 and S = –S′1 and a rarefaction wave between S = –S′1 and
S = S1, where –S′1 is shown in Figs. 6 and 7. These saturations describe
the convex hull of the low saturation branch of the exact upscaled flux
function (Figs. 6a and 7a). The saturation distributions computed with
the first and second order fluxes, called first and second order
saturation distributions, are described by shocks only and they travel

image of Fig.�7
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Fig. 9. Saturation distributions after the plume has reached the top of the column.
Saturation at the bottom set to S1. (a) k−/k+=0.3 and (b) k−/k+=0.05.

Fig. 10. Saturation distributions before (a) and after (b) the plume has reached the top
of the column. Saturation at the bottom set to a value smaller than S1. k−/k+=0.3.

Fig. 11. Upscaled and cell averaged saturation distributions after the plume has reached
the top of the column.
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faster than the “exact” shock, and the “second order” shock travels
faster than the “first order” shock, particularly in the case k−/
k+=0.05. This is explained in Figs. 6a and 7a which show that: i) the
convex hull of the low saturation branch of the exact flux function is
made up of a straight line between S = 0 and S = S′1 and by the flux
function between S = –

S′1 and S = S1; ii) the convex hulls of the low
saturation branches of the first and second order flux functions are
straight lines between S = 0 and S = S1; iii) the slope of the straight
line describing the “second order” convex hull is greater than that
describing the “first order” convex hull, and this difference is more
pronounced for k−/k+=0.05 than for k−/k+=0.3. Let us recall that
the shock velocity is proportional to this slope.

Once the plume has reached the top of the column, CO2 starts to
accumulate below the top, as shown in Fig. 9. Again the exact upscaled
distributions, computed with the exact upscaled flux function, fits
perfectly well with the cell averaged solution. Now, the saturation
distributions depend on both low- and high-saturation branches of
the flux functions (Figs. 6 and 7). The distributions are described by a
rarefaction wave between S = Srg, at the top of the columnwhere the
flux is zero, and S = –

S′2, and a reflected shock between S = –
S′2 and

S = S1 at the bottom of the column. These saturations describe the
concave hull of the flux function between S = S1 and S = Srg
(Figs. 6b and 7b). This concave hull is made up of the flux function
between S = Srg and S = S′2 and of the straight line between S = –

S′2
and S = S1. To be more precise, one must say that the concave hull
evolves slightly with time: the straight line is defined between
Sright =

–S′2ðSleftÞ and S′1≤Sleft≤S1 (Figs. 6 and 7) where Sleft is the
saturation value, in the saturation range of the ascending rarefaction
wave, at the vertical position of the reflected shock. Sleft = S′1 when
the plume reaches the top of the column and Slefttends rapidly to S1
after that time. Again the “second order” reflected shock travels faster
than the “first order” one. This is easily explained by the concave hulls
of the first order and second order fluxes, not represented in Figs. 6
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and 7. One can easily see that the slope of the straight line describing
the reflected shock is greater for k−/k+=0.05 than for k−/k+=0.3.

For k−/k+=0.3, an additional simulation has been performed
with a saturation fixed at the bottom of the column smaller than in
the previous case, Sðz = 0Þ = 0:14. Indeed Figs. 6 and 7 show that,
in the range 0≤ S≤0:14, the discrepancies between the upscaled
fluxes are smaller than in the previous range, 0≤S≤S1, where
S1 = 0:21. Fig. 10 displays the saturation distributions before and
after the CO2 plume has reached the top of the column. As expected,
the plume front, described by a shock, is well approximated by the
first and second order approximations, both before and after the
plume reaches the top of the column. The second order provides an
approximation of the plume transport better than the first order.

Finally, a convergence analysis with respect to ε has been
performed. Fig. 11 shows the exact upscaled and cell averaged
saturation profiles after the plume has reached the top of the column
for ε=1/100, 1/50 and 1/20. Convergence is clearly demonstrated.
4. Summary and conclusion

Wehave derived an upscaledmodel which describes themigration
of a CO2 plume in a vertical column filled with a periodic layered
porous medium. Capillarity and buoyancy have been taken into
account and two cases have been considered: (i) a capillary-dominant
case where capillarity is the main driving force in a layer and (ii) a
capillary-free case where buoyancy is the only driving force. The
buoyant-dominant case, where buoyancy and capillarity are of the
same order of magnitude in a layer, is much more complex and
difficult to upscale. In the two cases, semi-explicit upscaled flux
functions have been proposed. In both cases, the buoyant flux is a bell-
shaped function of the saturation, as in the case of a homogeneous
porous medium. In the capillary-dominant case, the upscaled
saturation is governed by the continuity of the capillary pressure at
the interface between layers. We showed that the upscaled buoyant
flux is the harmonic mean of the buoyant fluxes in each layer, the
high-permeability layer contribution being dominant. This result is
unusual: low permeabilities usually control the harmonic mean. It is
explained by the low value of the high-permeability layer buoyant
flux. In the capillary-free case, the upscaled buoyant flux and upscaled
saturation are determined by the flux continuity condition at the
interface. As the flux is not continuous over the entire range of
saturation, the upscaled saturation is only defined where continuity is
verified: in low and high-saturation value domains. Therefore, the
upscaled buoyant flux is described by a piecewise continuous function
which has to be determined numerically. This is a direct consequence
of the non-monotonicity of the buoyant flux function. We proposed
two analytical approximations of the capillary-free upscaled flux. One
of these approximations is simply the buoyant flux of a homogeneous
layer with an effective permeability equal to the harmonic mean of
the absolute permeabilities of the layers. The capillary-free model has
been validated in two cases of heterogeneity by comparing small-
scale and upscaled solutions obtained both theoretically. The upscaled
saturation agrees well with the cell averaged saturation and the
proposed analytical upscaled fluxes provide satisfactory approxima-
tions as long as the saturation set at the inlet of the column is in a
range where analytical and numerical upscaled fluxes are close.

This upscaled model may describe the vertical migration of a CO2

plume injected into a perfectly stratified aquifer far from the
injection point where the plume lateral spreading may be
neglected. It has been shown in this paper that injection can be
taken into account in the upscaling procedure without difficulty,
even if it leads to more intricate expressions of upscaled fluxes. The
next step of this work will be to validate the capillary-dominant
model with a numerical code and study the complex buoyant-
dominant case.
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