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There are numerous statistical challenges involved in the general field of climate
reconstructions, including the preprocessing of raw data, often called standardization.
This paper focuses on this essential but often overlooked preprocessing stage for one of
the most used climate proxy, tree ring widths. One basic premise of dendroclimatology
(dendron = tree) is that tree ring widths are assumed to contain relevant information
about past climate. By going back to the data source, we focus on improving uncertainty
assessments andmore accurately identifying a climatic signal. Tree ringwidth logarithms
measured on a given tree are classically decomposed into an individual age effect and a
common signal shared by all trees from the same site. Through informative priors, we
assume that the individual age effect component lives on a narrow frequency band. This
corresponds to the a priori knowledge that individual trees have a smooth aging process.
In contrast, the environmental signal shared by all trees is not assumed to belong to a
specific frequency range. From a statistical perspective, the search of this common signal
shared by a series of tree ring width logarithms can be viewed at inferring the different
components of a specific additive model. Compared to past dendroclimatology studies,
we propose a semi-parametric Bayesian hierarchical model that offers the possibility to
capture lowandhigh frequencies in tree ringwidths.Our newmodel is tested on simulated
data and applied toPinus halepensisMill. ring widths recorded in FrenchMediterranean.
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1. INTRODUCTION

One key issue to understanding past and recent climate changes is to derive, study and
apply efficient statistical procedures to reconstruct past records of temperatures and pre-
cipitation. Direct measurements of such climatological variables are missing whenever the
instrumental record length is shorter than the period of interest. The so-called proxies, i.e.,
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Figure 1. The lifetime of the seventeen trees that has been used in our application, see Sect. 4.2. The x-axis
corresponds to the years (1867–1993) and the y-axis to the tree label.

indirect measurements, offer the rawmaterial to reconstruct past chronologies in such situa-
tions. Proxies should contain records of past climates, but they are also tainted by important
and complex non-climatic factors, e.g., local ecological effects. This explains that most
published climate reconstruction results/methods in the statistical literature (Li et al. 2010b;
Wahl et al. 2010; Cressie and Tingley 2010; Li et al. 2010a; Smith 2010a; McIntyre and
McKitrick 2011; Smith 2010b; Christiansen et al. 2009; Esper et al. 2002; Tingley et al.
2012; Tingley and Huybers 2013; Werner and Tingley 2015) generally do not start with
raw proxies, but rather have analyzed a series of already preprocessed data products. In this
paper, we focus on this preprocessing step for one of most used proxies, tree ring widths.

Since the work of Douglass (1920, 1936), there has been an active and extensive research
activity dedicated to the field of dendrochronology (dendron = tree and chronos = time)
that study tree rings to analyze temporal and spatial patterns of processes in the physical and
social sciences (Cookand Kairikukstis 1990; Gornitz 2009; Cook et al. 1999; Evans et al.
2006; Melvin and Briffa 2008). One major advantage of dendrochronology is that annual
ring formation makes the time sampling, one ring per year, constant in zones that have a
distinct dormant season related to cold weather. Figure 1 shows the lifetime of the seventeen
trees that are used in our application. The x-axis corresponds to the years (1867–1993) and
the y-axis to the tree label. This graph illustrates the lifetime heterogeneity among individual
trees. Some trees like 11 has a short record of a few decades while others like 5 covers more
than one century.

Typically the number of sampled trees diminishes as one goes back in time. Finding
older trees becomes more and more arduous for the field experimenter. This classical issue
in paleo-studies implies that the assessment of uncertainty can be non-trivial and should
vary in time.

Given tree ringwidthsmeasurements from a given site, how should one extract a common
signal from this data set ? Our underlying assumption is that the common signal shared
by all the trees from a particular site should be due to an environmental factor, possibly



Extracting a Common Signal in Tree Ring Widths

1880 1900 1920 1940 1960 1980

2
3

4
5

6

year

lo
g(

tr
ee

−
rin

g 
w

id
th

s)

Figure 2. Seventeen Pinus halepensis Mill tree ring width logarithms from the “Rognac” site located French
Mediterranean coast. The x-axis (years) covers the period 1867–1993 and each time series has a different length,
see Fig. 1.

climatic but not necessarily. Statistically, we aim to propose and study a Bayesian inference
scheme capable of extracting latent individual and common signals. Essential elements of
our analysis are the modeling of varying uncertainties due to tree lifetime heterogeneity,
bypassing the need of parametric forms for either individual or common signals and taking
into account the prior information given by dendroclimatologists.

2. DENDROCHRONOLOGY: DATA AND METHODS

Topresent and discuss our approach,wehave analyzed a set of seventeenPinus halepensis
Mill. French Mediterranean coast where tree ring width measurements were studied by
Nicault et al. (2001). This region is climatically characterized by a Mediterranean climate
with clear summer droughts. Nicault et al. (2001) identified possible relationships between
tree growth measurements and climatic factors in the same geographical region and with the
same tree species. Hence this past study provides a referential for our extraction procedure
and has been beneficial for discussing and interpreting our approach.

Figure 2 displays seventeen Pinus halepensis Mill tree ring width logarithms from the
“Rognac” site. The group of seventeen time series illustrates the difficulty of finding a
common signal; each time series having its own time length (see Fig. 1), its own growth
trend and a large variability.

A classical decomposition to represent yearly individual tree ring growths is the following
additive model, often called the linear aggregate model (Cook 1990; Buckley 2009),

log(ring width) = Ft + Gt + Dt + unexplained variability (1)
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where t represents a year,Gt corresponds to the age-related trenddue to normal physiological
aging processes, Ft to the climatically-related environmental signal and Dt to disturbance
factors, either within the forest stand or outside of it (e.g., insect outbreaks or fires). In most
studies, the site of interest is selected in order to minimize the possibility of internal and
external ecological processes affecting tree growth. In this paper, we follow this hypothesis
and Dt is set to zero. Ringwidth logarithm is used because tree ringmultiplicative properties
are well known.

Individual trees at a environmentally homogenous site have their own physiological aging
process Gt (Fang et al. 2010; Cook et al. 1990; Esper et al. 2002). The function Gt is often
represented by parametric curves such as a negative exponential function or more complex
smooth functions such as a Hugershoff curve (see Fig. 1 in Fang et al. 2010). Hence, one
common principle in representing Gt resides in its smoothness, i.e., it is assumed to be
a low frequency signal. Besides this prior knowledge, it is difficult to impose an universal
parametric form because it should depend on the tree species and the site of interest andmost
tree rings have complex temporarily behaviors, see Fig. 2. In this paper the low frequency
informationhas beenused to guide someof our prior distributions choicewithin ourBayesian
modeling.

The function Gt in Eq. (1) is often considered as a nuisance term to be removed and
the main element for most dendroclimatologists resides in finding the component Ft . This
quest leads to the so-called standardization problem and remains an object of active research
(Melvin and Briffa 2008; Nicault et al. 2010). Standardization aims at calculating a dimen-
sionless chronological index that reflects an hidden yearly common environmental signal
shared by all individual trees. This is encapsulated by Eq. (3) fromMelvin and Briffa (2008)

Ring width = Chronology index × Expected growth × Error,

which is simply a multiplicative version of Eq. (1) (we assume Dt = 0) and the so-called
expected growth corresponds to exp(Gt ). To eliminate the age affect Gt or equivalently the
expected growth, an age-related trend is first estimated for each individual tree. This is clas-
sically done by implementing a univariate parametric regression (e.g., negative exponential
curve Fritts et al. 1969) or a semi-parametric one (Cook and Peters 1981; Barefoot et al.
1974). Second, each ring width is then divided by the corresponding fitted value obtained
from the regression (e.g., see Fig. 3 in Fang et al. 2010) and (Cook et al. 1990; Esper
et al. 2002). This produces the so-called tree indices that should have a mean approximately
equal to one. Third the so-called chronology time series, i.e., the standardized dimensionless
index, is calculated as the arithmetic mean of all tree indices for a year.

Although the underlining model beneath this series of statistical steps is similar to a
multiplicative model on the raw data, or to an additive model like (1) for the ring width
logarithms, the inference aspect of this standardization approach is not clear. Each step
is made independently of the previous one. Consequently, calculating valid estimates and
confidence intervals of the final output, the dimensionless index, remains challenging. The
fact that the variable of interest Ft is common to all time series implies that the inference
scheme should be performed in a jointly manner by treating all trees at once. But univariate
inferential techniques have been used at each step and error estimates made of each step are
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decoupled from each other. This is also another drawback. By construction, the classical
standardization scheme takes out all the low frequency information contained in tree rings.
This due to the removal of the age effect. Individually a univariate regression cannotmake the
distinction between two low frequency components, see Gt and Ft in (1). Only, by treating
the full set of trees jointly, one can hope to discriminate between a common smooth climate
signal and other individual ones. For the practitioner, this drawback is very important. It
implies that the classical standardization scheme is only adapted to capture annual variability
but not decadal or centennial trends from tree rings. This is also true for other standardization
based onARMAmodeling (Guiot 1987). RecentlyBoreux et al. (2009) proposed and studied
a Bayesian hierarchical model to extract hidden signal but again, it was under the hypothesis
that smooth trends have already been removed by a preprocessing of individual tree rings.

The Regional Curve Standardization (RCS) and the Adaptive Regional Growth Curve
(Nicault et al. 2010) are attempts to preserve low frequency climatic information contained
into tree rings. The former is based on producing a regional biological growth trend obtained
by averaging ring widths that have been aligned according to their biological age (not their
chronological age). This requires a large number of trees. Another assumption here is that
this structural form is the same for each tree and does not vary in time. Coming back to (1),
this means that Gt comes from an unique profile that has been shifted according to the tree
age. This is rather strong limitation because individual growth rate trees can differ according
to soil conditions, competition and other factors governing productivity. To circumvent this
issue, Nicault et al. (2010) proposed to regress tree rings according to biological age, initial
andmaximumproductivities using a neural network. The initial andmaximumproductivities
are defined as the average of the first 10 rings and the maximum value during the first 50
years over an individual smoothed growth profile, respectively. Hence the computation of
the predictors is tailored to the application at hand and may be difficult to generalize to other
cases without an expert in dendrochronology. In addition, the inference properties of the
method are not clear to us because tree rings seem to be used as predictant and as data for
building the predictors.

3. MODEL DESCRIPTION AND ITS INFERENCE

During the last two decades, Bayesian hierarchical models (BHM) have blossomed in
climate sciences. One appealing idea in BHMs is to probabilistically decompose a com-
plex climatic process and its relationships to observations in several simple components
throughout a hierarchy of layers. BHMs handle efficiently the uncertainty assessment of
each layer by clearly identifying prior and posterior distributions of underlining processes.
For an introduction to such models, see e.g., Gelman et al. (2003) and the recent book of
Cressie and Wikle (2011). Examples of BHM applied to climate issues could be as follows.
Berliner et al. (2000) studied long-lead predictions of Pacific Sea Surface Temperatures via
Bayesian Dynamic Modeling. Schliep et al. (2010) estimated extreme precipitation from
regional climate models by combining BHM and extreme value theory. Tebaldi et al. (2010)
characterized uncertainties of future climate change projections using BHM and Sahu et al.
(2007) studied space-time ozone modeling for assessing trends. Haslett et al. (2006) investi-
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gated the problemof reconstructing prehistoric climates from lake sediment cores bymaking
use of pollen assemblages. Other recent examples of BHM applied in paleoclimate can be
found in McShane and Wyner (2011b), Berliner (2011), Craigmile and Rajaratnam (2011),
Davis and Liu (2011), Haran and Urban (2011), Holmström (2011), Kaplan (2011), McIn-
tyre and McKitrick (2011), McShane and Wyner (2011a), Nychka and Li (2011), Rougier
(2011), Schmidt et al. (2011), Smerdon (2011), Tingley (2011), Wahl and Ammann (2011),
Tingley and Huybers (2013) and Werner and Tingley (2015).

Aswefind it in several articles (Evans et al. 2013; Tingley andHuybers 2010), uncertainty
inBHM is schematically spread over different layers, usually three. The base level, called the
data layer, characterizes observations, e.g., tree ring profiles in our case. The second level in
the hierarchy, called the process layer, models latent processes that drive the growth of such
rings, tree-to-tree and regional variations. In this second layer, one can start incorporating
temporal processes, e.g., individual age effects and the hidden commonenvironmental factor.
The third level, called the parameter layer, consists of the information concerning prior
parameters distributions that control the process layer.

In dendrochronology, Hooten and Wikle (2007) investigated with a BHM shifts in the
spatio-temporal growth dynamics of shortleaf pine. These authors did not workwith raw tree
measurements but with chronology indices, i.e., already preprocessed and standardized data.
They linked these chronologies with drought information like the Palmer Drought Severity
Index. Concerning the standardization issue and BHM, Boreux et al. (2009) extracted an
inter-annual high frequency signal from detrended tree ring series and consequently, smooth
trends were also overlooked. Compared to these past studies, our goal is to add the flexibility
of modeling nonparametric trends that can capture low frequency changes for the age effect
and higher frequency variations with trend for the hidden common environmental signal.

Denote y j = (y j (t1), . . . , y j (tn))T the tree ringwidth logarithms vector produced by tree
j over the period of interest (t1, . . . , tn). Equation (1) provides the foundation of our data
layer that can be expressed with the common notations used by the Bayesian community as

y j |g j , f, σ 2 ∼ g j + f + σ 2Nn(0n, In), with j = 1, . . . , p, (2)

where the unknown f = ( f (t1), . . . , f (tn))T represents the hidden common signal, see Ft
in (1), the unknowns g j = (g j (t1), . . . , g j (tn))T correspond to the individual age effect
for each tree j , see Gt in (1), 0n = (0, . . . , 0)T and In denotes the identity matrix of size
n. Measurement uncertainty is modeled as a zero mean Gaussian vector with covariance
σ 2In and each tree record [y j |g j , f, σ 2] is supposed to be mutually independent of each
other (“i.e., our observations are assumed to be conditionally independent with respect to
the model parameters). In our application shown in Fig. 2, the number of tree p is equal
to seventeen and the time period is defined as t1 = 1867 and tn = 1993. The tree length
variation displayed in Fig. 1 implies that g j starts with a series of missing values for most
trees.

To go one step further in our Bayesian hierarchy, we need to define the process layer, i.e.,
to set priors for g j , f, and σ 2. In contrast to past dendrochronological studies that imposed
a parametric form for g j or f or both, we opt to describe both functions as semi-parametric
splines viewed within a BHM framework.
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Splines modeling was formulated by Reinsch (1967) and developed by many author
(Eubank 1999; Wand and Jones 1995; Fan and Gijbels 1996). Within the Bayesian frame-
work, Kimeldorf and Wahba (1970) demonstrated that specific forms of spline smoothing
correspond to Bayesian estimates under a class of improper Gaussian prior distributions on
function spaces. For the classical nonparametric regression problem y = f + σ 2N (0, I),
Wahba (1978) proposed and studied a particular partially improper Gaussian prior for the
trend f

f |τ 2 ∼ Nn(0, τ
2K−) (3)

where τ 2 = σ 2/λ and λ ≥ 0 is the smooth parameter of the classical penalized sum of
squares criterion

∑n
i=1(yi − f (xi ))2 + λ

∫
( f ′′(x))2dx that is minimized over all functions

f (x) such that the integral exists. In (3), K− refers to a generalized inverse of a matrix K,
with the understanding that an eigenvalue of zero forK gives an eigenvalue of +∞ forK−.
In the case of smoothing splinesK is linked to the penalty

∫
( f ′′(x))2dx = fTKf . Hastie and

Tibshirani (1990, 2000) showed that this prior covariance matrix K− is equal to B�−BT

evaluated at the data. Let nu be the number of unique value of x, the basis matrix B consist
of the vector of nu + 2 cubic B-splines basis functions b(x) de Boor (1978) evaluated at the
nu sample values xi and the penalty matrix � has elements �i j = ∫

b′′
i (x)b

′′
j (x)dx . Priors

for the smoothing parameter or the variances σ 2 and τ 2 belong to the parameter layer of the
Bayesian hierarchy and they have to be fixed. Hastie and Tibshirani (1990, 2000) suggested
to use proper inverse gamma priors for the variance components σ 2 ∼ IG(aσ , bσ ) and
τ 2 ∼ IG(a, b). In this work, the hyper-parameters of the inverse gamma distribution are
(0.0001, 0.0001).

Following the work ofWahba (1978) and Hastie and Tibshirani (1990, 2000), we assume
the same type of priors for g j and f [see Eq. (3)]

f |τ 20 ∼ Nn(0, τ
2
0K

−) and g j |τ 2j ∼ Nn(0, τ
2
jK

−), for all j = 1, . . . , p.

At this stage, our model is too versatile and associated with identifiability issues. For exam-
ple, if all g j were proportional to f , it is impossible to distinguish f from g j . Additional
constraints are needed and these have been be chosen according to basic tree ring charac-
teristics. From Fang et al. (2010), Cook et al. (1990), Esper et al. (2002), we know that the
individual age effect function g j should be very smooth because individual tree growth is
a rather slow and cumulative process. In contrast, we assume that the hidden signal shared
by all trees f should capture environmental variabilities that correspond to rapid (yearly
or decadal) or slow (centennial) changes. This means that the frequency range of g j is
assumed to be much narrower than the one of f . To illustrate this difference, Fig. 3 displays
simulations that mimic this phenomenon. The top and middle panels represent a simulated
common signal f and simulated individual tree growth signals g j , respectively. In this ide-
alized example, one can see that the functions g j do not reproduce the rapid variations seen
in f . To test the resilience of our method, a slow positive trend was also included into f here
and this adds difficulties to separate f from g j , see Sect. 4.1.

The smoothness information canbe translated into informative prior choice of the smooth-
ness parameters τ 2j for j = 0, . . . , p. For comparison and interpretation reasons, we substi-
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Figure 3. Simulations of logarithmic tree ring widths from the additive model (2). The top panel corresponds to
the common signal f , the second panel to individual growth tree effect signals g j and the bottom panel to simulated
tree ring series y j , respectively. Our objective is to find f and g j from the y j ’s.

tute τ 2j by a parameter that lives on the interval [0, 1], φ j = τ 2j

τ 2j + σ 2
j

, for all j = 0, . . . , p.

If φ j takes a value near zero, then it means that the curve is very smooth. Beta priors for
these parameters seem natural.

To improve identifiability and interpretability, the condition g1 + · · · + gp = 0 is also
imposed. If p = 1, we have only one tree and it is impossible to distinct f from g1 (under this
case, the latter is set to zero). As the number of trees p increases, individual growth effect
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g j can become more and more complex. A fundamental case is when all individual growth
g j are proportional to each other, say g j = α jg with α j ≥ 0 and g �= 0, then imposing
g1+· · ·+gp = 0 implies that α j = 0. In other words, if individual growths have something
in common, then it should capture by f (and not by g j ). This makes sense in our model
because f will be interpreted as the common signal and the g j will be viewed as individual
characteristics (anomalies from the common behavior).

To compute the posteriors of the latent vectors and model parameters, we use Gibbs sam-
pler andMetropolis–Hasting algorithms. Explicitly posterior distribution for some functions
can be derived Hastie and Tibshirani (1990, 2000)

f |g, λ0, y, σ 2 ∼ Nn(B(BTRB + λ0�)−1BT s, σ 2B(BTRB + λ0�)−1B)

with

s =
p∑

j=1

(y j − g j ), λ0 = (1 − φ0)/φ0, R = Diag(p),

and

g j |, f, λ jy j , σ
2 ∼ Nn(B(BTB + λ j�)−1BTd, σ 2B(BTB + λ j�)−1B)

with d = y j − f and λ j = (1 − φ j )/φ j . It is also possible to show that σ 2 have an
inverse gamma posterior distribution. These parameters are estimated with Gibbs sampler.
The parameters φ0 and φ j don’t have standard posterior distributions so we useMetropolis–
Hasting algorithm to estimate them (Hastie and Tibshirani 2000). The Bayesian inference
was carried out with the open source R statistical software.

4. DATA ANALYSIS

4.1. SIMULATIONS RESULTS

As described in Sect. 3 simulated data are used to study model performances. These
data are simulated to mimic tree ring widths series as the sum of a common signal f and
individual tree growth signals g j . The simulated common signal corresponds to

f (t) = exp
2t

(1 + t)
+ 2 sin(t),

where t represents time and g j ’s have aBeta density formwith randomparameters according
to j . Signals are simulated for 50 time length. The simulated data y j ’s are the sums with
added normal uncertainty, see Fig. 3.

A first analysis focuses on the estimation of the prior of φ. After discussions with experts
in dendrochronology, it seems that the common signal have to be an annual proxy while
individual age effect, g j are smooth trend. In Sect. 3, Beta priors are selected for the smooth
parameters φ. Table 1 summarizes the posterior distribution of φ1 under a variety of prior
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Table 1. Summaries of the posterior distribution of φ1 under a variety of conjugate prior distributions.

Parameters of the prior distribution Summaries of the posterior distribution
α β Posterior median of φ1 90% posterior interval for φ1

1 1 0.00083 [0.00047; 0.04853]
1 5 0.00175 [0.00076; 0.01737]
1 10 0.00061 [0.00061; 0.02292]
1 15 0.00165 [0.00034; 0.01060]
1 20 0.00567 [0.00153; 0.03160]

distribution. We note the prior parameters have not a significant impact over the posterior
distribution and this result is approximatively the same for the others φ j . So we set an
non-informative prior φ j ∼ Beta(1, 1) for j = 1, . . . , p.

The prior for φ0 (common signal f smooth parameter) requires a different treatment. As a
first test, we used the non-informative priorφ0 ∼ Beta(1, 1). A good posterior estimation for
this parameter depends of the model uncertainty variance. Figure 4 represents the posterior
estimation of f compared to the real simulated common signal for difference noise levels.
When σ 2 has larger variance, the exact common signal is more difficult to extract and it
tends to smooth the estimated f curve.

To complete this analysis, Fig. 5 shows the influence of the Beta priori parameter, β, on
the smoothness of the common signal f , while keeping a variance level of σ 2 = 0.8. As
β increases (more prior information), the hidden signal appears to be better captured. The
gain after β = 10 seems marginal, and the common signal does not change more.

Different sensitivity analyses concerning the influence of the number of tree were also
performed and are available upon request. In a nutshell, around 10 trees in our simulations
were necessary to derive reasonable results. However this remark about a minimal number
of trees is only valid within the framework of our simulations and it should not be directly
transposed because the shapes of f and g j and the variance σ 2 strongly depend on the tree
species and the site characteristic.

4.2. ANALYSIS OF SEVENTEEN TREE RING WIDTH LOGARITHMS OF Pinus
halepensis Mill

Our model and inference scheme have been applied to the seventeen tree ring width log-
arithms shown in Fig. 2. Our priors were the same that previously discussed. The posteriors
of the three individual age trends smoothness parameter are centered around 0–0.1 This
implies that the inferred curves are fairly smooth. Still this graph reveals a variety of shape
with different wiggles, see Fig. 6.

To put our approach into perspective with respect to the RCS method, Fig. 6 compares
posterior median of individual age effect profiles g j that have been aligned according to their
biological age (not their chronological age) with the classical global biological RCS trend
obtained by averaging ring widths in function of their biological age (gray line). Although
a majority of curves has overall the same degree of smoothness, this figure emphasizes the
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Figure 4. Posterior information about the common signal f obtained from the simulated tree series shown in
the bottom panel of Fig. 3 with different noise levels. The gray and black lines correspond to the true f and the
estimated posterior median, respectively. The dotted lines represent the 90% credibility intervals.

variability among age effect profiles. This tends to indicate that the added flexibility of our
modeling approach allows to improve individual age-related growth variability. A strong
message from Fig. 6 resides in the large variability among the different age effect shapes.
Each tree has its own trend and associated uncertainty. And having this information could
help dendrochronologists to interpret local tree behaviors.

Figure 7 shows the posterior common signal obtained with our Bayesian model. As
previously, the black line represents the posteriormedian and the dotted lines their associated
90% credibility intervals. Our inferred common signal can be compared to the classical RCS
method (in gray in Fig. 7). The fluctuations to the both signals having the same smoothing of
their curve have almost the same variations. The major difference is that with the Bayesian



O. Guin et al.

0 10 20 30 40 50

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

β=5

time

f

time

f

0.
5

1.
0

1.
5

2.
0

0 10 20 30 40 50

1.
5

2.
0

2.
5

3.
0

β=10

time

f

time

f

0.
5

1.
0

1.
5

2.
0

0 10 20 30 40 50

1.
5

2.
0

2.
5

3.
0

β=15

time

f

time

f

0.
5

1.
0

1.
5

2.
0

0 10 20 30 40 50

1.
5

2.
0

2.
5

3.
0

β=20

time

f

time

f

0.
5

1.
0

1.
5

2.
0
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smooth parameter prior. The gray and black lines correspond to the true f and the estimated posterior median,
respectively. The dotted lines represent the 90% credibility intervals.
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Figure 6. Posterior median of individual age effect profiles g j that have been aligned according to their biological
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Figure 7. Posterior information about the common signal f and comparison with RCS chronology. The black line
corresponds the estimated posterior median, and the dotted lines represent the 90% credibility intervals. The gray
line is the RCS chronology.

method the common signal capture low frequencies. The second point is that with this
method we have able to quantify the uncertainty related to common signal estimation.

5. CONCLUSION

In this paper, we introduce a new method to estimate a tree-rings hidden common sig-
nal. The proposed model is a semi-parametric Bayesian hierarchical model that offers the
possibility to capture low and high frequencies in tree ring widths, and to obtain quantify
uncertainty over the different estimated signals.

Our model is tested on simulated data and applied to Pinus halepensis Mill. ring widths
recorded in FrenchMediterranean. Overall, our findings do not contradict the classical RCS
approach, but it goes one step further than classical method (Regional Curve Standardiza-
tion). The Bayesian method permits to bring further information as credibility intervals or
low frequency in common signal contains relevant information about past climate. Themore
complex modeling also permits having different age effect shapes for each tree which can
be an interesting information to help dendrochronologists to interpret local tree behaviors.

To estimate the contribution of this method for dendrochronologists, it will be interested
to investigate potential links between extracted signals and climatic variables and try to
reconstruct past temperatures.

[Received February 2015. Accepted July 2018.]
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