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In multiple change-point analysis, inferring the number of change points is often achieved by minimizing
a selection criterion that trades off data fidelity with complexity. We address the open problem of defining
a selection criterion adapted to the context of multiple change-point analysis. Our approach is inspired
by the Schwarz seminal formulation of the Bayesian information criterion (BIC): similarly, we introduce
priors—here describing the occurrence of change points—and we use the Laplace approximation to derive
a closed-form expression of the criterion. Differently from this previous work, we take advantage of the
a priori information introduced, instead of asymptotically eliminating the dependence on priors. Results
obtained on simulated series show a substantial gain in performance versus recent alternative criteria
used in multiple change-point analysis. Results also show that the a priori information introduced in
our criterion on the regularity of interevent times is the main driver of this substantial performance gain.
Methods are motivated by and demonstrated on a meteorological application involving the homogenization
of a temperature series.

KEY WORDS: Bayesian statistics; Change-point problem; Model selection

1. INTRODUCTION

The problem of detecting an unknown number of hidden,
abrupt changes in a series, the so-called multiple change-point
problem, has been extensively treated in a wide range of the-
oretical and applied contexts, for instance, in biology (Braun,
Braun, and Muller 2000; Zhang 2007), in hydrology (Perreault
et al. 2000b), and in finance (Chen and Gupta 1997; Dias and
Embrechts 2004). In climatology and meteorology, the problem
of detecting and correcting artificial shifts that affect long se-
ries of meteorological observations, termed “inhomogeneities,”
is also a field of application for change-point methods (Reeves
et al. 2007, and Figure 1a). Inhomogeneities may be caused by
changes in station location or environment, observing instru-
mentation, or practices and have the same size as the climatic
variations to be expected. Hence, the homogenization of climatic
series is recognized as an important step prior to the analysis of
historical climate trends and variability, concerning in particu-
lar anthropogenic climate change (Abarca-Del-Rio and Mestre
2006; Kuglitsch et al. 2009). The interest of climate researchers
in change-point modeling methods has therefore been raised,
and the applicative context of homogenization has triggered the
development of new change-point methods that may be applied
to other fields (Caussinus and Mestre 2004; Hannart and Naveau
2009; Lu, Lund, and Lee 2009).

Comprehensive reviews of various approaches to the infer-
ence of multiple change points can be found, for instance, in
Basseville and Nikiforov (1996), Chib (1998), and Chen and
Gupta (2000). The determination of the number of change points
k is often approached as a problem of model dimension choice,
since k drives model dimension. Many criteria are available

in a general context of model choice. They usually balance a
term quantifying model fit with a term accounting for model
complexity that increases with dimension and limits overfitting;
otherwise, the highest possible k would invariably be optimal,
to quote Schwarz (1978)—a seminal article that, with Akaike
(1974), originally set the theoretical ground for model dimen-
sion choice. Since then, many works have addressed the fun-
damental question of studying and improving the performance
of those criteria in different particular contexts of interest. In
the context of the multiple change-point problem, Ninomiya
(2005), for instance, proposed an adaptation of the Akaike in-
formation criterion (AIC) in a Gaussian setting. Several ad-hoc
criteria for the change-point problem were also proposed, for
instance, by Lavielle (2004) and Birgé and Massart (2001). On
the other hand, the Schwarz criterion, often referred to as the
Bayesian information criterion (BIC) because it is derived from
an asymptotic expression of the Bayes factor, has been applied
straightforwardly to the change-point problem, for instance, by
Yao (1988) and Serbinowska (1996), and the asymptotic con-
sistency of the resulting estimator of k has been established
in the Gaussian and binomial cases, respectively. Nonetheless,
while the BIC is well grounded for regular parametric mod-
els, it lacks desirable properties when applied to irregular sta-
tistical models—as defined generally, for instance, by Bickel
et al. (1998, p. 12)—such as multiple change-point models.
Adaptations of the Schwarz criterion, such as Zhang (2007)
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in the case of Gaussian independent and identically distributed
(iid) sequences with change in the mean, are motivated by this
issue.

Those adaptations of the BIC are improvements, but the as-
sumptions grounding those criteria can be viewed as restric-
tive: it is often assumed, for instance, that series are indepen-
dent Gaussian, and more importantly, that n → ∞ with k fixed.
However, in practice, in the change-point context, this particular
asymptotic condition may not be verifiable since it is difficult
to increase the length of an observation series without also in-
creasing the number of change points. Rather, it may often be
natural to assume that n

k
reaches a finite limit when n → ∞.

One can also view as a limitation the fact that some methods,
for instance, Pan and Chen (2006), require the tuning of some
adaptive parameters whose effect on the outcome may not al-
ways be clearly understood. Finally, in many applications such
as climate series homogenization, previous information is avail-
able from past studies on the characteristics of the change points,
such as their amplitude and their frequency of occurrence. One
can regard as a disadvantage the fact that this information is not
taken into account by those criteria to determine the number of
change points.

This article presents an adaptation of the BIC to the change-
point problem that attempts to circumvent those limitations
while improving the performance of existing criteria. Our
strategy is to formulate the problem by taking advantage
of the Bayesian framework to introduce some a priori in-
formation on the relative positions and amplitude of change
points. To obtain a closed-form mathematical expression for
the resulting criterion, as in the original BIC approach of
Schwarz (1978), we take advantage of the Laplace approxima-
tion. We also propose a few other approximations that greatly
simplify implementation and avoid having to rely on com-
putationally expensive Markov chain Monte Carlo (MCMC)
methods.

The remainder of the article is organized as follows. In
Section 2, we describe our general approach and introduce
some modeling assumptions. In Section 3, inference issues are
addressed via approximations and we derive a general expres-
sion of our criterion. In Section 4, performance is assessed
through simulations generated from several change-point mod-
els. Section 5 presents an application of the method to the
homogenization of temperature series at Marseille, France.
Section 6 discusses some strengths and limitations of our ap-
proach and concludes.

2. A BAYESIAN MODEL FOR THE CHANGE-POINT
PROBLEM

We propose the following general formulation. Denote by
x = {xj ∈ R, j = 1, . . . , n} a multivariate time series of length
n, and assume that some of its characteristics are changing
at k − 1 instants t1, t2, · · · ,tk−1 such that t0 < t1 < t2 < · · · <

tk−1 < tk , with the convention t0 = 0 and tk = n. To reflect this
situation, we assume that the distribution of x is defined piece-
wise on the resulting k segments by p(xti+1, . . . , xti+1 | ξi), with
ξi the d-dimensional parameter vector for the segment i such that
ξi %= ξi+1, for i = 1, . . . , k − 1. For instance, in the context of

meteorological series homogenization introduced in Section 1
and detailed in Section 5, x is a series of yearly temperature
difference between two neighboring meteorological stations
and ξ is the mean of the series, that is, d = 1 (Figure 1a).
Now, let δ(k) = (δ1, δ2, . . . , δk) be the sequence of inter-
vals defined by δi = ti − ti−1, ξ (k) = (ξ1, ξ2, . . . , ξk), and θ =
(k, δ(k)). It should be emphasized that quantities are indexed
by (k) even though k is considered to be an unknown in
the general problem that we address here. However, k is
considered to be a known constant in model Mθ , which is
defined as

Mθ :

{
p
(
x | ξ (k)

)
= #k

i=1 p(xti−1+1, . . . , xti | ξi)
π

(
ξ (k) | µ

)
= #k

i=1 π (ξi | µ)
, (1)

where π (. | µ) denotes an informative prior distribution, which
will be described in this section. Hence, Mθ models the se-
ries and its changing parameters when the number and in-
stants of change points are known, that is, when θ is known.
Since the multiple change-point problem involves determining
change-point number and instants, under this framework, it can
be viewed as a problem of model choice among the set % of
all possible models {Mθ | k ∈ (0, 1, . . . , n), δ(k) ∈ %k}, where
%k is the set of all possible segmentations into k segments.
%k has cardinality ( n

k ) and % has cardinality 2n. An alterna-
tive approach would be to choose between the n + 1 models
Mk for k = 0, 1, . . . , n, which are defined similarly but with
(δ(k), ξ (k)) being the vector of parameters instead of ξ (k). This
approach would be equally relevant as ours, yet we choose not
to follow it for computational complexity reasons, which will
be made clear in Section 3.

The Bayesian framework is useful for the general purpose of
model selection because it offers the possibility of computing
a posterior model probability on the set of all possible models,
provided some prior probability can be established on this set
(Robert 2001; Parent and Bernier 2007). When this condition is
not met or presents difficulties, an alternative is to base model
selection on the Bayes factor, which asymptotically leads to the
same result. This latter strategy underlies the general approach
of Schwarz (1978) in deriving the BIC. But in the present case,
we are able to introduce some problem-specific assumptions
that result in the straightforward derivation of informative prior
model probability. Hence, we decide to follow a model selection
strategy that involves choosing the model with the largest poste-
rior probability. This posterior model probability p(Mθ | x) is
obtained as

p(Mθ |x) ∝
∫

p
(
x
∣∣ξ (k)) .π

(
ξ (k)

∣∣µ
)

dξ (k) .π (Mθ ). (2)

Note that the normalization constant is not needed for our
purpose: only the right-hand term is needed for the sake
of maximizing p(Mθ | x) in θ ; hence, we will focus only
on

∫
p(x | ξ (k)) .π (ξ (k) | µ) dξ (k) .π (Mθ ). This remark has

considerable practical implications because we do not require
to compute the value of a sum with 2n terms—a number that
grows rapidly as n increases—but we only require its maxi-
mum term; hence, practically, we move from a summation to an
optimization problem.
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Figure 1. (a) Series of yearly temperature difference between two neighboring Météo France stations and detected instrumental changes.
(b) Empirical distribution of interevent times and gamma fit. (c) Scatterplot of consecutive means showing the absence of correlation. (d)
Empirical distribution of means and Gaussian fit.

Before computing this quantity, we need to introduce further
modeling assumptions to characterize the prior probability dis-
tributions π (ξ (k) | µ) and π (Mθ ). The key idea is to assume that
a discrete stochastic process simultaneously drives the number
of change points k, their occurrence times t (or equivalently
the interoccurrence intervals δ), and the changing parameters ξ .
More specifically, following usual terminology, we assume that
this process is a marked renewal process, or in other words, that
the successive values δi of interevents intervals are iid with pdf
π (δi | λ) and that the values ξi of the parameter on the succes-
sive segments are iid with pdf π (ξi | µ). This marked renewal
process assumption for the change-point problem is similar to
earlier formulations by Yao (1984), where interevent times have
a geometric distribution (i.e., a Bernoulli process) and changing
parameters have a Gaussian distribution, or by Chib (1998), Lai,
Liu, and Xing (2005), and Lai and Xing (2008), who extended
this model to more general situations. The applicative context of
climate series homogenization provides a good practical illus-
tration for this modeling framework. Indeed, inhomogeneities
are commonly modeled as changes in the mean ξi of a Gaussian
series, and results from previous studies consistently find inho-
mogeneities to occur on average every 10 to 15 years, with the
distribution of interevent times π (δi | λ) fitting well empirically
with a negative binomial distribution (Figure 1b, and Hannart
and Naveau 2009). Similarly, we can also empirically estimate
π (ξi | µ) from previous homogenization results, and we find the
successive values of the mean parameter ξi to be iid (Figure 1c)
according to a centered Gaussian with standard deviation 0.40◦C
(Figure 1d).

As in this illustration, we will assume in what follows that
π (δi | λ) is the discrete negative binomial distribution

π (δi | λ) = Nb(δi | λ) =
&

( 1
s2 + δi

)

δi!&( 1
s2 )

λ
1
s2

0 (1 − λ0)δi , (3)

with λ = (λ0, s
2), where λ0 and s are metaparameters, respec-

tively, equal to the mean and to the ratio of standard deviation
to mean of the distribution. The reason for choosing such a pa-
rameterization will become clear shortly. In what follows, for
convenience, we choose to approximate this discrete distribu-
tion by its continuous version, that is, by a gamma distribution,
and we use

π (δi | λ) = Ga(δi | λ) =
{

(λ0s
2)

1
s2 &

(
1
s2

)}−1

δ
1
s2 −1
i

× exp
{

− δi

λ0s2

}
. (4)

The choice of this class of distribution for interevent times does
not imply a dramatic loss of generality because a wide variety of
situations are covered as s varies from 0 to 1. Indeed, the renewal
process ranges from the fully deterministic λ0-periodic process
when s is 0 to fully memory-less Bernoulli process when s is
1. The metaparameter s therefore reflects the a priori level of
regularity on the change-point spacings.

Note that, in contrast withπ (δi | λ), it would not be relevant to
propose a general form for π (ξi | µ) as it relates to the particular
nature of the changing parameter ξi , and thus, to the particular
model considered. It is also important to emphasize that in the
present approach, the actual values of λ = (λ0, s) and µ are
assumed to be known constants—that is, they are not estimated
from the data x. Hence, our method is fully a priori informed
Bayesian, so its execution does require the availability of some
prior information (here summarized by metaparameters λ0, s,
and µ). As in any Bayesian inference based on informative
priors, those values can significantly influence the outcome, and
hence, they should be chosen judiciously. A general discussion
on this fundamental aspect of Bayesian statistics can be found,
for instance, in Robert (2001, pp. 105–165). It is also discussed
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further in Section 6. One specific illustration is provided by
the aforementioned application to homogenization in which a
priori information is obtainable from previous homogenization
studies; analyzing those previous results does indeed yield λ0 =
13 years, s = 0.7, and µ = 0.40◦C (where µ represents the a
priori standard deviation of the changing mean).

3. APPROXIMATIONS AND INFERENCE

We now derive an approximation of the posterior model prob-
ability

∫
p(x | ξ (k)) .π (ξ (k) | µ) dξ (k) .π (Mθ ). We first approx-

imate the prior model probability π (Mθ ) and then the model
marginal likelihood

∫
p(x | ξ (k)) .π (ξ (k) | µ) dξ (k). The prior

model probability can be factorized into

π (Mθ ) = π
(
δ(k) | k,λ

)
.π (k | λ), (5)

where π (δ(k) | k,λ) denotes the joint probability density func-
tion (pdf) of the interevent times, conditional on the fact that
there are k − 1 change points, and π (k | λ) denotes the proba-
bility that there are k − 1 change points. As a classic result of
renewal analysis (Lefebvre 2005), we have π (k | λ) = p(sk ≥
n | λ) − p(sk−1 ≥ n | λ), where sk =

∑k
i=1 δi , and

π (k | λ) = &̄

(
n

∣∣∣∣
k − 1

s2
, λ0 s2

)
− &̄

(
n

∣∣∣∣
k

s2
, λ0 s2

)
, (6)

where &̄(. | a, b) stands for the cumulative density function (cdf)
of the gamma distribution with parameters a and b.

In contrast with π (k | λ), it is not possible to obtain a closed
expression of the joint conditional pdf π (δ(k) | k,λ). We hence
propose to approximate π (δ(k) | k,λ) by the product of the
marginal conditional distributions #k

i=1 π (δi | k,λ), thus ob-
taining a so-called composite marginal likelihood (Varin 2008).
The accuracy of this approximation is clearly a decreasing
function of the degree of dependence in the joint distribution
π (δ(k) | k,λ). Since ρ(δi , δj ) = − 1

k−1 for i %= j (Appendix A),
this dependence quickly becomes negligible as k increases;
hence, the approximation is justified. For gamma-distributed
interevent times, the marginal conditional pdf π (δi | k,λ) is
found to be equal to the beta distribution with parameters 1

s2 and
k−1
s2 (Appendix B). Remarkably, this conditional distribution is

independent of λ0, but the standard deviation to mean ratio s of
the unconditional distribution remains unchanged. Hence,

π
(
δ(k)

∣∣k,λ
)

=
[

1
n

B

(
1
s2

,
k − 1

s2

)]k[
#k

i=1
δi

n

] 1
s2 −1

×
[
#k

i=1

(
1 − δi

n

)] k−1
s2 −1

. I{
δ(k)

∣∣∑k
i=1 δi=n

}(
δ(k)),

(7)

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the beta function, and
where IA(a) is 1 when a ∈ A and 0 when a /∈ A.

The marginal likelihood
∫

p(x | ξ (k)) .π (ξ (k) | µ) dξ (k) of
model Mθ , denoted m(x | θ ,µ), may be obtained in a closed
form in favorable situations where a conjugate prior is available
for ξ (k). But to remain more general, we do not want to im-
pose this condition for the applicability of our criterion. Hence,
we propose instead to evaluate the marginal likelihood using
the Laplace approximation, as in the original BIC construction
(Schwarz 1978) and as detailed, for instance, in Kass and Raftery

(1994). By straightforward application of this approximation on
each of the k segments of the series, we obtain

m(x | θ,µ) = #k
i=1 (2π )

d
2 . σ̂i . δ

− d
2

i . π̂i(µ) . L̂i(θ), (8)

where ξ̂i is the maximum likelihood estimator of ξi on
segment (xti+1, . . . , xti+1 ), and L̂i(θ) = L(ξ̂i | θ ) and π̂i(µ) =
π (ξ̂i | µ) are the corresponding values of the likelihood function
and prior pdf evaluated at ξ̂i . For this approximation to hold, we
assume that the distribution of the series belongs to the exponen-
tial family; that is, the likelihood function L(ξi | θ ) can be writ-
ten as exp (−nh(ξi | θ )), where h is a function that is twice dif-
ferentiable in each component of ξi . Denoting by D2h(ξi | θ ) the
determinant of the Hessian matrix of h evaluated in ξi , the quan-
tity σ̂i in (8) is then obtained as σ̂i =| D2h(ξ̂i | θ) |− 1

2 . In the
case d = 1, this expression simplifies to σ̂i =| h′′(ξ̂i | θ ) |− 1

2 .
Further, interevent times δi need to be large enough for the
approximation to be accurate, a condition that is discussed in
Section 6.

Combining Equations (6), (7), and (8), taking the negative
logarithm for convenience, and making some arrangements (Ap-
pendix C), it follows that we determine θ , that is, the number of
change points k and their positions δ(k), by minimization over
θ of the criterion:

P(θ | µ,λ) = −*̂(θ ) + C(θ | µ,λ). (9)

In Equation (9), the first term *̂(θ) =
∑k

i=1 log{L̂i(θ )} is the
logarithm of the maximum likelihood over ξ (k) and quantifies
the model fit. The second term C(θ | µ,λ) is a Bayesian penalty
similar in nature to the penalty term 1

2k log n found in the BIC
of Schwarz (1978). This term quantifies the divergence between
model Mθ once fitted and the a priori knowledge. It is conve-
nient for clarity to split C(θ | µ,λ) into two components that
have contrasted roles:

C(θ | µ,λ) = C1(θ | µ,λ) + C2(k | λ), (10)

in which

C1(θ | µ,λ) =
(

d

2
+ 1 − 1

s2

) k∑

i=1

log δi −
k∑

i=1

log{σ̂i π̂i(µ)},

C2(k | λ) = −1
2

d k log 2π − k log B

(
1
s2

,
k − 1

s2

)

+ k

s2
(1 + log n) − logψ(k,λ), (11)

and ψ(k,λ) = &̄(n | k−1
s2 , λ0 s2) − &̄(n | k

s2 , λ0 s2). The first
term C1 is a function of k and of the series segmentation θ .
It is influenced by the data x and by the prior characteristics
of change-point amplitude and interevent time. In contrast, the
second term C2 is a function of k and is not influenced by the
series segmentation θ , or by the data, or by prior characteris-
tics of change-point amplitude µ. It is also remarkable that the
prior mean interevent time λ0 does not appear in C1: in prac-
tice, this means that when k is fixed, λ0 has no influence on the
computation of the optimal change-point instants. Finally, the
influence of the prior standard deviation to mean interevent time
ratio s2, which represents the level of determinism of the re-
newal process, is critical for both C1 and C2. When s approaches
0, that is, the process tends to be deterministic, the selection
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criterion for change-point instants is dominated by
− 1

s2

∑k
i=1 log δi , which is minimal for all δi’s equal to n

k
. The

procedure thus consistently leads to a deterministic choice of
equally spaced change-point instants for any data x. The term
C2 then constrains this constant interevent time to match with λ0.
Hence, it can be foreseen that the value of s strongly relates to
the level of information brought by priors on interevent time: in
particular, for small s, prior information overwhelms updated in-
formation brought by the data. It is intuitive from this reasoning
that our a priori informed selection criterion will perform better
as compared with other criteria for small s, provided the prior
agrees with the truth, because the criterion then benefits from a
substantial extra amount of information brought by priors. This
intuition is further discussed in Section 4.

We now focus on implementation details for the minimiza-
tion of the selection criterion P(θ | µ,λ). The minimization
scheme is classic and similar to the one followed, for instance, by
Hawkins (2001), Caussinus and Mestre (2004), Lavielle (2004),
and Zhang (2007), and the reader is referred to these references
for more details. The scheme is a two-step procedure. First, the
quantity −*̂(k, δ(k)) + C1(k, δ(k) | µ,λ) is minimized in δ(k) suc-
cessively for k = 0, 1, . . . , n, leading to the optimal change-
point instants δ̂

(k)
for every given k. Second, the complete crite-

rion −*̂(k, δ̂
(k)

) + C1(k, δ̂
(k) | µ,λ) + C2(k | λ) is minimized in

k, leading to the optimal number of change points k̂. The second
step is straightforward and presents no computational difficulty.
The first step can be solved rather easily based on a dynamic
programming algorithm that has been used frequently in multi-
ple change-point analysis (see above references). The algorithm
takes advantage of the fact that the criterion to be minimized in
δ(k) consists of a sum of k contributions, each associated with
one of the k segments ]ti , ti+1]. Therefore, change points can
be seen as nodes of a graph and the minimization as a classic
shortest-path problem (Cormen et al. 2001), where each possible
segment δi represents an edge with a given length. The dynamic
programming algorithm runs with quadratic complexity in n.

4. SIMULATION STUDY

The purpose of this section is to assess the performance of our
criterion by implementing the procedure on simulated series and
to compare results with the performance of some recent criteria
designed for the same purpose (three criteria). We conduct this
performance evaluation for a diverse range of models (five mod-
els), on a large number of simulations (10,000 simulations), and
assess performance based on a diverse range of metrics (three
metrics).

4.1 Models

The equations below describe the models’ assumptions and
corresponding estimators. Figure 2 shows simulated series for
the five models. These models are intended to cover a wide
range of situations: changes that affect a parameter that relates
to the mean only (M1), to the variance only (M3), to both the
mean and the variance (M4, M5), to the dependence structure
(M2), series of variables that are continuous (M1, M2, M3) or

M1 M3

M5 M4

M2

Figure 2. Examples of simulated series x in each of the five models
M1 through M5, from upper-left to lower-right panel. The lighter line
represents the series, the thick black line is the actual value of the
changing parameter, and the thick gray line is the inferred value of
the changing parameter. For model M2, which is bivariate, both series
are plotted.

discrete (M4, M5), and series of variables that are univariate (all
except M2) or multivariate (M2).
M1: Gaussian iid series with changes in the mean:

p
(
x
∣∣ξ (k)) = #k

i=1 #
ti
j=ti−1+1 2π− 1

2 exp
{

− 1
2

(xj − ξi)2
}

p(ξi | µ) = {2π µ}− 1
2 exp

{
− ξ 2

i

2µ

}
, with µ = µ,

⇒ h(ξi) = 1
2

{
log 2π + ŝ2

i + (ξi − x̄i)2} ⇒ ξ̂i = x̄i , σ̂i = 1,

M2: Gaussian bivariate iid series with changes in the correlation:

p
(
x
∣∣ξ (k)) = #k

i=1 #
ti
j=ti−1+1

{
2π

√
1 − ξ 2

i

}−1

× exp
{

−
x2

1,j − 2 ξi x1,j x2,j + x2
2,j

2(1 − ξ 2
i )

}

p(ξi | µ) = 1
2
Be

(
1 + ξi

2

∣∣∣∣µ,µ

)
. with µ = µ,

⇒ h(ξi) = 1
2

{

log
(
1 − ξ 2

i

)
+

ŝ2
1,i + ŝ2

2,i − 2 ξi ŝ12,i

1 − ξ 2
i

}

⇒ ξ̂i , σ̂i : no closed expressions,
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M3: Gaussian iid series with changes in the variance:

p
(
x
∣∣ξ (k)) = #k

i=1 #
ti
j=ti−1+1 {

√
2πξi}−1 exp

{

−
x2

j

2 ξi

}

p(ξi | µ) = µ−1 1[1−µ,1](ξi), with µ = µ,

⇒ h(ξi) = 1
2

{

log(2π ξi) + ŝ2
i

ξ 2
i

}

⇒ ξ̂i = ŝi , σ̂i = 1√
2
ŝi ,

M4: Poisson iid series with changes in the parameter:

p
(
x
∣∣ξ (k)) = #k

i=1 #
ti
j=ti−1+1

ξ
xj

i

xj !
e−ξi

p(ξi | µ) = Exp(ξi | µ), with µ = µ,

⇒ h(ξi) = ξi − x̄i log ξi + ŵi ⇒ ξ̂i = x̄i , σ̂i =
√

x̄i ,

M5: Bernoulli iid series with changes in the probability:

p
(
x | ξ (k)) = #k

i=1 #
ti
j=ti−1+1 ξ

xj

i (1 − ξi)1−xj

p(ξi | µ) = Be(ξi | µ,µ) with µ = µ,

⇒ h(ξi) = x̄i log ξi + (1 − x̄i) log(1 − ξi)

⇒ ξ̂i = x̄i , σ̂i =
√

x̄i(1 − x̄i).

where x̄i = 1
δi

∑ti
j=ti−1+1 xj , ŝ2

i = 1
δi

∑ti
j=ti−1+1(xj − x̄i)2, and

ŵi = 1
δi

∑ti
j=ti−1+1 log(xj !). Finally, as a reminder of Section

2, in all models, the prior distribution of interevent times
is equal to Ga(δi | λ) = {(λ0s

2)
1
s2 &( 1

s2 )}−1 δ
1
s2 −1
i exp{− δi

λ0s2 }.
Also, note that in all models, the parameter ξi is scalar, that is,
we have d = 1.

4.2 Simulations

We generate a pool of 10,000 simulated series (2000 per
model). The objective in building the simulation pool is to cover
a wide range of possible situations for each five models with
respect to series length n, number, spacing, and amplitude of
underlying change points driven by prior characteristics λ and
µ, and, of course, data x itself. The simulation of each series
x therefore goes in steps. First, the series length n is picked
randomly based on a uniform distribution on [100,1000]. Sec-
ond, λ is picked randomly, based on a uniform distribution on
[0,1] for s and [10, 40] for λ0. Similarly, µ is picked randomly
based on a uniform distribution on a range that depends on the
particular model. The upper and lower bound for the range of
µ are shown in Table 1. They were chosen to obtain a range
of performance that is both large and of comparable extent in
all models. Third, the interevent times and changing parameters
are simulated, respectively, using p(δi | λ) and out of p(ξi | µ).
The simulation of interevent times then drives the number k and
positions of change points. Finally, the series x is simulated out
of the underlying simulated change-point structure.

4.3 Criteria

We chose three criteria for performance comparison with our
criterion. The original BIC criterion of Schwarz (1978) is se-
lected because our criterion is an adaptation of this approach.

Table 1. Simulation ranges

Model Quantity Range

All n [100,10,000]
All λ0 [10,40]
All s [0,1]
M1 µ [0.5,3]
M2 µ [0,1]
M3 µ [0,1]
M4 µ [1,10]
M5 µ [0,1]

For the same reason, comparison with the modified BIC cri-
terion of Zhang (2007), which constitutes, to our knowledge,
the most recent adaptation of the BIC criterion to the change-
point problem, appears as natural. For the third criterion, we
decided to choose the criterion proposed by Ninomiya (2005)
as an adaptation to the change-point problem of the general se-
lection criterion of Akaike (1974) to obtain a comparison with
a criterion based on a radically different theoretical approach.
The three criteria, denoted Sc, Zh, and Ni, have the following
expressions:

Sc = −*̂(θ) +
(

k + 1
2

)
log n,

Zh = −*̂(θ) + 1
2

k∑

i=1

log δi +
(

k − 1
2

)
log n, and

Ni = −*̂(θ) + 4k,

which are reformulated from the reference articles based on
notations and assumptions used herein. In contrast with our
criterion (hereafter denoted Ha) and the BIC criterion, which
are designed in the general context of the exponential family,
criteria Zh and Ni are both designed in the specific context of
model M1.

4.4 Performance Metrics

We chose three distinct performance metrics, denoted r1, r2,
and r3, defined as follows. Since the procedure aims at deter-
mining the number of change points k, performance can be
measured simply by the estimation error on k and we define:

r1 =| k − k̂ |/k.

This metric implies that the end goal of the procedure is to infer
the true number of change points, that is, that it is optimal to
estimate k by its actual value. However, as argued by Celisse
(2008), the actual number of change points is actually not always
the optimal estimate, because the corresponding estimation of
change-point positions may not be accurate for changes of small
amplitude, that is, hidden changes. A metric that reflects only the
ability of the procedure to correctly infer the number of jumps
k does not necessarily capture the performance of associated
estimators δ(k) and ξ (k). Therefore, we build a quadratic loss that
simultaneously measures the estimation error with respect to k,
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Figure 3. (a) Increase in performance versus the average by criterion, averaged over performance metrics. (b) Increase in performance versus
the average by criterion and by performance metric. (c) Increase in performance versus the average by model for criterion Ha, averaged over
performance metrics. (d) Absolute level of performance (r2) by criterion and by value of metaparameter s.

δ(k), and ξ (k):

r2 =
n∑

j=1

(φj − φ̂j )2

/
n∑

j=1

φ2
j ,

where φ is the piecewise constant series equal to ξi on the ith
segment ]ti−1, ti], defined by φj =

∑k
i=1 1{j∈[ti+1,ti+1]} ξi , j =

1, . . . , n), and φ̂ is its estimator. The metric r2 can be inter-
preted simply as the mean squared estimation error on the overall
change-point structure φ underlying x, which can be regarded
as the final objective of a multiple change-point estimation pro-
cedure. It has the desirable property to be an increasing function
of the estimation error attached to k, δ(k), and ξ (k). Finally, we
use the detection error metric r3, which is similar to Hannart
and Naveau (2009). It trades off the number of true positives
k̂tp with the number of false positives k̂fp. A detected change
point is defined as a true positive whenever the estimated posi-
tion matches an actual position with a ±λ0/10 precision, and as
a false positive otherwise. The metric is defined as

r3 = 1 −
(

k̂tp − 1
4
k̂fp

)/
k,

where the weight 1
4 and the normalization by k are set to obtain

r3 = 0 when detection is perfect (i.e., k̂tp = k and k̂fp = 0) and
r3 = 1 when detection is random. Indeed, for a ±λ0/10 preci-
sion level, a randomly selected position has probability 0.2 to
be a true positive and 0.8 to be a false positive, that is,
k̂tp = 0.2 k̂ and k̂fp = 0.8 k̂.

4.5 Main Results

The results described in this section are represented graph-
ically in Figure 3. For each metric, we computed the average

performance obtained across the five models, the four criteria,
and all simulations, and derived the percent difference in per-
formance between this global mean and the mean computed by
the criterion. This percent difference reflects the overall rela-
tive position in the performance of each criterion. Based on this
number, our criterion outperforms very clearly all others, with
a +43% gain in performance on average as compared with the
mean. The second-best criterion presents a +4% gain and the
two others a −17% and −30% loss, respectively. This perfor-
mance improvement is illustrated in Figure 4 on a series simu-
lated under model M1. This massive performance gap is found
to be around +40% whatever metric is used. The gap fluctuates
between +15% and +60% depending on the model. These fluc-
tuations in the performance gap are mostly driven by the overall
absolute level of performance associated with each model: in-
deed the gap tends to reduce—but remain positive—when the
average performance is high, as a result of the fact that per-
formance is bounded. A high positive gap can therefore not
be maintained when all criteria perform at a very high level.
For instance, model M4 presents the lowest gap at +15% be-
cause change-point detection is easier in this case because the
changing parameter affects both the mean and the variance,
thus resulting in more apparent changes. Finally, it appears that
the performance of our criterion is dramatically affected by the
value of metaparameter s, while the performance of all other
criteria is nearly insensitive to s. This key result confirms the
qualitative reasoning exposed in Section 3: our a priori informed
criterion does perform best for small s because it then benefits
from a substantial extra amount of information brought by pri-
ors. This is not the case for the other criteria, which are not a
priori informed and whose performance is nearly insensitive to s
as a result. Quantitatively, the performance gap is +240% when
s approaches 0, +25% for s = 0.5, and +5% for s = 1. This
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Figure 4. Results obtained for one series x of length n = 500, k = 40, and s = 0.5 simulated through M1: (a) value of the four criteria as a
function of k, (b) series x, (c) estimation error r2 for each criterion as a function of k, and (d) performance level r2 of each criterion.

result suggests that most of the increased performance of our
criterion does actually come from the prior information that it
takes into account. Finally, it is of interest to note that among the
three alternative criteria tested, Ni performs better than the other
two based on r2, Zh performs better than the other two based
on r1, and Ni and Zh perform at about the same level and above
Sc based on r3. In other words, the performance rank-ordering
between Ni and Zh varies depending on the performance met-
ric used. But unsurprisingly, Sc always performs worst for any
performance metric used.

4.6 Additional Results

While s appears to be the main driver of performance for cri-
terion Ha, our simulation results show that the performance of
all four criteria is also sensitive to other drivers. It is beyond our
scope to perform a detailed study of performance sensitivity,
yet we briefly and qualitatively highlight some general results
related to this aspect (not shown graphically). Performance is
found to be an increasing function of λ0 in all models and for
all criteria. This is unsurprising as longer interevent times (i.e.,
larger λ0) lead to improved inference quality on the successive
values ξi of the changing parameter, and thus enhanced changes.
On the other hand, performance is found to be an increasing
function of µ in all models and for all criteria. This is also not
surprising because the value of µ is positively related to the
average amplitude of changes in all models, and changes with
larger amplitudes are more easily detected. In terms of perfor-
mance rank-ordering between criteria, the fact that Ha performs
consistently better than the other criteria, as well as other results
described in the previous subsection, appears to be unchanged
when varying λ0 and µ. However, while the performance gap

remains positive, its absolute value does change. For instance,
large values of λ0 and µ result in high performance for all crite-
ria, and vice versa. In both cases, the gap between performance
narrows when performance is close either to 0 or 1 for all criteria
simultaneously. Finally, performance is found to be insensitive
to series length n. This is because in our simulation scheme, the
average segment length λ0 is simulated independently of n, so
the number of change points, and thus the number of parame-
ters to be inferred from the series, increases linearly with series
length. As a result, the quality of inference is not affected by n,
but instead is affected by n/k ≈ λ0, which here is independent
of n. Of course, this situation would not prevail should n and k
be simulated independently. However, as was argued in Section
1, assuming independence between n and k may not be realistic
in the multiple change-point context.

5. APPLICATION

The purpose of this section is to illustrate the practical
relevance of our approach, by implementing it for homoge-
nization of meteorological series. As noted in the Introduc-
tion, this particular applicative context originally motivated this
work.

5.1 Data and Procedure

The data consist of yearly average series of minimum daily
temperature from 16 stations of the French weather service.
These stations are located in the southeast France, and the se-
ries range over a 126-year period (1882–2007). The series has
already been homogenized (Caussinus and Mestre 2004; Han-
nart and Naveau 2009), but we naturally used the nonhomog-
enized, raw data record. We now recall the main principles of
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homogenization—for a detailed review, the reader is referred
to Menne and Williams (2008). In a nonhomogenized climate
series, instrumental shifts are mixed with the climate signal and
thus removing the former enhances the latter. To do so, the rela-
tive homogeneity principle is applied: a climatological series is
relatively homogeneous with respect to a synchronous series at
another place if the differences of pairs of homologous averages
constitute a series of random numbers (i.e., a white noise), as
stated by Conrad and Pollack (1962, p. 226). Artificial shifts are
thus detected on the difference series, assuming it is iid Gaussian
with changes in the mean. Following this approach, the differ-
ence series with every sufficiently correlated neighbor (we used
ρ > 0.75 as a selection threshold) is derived for each candidate
station, and the multiple change-point detection procedure is
applied to each difference series. Then, two additional steps are
required, attribution and reconciliation: first, each shift detected
on a paired difference series may be caused by either of the two
series and must hence be attributed to the culprit series; second,
multiple shift locations estimated on several paired difference
series must be reconciled into a unique date to be used for ad-
justing the candidate series. These two steps were performed by
manual review of the detected shifts based on the inspection of a
position × amplitude chart as described in Hannart and Naveau
(2009).

5.2 Implementation Details

We further specify a few aspects related to the implementa-
tion of our procedure on pairwise difference series. Following
the homogeneity principle, the procedure is applied in the con-
text of a model that assumes changes in the mean of a Gaussian
series having a fixed, known variance σ . This model is thus
identical to model M1 introduced in Section 4, except that the
fixed variance is no longer equal to 1. The practical incidence of
this rescaling is simply that in Equation (11), σ̂i must be taken
equal to σ instead of 1. Then, the computation of the criterion
requires specification of the value of the constant σ as well as
of the values of metaparameters µ, λ0, and s—where metapa-
rameter µ represents in this model the standard deviation of the
changing mean parameter. These four values are derived from
the homogenization results described in Caussinus and Mestre
(2004) after excluding the 16 series treated here. Based on these
data, we found σ = 0.26◦C, µ = 0.40◦C, λ0 = 6.5 years, and
s = 0.8. Note that estimates of λ0 and s differ from the values
given in Section 2 because they are obtained from difference
series, as opposed to station series. Change points are, as may
be expected, found to be twice as frequent (i.e., with λ0 half
as large) and less regularly spaced (i.e., larger s) in difference
series than in station series.

5.3 Results

We applied this method to the Marseille station (Figure
5). We found 10 neighbors satisfying the selection criterion
ρ > 0.75 and applied the procedure to the 10 pairwise difference
series (middle panels). Between four (Marseille-Nimes) and
eight change points (Marseille-Toulouse) were inferred from
the pairwise difference series, leading to the detection of 58
change points in total. We plotted the Marseille series, together

with its 10 selected neighbors (upper panel) and the amplitude ×
position chart used for visual attribution (lower panel). After at-
tribution and reconciliation, we find eight inhomogeneities in
Marseille in 1904, 1917, 1932, 1947, 1953, 1968, 1982, and
1996, which are consistent with both the metadata and the re-
sults. To evaluate the sensitivity of our results to the values of
σ , µ, λ0, and s, we modified these values by ±10% and ran the
procedure for the 24 possible combinations of modified values.
We found that the total number of change points detected on
difference series fluctuates by ±20% (i.e., between 47 and 70).
However, the final number of inhomogeneities was not affected
by these fluctuations, because the manual attribution and rec-
onciliation steps performed afterward lead to the same clear
grouping of change points.

6. DISCUSSION AND CONCLUSION

As in the seminal approach of Schwarz (1978), our penalty
stems from a Bayesian formulation that involves priors and the
Laplace approximation. But while Schwarz obtained a generic
expression for the BIC independently of the prior based on
asymptotics for large n, we have obtained ours based on some
assumptions specific to the change-point problem and by rely-
ing on a priori information regarding the number and spacing
of change points. Results obtained for simulated series in dif-
ferent models and for a wide range of situations show that our
approach systematically outperforms the three alternate criteria
tested. The performance gap appears to be mostly driven by
s, the metaparameter reflecting the regularity of change-point
spacing. Notably, the performance gap dramatically increases
when spacing is regular, that is, s is small, as a logical conse-
quence of the fact that the informativeness of accurate priors
becomes much stronger in that case. It can therefore be con-
cluded that prior information on change points, especially on
their spacing, generates a substantial benefit in inferring their
number and position.

Nonetheless, as can be expected, prior information is able to
bring a benefit only when it actually matches reality. Conversely,
using inaccurate prior information may be toxic for inference
especially when informativeness is strong. This sensitivity to
the correct value of s is demonstrated in Figure 6, where per-
formance r2 is plotted as a function of both the true s and its
assumed value. This is a limitation of our criterion in its current
formulation: reliable prior information is required for its safe
implementation. Yet, one can think of many situations where
such a priori information may be safely extracted from previous
empirical studies conducted on similar cases. For instance, this
situation clearly prevails for the application treated in Section 5
of climate series homogenization. It may also prevail in a well-
known field of application of change-point methods: the analysis
of array-based comparative genomic hybridization (array-CGH)
data. Array-CGH measures the number of chromosome copies
at each genome location of a cell sample and is useful for finding
the regions of genome deletion and amplification in tumor cells
(Albertson et al. 2003). Due to the considerable interest raised
by this application and the resulting large quantity of previous
studies available on this topic, it is reasonable to speculate that
some prior information could be extracted to derive values of s
and λ0 that apply specifically to this case.
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Figure 5. Application to homogenization of temperature series: (a) yearly minimum temperature in candidate series—Marseille (line) and
neighboring stations (dots), and (middle panels) criterion for nine pairwise differences series. (b) Position × amplitude chart of shifts detected
in difference series, attributed to Marseille (o) or to a neighbor (x).

Extending our approach to the case where a priori information
is unavailable is a challenging problem and an exciting oppor-
tunity for further research, which is clearly beyond the scope
of this article. Indeed, it raises fundamental issues because it
requires moving out of the Bayesian informative framework
that is inherent in our proposal. To address these issues, two

possible routes may be foreseen. A first option would be to
apply the so-called empirical Bayes approach, by maximizing
the obtained criterion not only in θ , but also simultaneously
in λ and µ. Such an approach raises multiple difficulties, with
both theoretical and implementation issues, but an initial explo-
ration of this approach in model M1 seemed promising. As an

Figure 6. (a) Plot of performance (r2) as a function of the prior value of s used for inference, for a range of fixed actual values of s. (b) Contour
plot of performance as a function of prior value of s and actual values of s. (Both charts show the same data). The online version of this figure is
in color.
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Figure 7. (a) Simulated series in model M1 with s = 0.3. (b)
Minimal value of the criterion obtained for different values of
metaparameter s. (c) Performance (r2) obtained for different values of
metaparameter s. The online version of this figure is in color.
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Figure 8. Average error of the Laplace approximation (thick line)
and 90% confidence interval (dashed lines) as a function of segment
length in model M1, for µ = 1 (a) and µ = 2 (b).

illustration, Figure 7 shows results obtained on a series simu-
lated with s = 0.3, assuming µ andλ0 are known. For this series,
the minimization of the criterion in s does provide a correct esti-
mate ŝ = 0.3 of s, and its value also coincides with the one that
yields maximal performance (r2). A second option would be to

employ noninformative priors. This option also raises nontrivial
theoretical issues because of the lack of a unique definition for
noninformativeness. Despite these difficulties, in our view, it
is reasonable to expect that noninformative extensions will be-
come available in the near future. But as long as such extensions
are not available, it is our recommendation to stick restrictively
to the informative case when applying the present method, that
is, to seek prior information whenever possible—and to use
another method otherwise.

Another useful extension of our approach concerns the
situation where there exists a vector η of unknown parameters
that are constant across the entire series (for instance, when the
variance of the series x in models M1 and M3 is unknown).
A rather straightforward adaptation of our general approach is
sketched here to address this case. First, the Laplace approx-
imation is applied in the same way to evaluate the marginal
likelihood m(x | θ ) except that this time, both ξ and η are
integrated out (note that the conditionality in µ and λ is omitted
here for clarity). This implies that an overall series-wise
maximization in η must be performed in addition to the
segment-wise maximization in ξ . Of course, since η is constant
across the series, the result of this maximization depends on
the segmentation θ , and can thus be denoted η̂θ . The resulting
Laplace approximation m(x | θ , η̂θ ) can then be inserted into
Equation (9) to obtain criterion P(θ , η̂θ ), whose minimization
over θ yields the desired optimal segmentation. However, for a
straightforward application of these two steps, the shortest-path
algorithm is not applicable because P(θ , η̂θ ) is no longer
segment-additive, in general. Yet, other minimization schemes
such as Davis, Lee, and Rodriguez-Yam (2006) are available
and could be explored for inference under the same framework.

A cornerstone feature of our method is the use of the Laplace
approximation, which assumes sufficiently large segments to
be valid. The high performance level of the criterion achieved
in simulations with average segment length λ0 ranging from
10 to 40 and the low sensitivity of performance with respect
to length in this range of values (not shown), as well as ex-
plicit evaluation of the approximation error in the case of model
M1 (Figure 8), suggest that values of length in the order of 10
are sufficient for the approximation to be valid for the models
considered. Nonetheless, establishing the domain of validity
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Figure 9. Results obtained for one series x of length n = 500 simulated through M1: (a) value of criterion by value of k for both the true
model M1 (thick line) and the competing model M2 (dashed line). Minimum is obtained for k = 18 in M1 and k = 20 in M2. (b) Value of the
Bayes factor M1 versus M2 (log10) by value of k. Model M1 is clearly selected for both k = 18 and k = 20 (value = 40, when > 3 is considered
a “very strong amount of evidence”).
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of the approximation more precisely, as well as refining
this approximation, would be a natural extension of this
work. This could be done, for instance, by computing the
second-order term of the Laplace approximation based on
Tierney (1989).

Finally, one advantage of our approach is that it can be ex-
tended relatively easily to the more general problem of selecting
a change-point model versus another, simultaneously with in-
ference about the number of change points. This extension can
be performed simply by restricting the proposed criterion to the
logarithm of the marginal likelihood of Equation (8). The term
obtained after approximation can be used to derive a Bayes fac-
tor for selection among different models based on an absolute
scale (Kass and Raftery 1994). This approach was applied for
choosing between model M1 and model M2 for a series x sim-
ulated from M1, leading to clearly selecting the right model
M1 versus the wrong model M2 in the particular example used
(Figure 9).

APPENDIX A: CORRELATION BETWEEN
INTEREVENT TIMES CONDITIONAL ON THEIR SUM

Since
∑k

i=1 δi = n is fixed, its variance is zero; hence,∑k
i=1 V(δi | λ, k) +

∑
i %=j cov(δi , δj | λ, k) = 0. Since the con-

straint is on their sum, the δi’s are interchangeable; hence, V(δi |
λ, k) and cov(δi , δj | λ, k) depend only on λ and k. Therefore,
k + k(k − 1) ρ(δi , δj | λ, k) = 0 and ρ(δi , δj | λ, k) = − 1

k−1 .

APPENDIX B: MARGINAL PDF OF INTEREVENT
TIMES CONDITIONAL ON k

Noting that δi’s are interchangeable, it suffices to derive
p(δ1 | λ, k). Since the δi are iid Ga(δi | 1

s2 , s
2λ0), the sum sk =∑k

i=2 δi also follows a gamma distribution Ga(sk | k−1
s2 , s2λ0).

Thus, the marginal conditional distribution p(δ1 | λ, k) is
proportional to Ga(δ1 | 1

s2 , s
2λ0) × Ga(n − δ1 | k−1

s2 , s2λ0) ∝

δ
1
s2 −1
1 (n − δ1)

k−1
s2 −1, which is the beta distribution with mean

n
k

and variance s2 ( n
k
)2.

APPENDIX C: DERIVATION OF C1 AND C2

The expression of C1 and C2 found in Equation (11) re-
sults from straightforward combination of Equations (6), (7),
and (8) except for one step, which we detail here. Tak-
ing the logarithm of π (δ(k) | k,λ) in Equation (7) results
in a term ( k−1

s2 − 1)
∑k

i=1 log(1 − δi
n

), which can be simpli-
fied based on a first-order approximation, provided the δi’s
are small compared with n, that is, that k is sufficiently
large. In that case, ( k−1

s2 − 1)
∑k

i=1 log(1 − δi
n

) . −( k−1
s2 −

1)
∑k

i=1
δi
n

= −( k−1
s2 − 1). Remarkably, under this approxima-

tion, this term no longer depends on δ(k) but only on k; hence,
it can be removed from C1 for the purpose of determining the
optimal δ(k) and can be inserted into C2, leading to Equation
(11). Note that this approximation is actually critical for com-
putational complexity because it makes the minimization over
δ(k) independent of k, thus making possible the direct implemen-

tation of the dynamical programming algorithm with quadratic
complexity.
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