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Abrupt events in glacial climate
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Fig. 1. Variability of the last glacial interval as expressed by oxygen isotope ratios (�18O). Blue indicates Greenland �18O data obtained from the NGRIP (3)
at a regular sampling rate of 20 y (13). Orange indicates Antarctic �18O data from the WAIS ice core (12). As in ref. 12, the layer-counted NGRIP chronology
GICC05 (14, 15) is rescaled by a factor of 1.0063, because the layer-counted WAIS divide deep ice core chronology (WD2014) (16), on which the WAIS �18O
record is shown, is synchronized to this rescaled chronology. The �18O values are commonly interpreted as a proxy for atmospheric temperatures at the
location of the ice core, with higher values indicating warmer temperatures. The training period for our model is the interval from 59 to 23 ky b2k, which
roughly corresponds to Marine Isotope Stage 3 (MIS3). DO events are indicated by vertical magenta lines, Heinrich stadials are marked by grey shading, and
MISs are indicated at the top of the figure. The thin vertical dashed lines indicate time steps in intervals of 20 ky. Inset shows the geographical locations of
the NGRIP and WAIS sites and a sketch of the oceanic circulation, with warmer surface flow in red and colder bottom flow in blue.

Furthermore, it is at least questionable how large-scale reorga-
nizations of the oceanic circulation, which are likely to occur
on much slower timescales (24), could cause the observed
decadal-scale DO events on their own.

Variations in marginal ice sheets, ice shelves, and sea ice cover
near Greenland and other North Atlantic basin coasts, possi-
bly in concert with AMOC changes, have also been proposed
to explain the observed DO cycles (23, 25–29). Model results
suggest that Nordic Sea sea ice retreat can increase winter tem-
peratures by 10� C (30). Furthermore, it has been shown that
freshwater pulses induced by iceberg discharges can trigger DO-
type oscillations via coherence resonance (31). The latter study
also provides a possible explanation for the suggested relation-
ship between DO events and Heinrich events (32–34), which are
characterized by massive iceberg discharges into the Labrador
Sea. These discharges are evident as pronounced bands of ice-
rafted debris in marine sediment cores (34). The Heinrich events
themselves might have been triggered by warming subsurface
waters in the northern North Atlantic during stadial conditions
(35–38). Heinrich-type iceberg calving occurs during the cooler
stadials, possibly acting as a feedback stabilizing the stadial con-
ditions (39, 40). It should be noted here that—in addition to the
Heinrich events, during which icebergs were mainly discharged
into the Labrador Sea—there is empirical evidence for sub-
stantial iceberg discharges at several other locations around the
northern North Atlantic (41) and in particular, into the Denmark
Straight and Icelandic Sea (23, 42).

Recently, a salt oscillator mechanism has been suggested as a
possible explanation of the DO cycles obtained in a comprehen-
sive climate model (43). This relaxation oscillator is triggered by
Heinrich-type salinity disturbances, and the model results point
to the formation of massive polynyas due to thermohaline con-
vective instability, which in turn, leads to a rapid retreat of sea
ice (44).

Alternatively, it has been suggested that warming subsurface
waters in the northern North Atlantic can explain the DO events
either by direct ice shelf melting from below (23, 41) or indirectly
by destabilizing a proposed halocline (26, 45, 46). Empirical evi-
dence for warming of subsurface waters before DO events is
provided by planktonic and benthic foraminifera obtained from
marine sediment cores (45). Benthic �18O can, via its relation-
ship to brine production (47), serve as an indirect proxy for the
variability of sea ice cover. Data obtained from North Atlantic
marine sediment cores indicate that strong sea ice cover changes
are associated with the DO cycles: extensive sea ice cover occurs
during stadials, while interstadials have substantially reduced sea
ice cover (26, 48).

A specific feature of the DO cycles, in particular for the longer
ones, is that the cooling from interstadials to stadials takes place
in two phases, with a rather slow decrease in the first phase fol-
lowed by a considerably faster drop to stadial conditions in a
second phase. A possible physical explanation for this behav-
ior could be that, during the first phase, an ice shelf attached to
Greenland grows at a relatively slow pace. After this ice shelf has
reached a sufficient size, it can serve as an anchor for sea ice and
thereby, provide favorable conditions for substantially faster sea
ice expansion during the second phase (23, 41). For the shorter
DO cycles, the ice shelf may not have been entirely removed dur-
ing the previous transition from stadial to interstadial conditions;
therefore, only the second phase of sea ice regrowth would be
observed.

To our knowledge, studies focussing on sea ice or ice shelf
variability to explain the DO events do not account for the
antiphase coupling between Greenland and Antarctic temper-
atures (compare with Fig. 1 and ref. 12), and they do not
account for the fact that, even in high northern latitudes, sub-
surface water temperatures are in phase with the temperature
evolution observed in Antarctica (49). A possible explanation

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1802573115 Boers et al.
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I Dansgaard-Oeschger events: rapid NH warming (∼ 5 K in ∼ 10 y)

I Heinrich events: massive iceberg rafts
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Abrupt events in glacial climate: high-resolution
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Fig. 1. 20-year average values of d18O and [Ca2þ] (note the reversed logarithmic [Ca2þ] scale; see text for data sources) from GRIP (red), GISP2 (green), and NGRIP (blue) on the GICC05modelext time scale. The dots just below the upper NGRIP depth axis show the position of the match points used to transfer the GICC05modelext time scale from NGRIP to the GRIP (red dots) and GISP2 (green dots) records.
The proposed extension of the INTIMATE event stratigraphy scheme is shown with interstadials illustrated by grey shading (light grey indicates cold sub-events). In the Eemian interglacial, NGRIP data are extended by NEEM d18O data offset by 2‰ (NEEM community members, 2013). See main text for details on the numbering of stadial and interstadial events. Note the small time overlap between the
three panels introduced to ease interpretation.

S. O. Rasmussen et al. (2014). Quaternary Science Reviews

I Transitions occur on very fast timescales (≤ 10 years)

I Something happens in the atmosphere
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Tipping points

cur immediately after the cause or much later. The definition
encompasses equilibrium properties with threshold behavior as
well as critical rates of forcing. In its equilibrium application, it
includes all orders of phase transition and the most common
bifurcations found in nature: saddle-node and Hopf bifurcations.
The definition could in principle be applied at any time, e.g., in
Earth’s history. The feature of the system and the parameter(s)
that influence it need not be climate variables. Critical condi-
tions may be reached autonomously (without human interfer-
ence), and natural variability could trigger a qualitative change.

Here we restrict ourselves to tipping elements that may be
accessed by human activities and are potentially relevant to
current policy. We define the subset of policy-relevant tipping
elements by adding to condition 1 the following conditions:

2. Human activities are interfering with the system ! such that
decisions taken within a ‘‘political time horizon’’ (TP " 0) can
determine whether the critical value for the control !crit is
reached. This occurs at a critical time (tcrit) that is usually
within TP but may be later because of a commitment to further
change made during TP.

3. The time to observe a qualitative change plus the time to
trigger it lie within an ‘‘ethical time horizon’’ (TE); tcrit # T "
TE. TE recognizes that events too far away in the future may
not have the power of influencing today’s decisions.

4. A significant number of people care about the fate of the
component !, because it contributes significantly to the
overall mode of operation of the Earth system (such that
tipping it modifies the qualitative state of the whole system),
it contributes significantly to human welfare (such that tipping
it impacts on many people), or it has great value in itself as
a unique feature of the biosphere. A qualitative change
should correspondingly be defined in terms of impacts.

Conditions 2–4 give our definition of a policy-relevant tipping
element an ethical dimension, which is inevitable because a focus
on policy requires the inclusion of normative judgements. These
enter in the choices of the political time horizon (TP), the ethical
time horizon (TE), and the qualitative change that fulfills con-
dition 4. We suggest a maximum TP $ 100 years based on the
human life span and our (limited) ability to consider the world
we are leaving for our grandchildren, noting also the Intergov-
ernmental Panel on Climate Change (IPCC) focus on this
timescale. We suggest TE $ 1,000 years based on the lifetime of
civilizations, noting that this is longer than the timescale of

nation states and current political entities. Thus, we focus on the
consequences of decisions enacted within this century that
trigger a qualitative change within this millennium, and we
exclude tipping elements whose fate is decided after 2100.

In the limit #! 3 0, condition 1 would only include vanishing
equilibria and first-order phase transitions. Instead we consider
that a ‘‘small’’ perturbation #! should not exceed the magnitude
of natural variability in !. Considering global temperature,
climate variability on interannual to millennial timescales is
0.1–0.2°C. Alternatively, a popular target is to limit anthropo-
genic global mean temperature increase to 2°C, and we take a
‘‘small’’ perturbation to be 10% of this. Either way, #! $ 0.2°C
seems reasonable.

One useful way of classifying tipping elements is in terms of
the time, T, over which a qualitative change is observed: (i) rapid,
abrupt, or spasmodic tipping occurs if the observation time is
very small compared with TP (but T % 0); (ii) gradual or episodic
tipping occurs if the observation time is intermediate (e.g., of
order TP); and (iii) slow or asymptotic tipping occurs if the
observation time is very long (in particular, T 3 TE).

Several key questions arise. What are the potential policy-
relevant tipping elements of the Earth system? And for each:
What is the mechanism of tipping? What is the key feature F of
interest? What are the parameter(s) projecting onto the control
!, and their value(s) near !crit? How long is the transition time
T? What are the associated uncertainties?

Policy-Relevant Tipping Elements in the Climate System
Earth’s history provides evidence of nonlinear switches in state
or modes of variability of components of the climate system
(6–10). Such past transitions may highlight potential tipping
elements under anthropogenic forcing, but the boundary con-
ditions under which they occurred were different from today,
and anthropogenic forcing is generally more rapid and often
different in pattern (11). Therefore, locating potential future
tipping points requires some use of predictive models, in com-
bination with paleodata and/or historical data.

Here we focus on policy-relevant potential future tipping
elements in the climate system. We considered a long list of
candidates (Fig. 1, Table 1), and from literature review and the
aforementioned workshop, we identified a short list of candi-
dates that meet conditions 1–4 (top nine rows in Table 1). To
meet condition 1, there needed to be some theoretical basis ("1
model study) for expecting a system to exhibit a critical threshold

Fig. 1. Map of potential policy-relevant
tipping elements in the climate system, up-
dated from ref. 5 and overlain on global
population density. Subsystems indicated
could exhibit threshold-type behavior in re-
sponse to anthropogenic climate forcing,
where a small perturbation at a critical point
qualitatively alters the future fate of the
system. They could be triggered this century
and would undergo a qualitative change
within this millennium. We exclude from the
map systems in which any threshold appears
inaccessible this century (e.g., East Antarctic
Ice Sheet) or the qualitative change would
appear beyond this millennium (e.g., marine
methane hydrates). Question marks indicate
systems whose status as tipping elements is
particularly uncertain.

Lenton et al. PNAS ! February 12, 2008 ! vol. 105 ! no. 6 ! 1787

P
E

R
S

P
E

C
T

IV
E

T. Lenton et al. (2008). Proc. Natl. Acad. Sci. U.S.A.

Many potential mechanisms for abrupt transitions have been suggested.
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Continuous or discontinuous?

critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt5X(12X/K)2 c(X2/(X21 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
systemmoves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashedmiddle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1
or point F2), a tiny change in the conditionmay cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt5X(12X/K)2 c(X2/(X21 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
systemmoves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashedmiddle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1
or point F2), a tiny change in the conditionmay cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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Bistability in turbulent flows

antisymmetric dimensionless quantities ! and " to mea-
sure the forcing—and response—asymmetry: ! ¼ ðf1 #
f2Þ=ðf1 þ f2Þ is the reduced impeller speed difference and
" ¼ ðC1 # C2Þ=ðC1 þ C2Þ is the reduced shaft torque
difference.

Speed control.—For speed-imposed experiments, all tur-
bulent flows are steady. These steady states are character-
ized by their mean torque asymmetry ". Starting both
impellers at the same time for ! & 0, the system reaches
steady states corresponding to a ‘‘symmetric’’ branch
called (s). They statistically consist of two recirculation
cells separated by a shear layer, in agreement with [5,6]. In
such states, a small ! variation triggers a transition with a
dramatic increase of the mean torque. These new ‘‘bifur-
cated’’ states exhibit one recirculation cell, and form two
separate branches of the (", !) plane (see Fig. 1, left).
These branches, named (b1) and (b2), respectively, exhibit
a global pumping of the bottom or the top impeller.
Velocimetry measurements have confirmed that the veloc-
ity fields of the flows belonging to the (b1) and (b2) are
images of each other by theR# rotation. Once on (b1) and
(b2) branches, the (s) state cannot be reached, which is,
therefore, marginally stable. In addition, the (b1) and (b2)
branches are hysteretic, (b1) states persisting for f1 ' f2
and (b2) states for f2 ' f1 [12], agreeing with previous
results [5]. The shape of the hysteresis cycle is only weakly
Reynolds-dependent for Re ( 1:0) 105, as evidenced by
water and liquid helium experiments performed up to
Re ¼ 3:0) 108 [13]. An important feature of the cycle is
the ‘‘forbidden zone’’ of " values never accessed for
imposed speed.

Torque control.—In contrast, imposing torque allows
any value of ", assuming friction is negligible, whereas f
is no longer fixed. Hence, with our definition, we cannot
specify a priori the Reynolds number of such experiments.
We have first verified that imposing " out of the forbidden
zone provides steady states identical to those observed in
speed control (see Fig. 1). After suitable normalization,
no difference in velocimetry measurements is indeed

observed between the two controls. Our experiments
have then focused on the henceforth accessible forbidden
zone. In this region, the system loses steadiness: the impel-
ler speed may alternatively jump between multiple attract-
ing turbulent states. This multistability is identified by the
emergence of multiple local maxima in the probability
density function (PDF) of the 1.5 Hz low-pass filtered
signal of !ðtÞ. Such filtering is required considering the
discrete nature of our speed measurements; it yields a
robust density function when the filter cutoff frequency is
changed. Three types of attracting states, then, have been

identified: (~s), the high-speed state, is similar to (s); ( ~b1)
and ( ~b2) are low-speed states similar to (b1) and (b2); and
two new (~i1) and (~i2) intermediate states. These new states

can be seen in Fig. 1: while (~s), ( ~b1), and ( ~b2) states extend
their speed-imposed counterparts, (~i1) and (~i2) branches are
new and cannot be observed in speed control. Decreasing "
from a perfectly symmetric (~s) (! ¼ 0) state, we can
observe the asymmetry influence on temporal signals of
the impeller speeds, as done in Fig. 2. First, steady states
with decreasing mean ! are observed. Then [Fig. 2(b)],
when " ' #0:049—a local extremum of the mean value
of !—small localized peaks of f1 and f2 are simulta-
neously observed, breaking time invariance. Such events
are identified as excursions towards intermediate state (~i2).
Still decreasing ", the peaks grow until the biggest events
saturate at low f1 and f2 [Fig. 2(c)]. These events are

identified as transitions to the ( ~b2) state. For even lower
values of ", the system behavior is irregular, switching

between fast (~s), (~i2) and slow ( ~b2) states [Fig. 2(d)]. In this
situation, (~b) and (~i) states are quasisteady, each being able
to last more than 10 sec. (70 impeller rotations).
Decreasing " further affects the dynamics of the system,

more time being spent in ( ~b2) at the expense of (~i2) and (~s).
Therefore, for low " ' #0:0920 [Fig. 2(e)], only rare
events can drive the system to the faster states.
Eventually, for " ' #0:099 [Fig. 2(f)], the system time
invariance is restored, corresponding to a (b2) steady state
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FIG. 1 (color online). (Left), mean reduced torque asymmetry " plotted as a function of the mean reduced speed asymmetry !, for
both speed (purple squares) and torque (grey circles) experiments. The arrows indicate the possible transitions between steady states,
sketching a hysteresis cycle including a forbidden " zone (hatched region) for speed control experiments. No hysteresis is observed in
torque control. (Right), modes of the ! PDF for torque control experiments corresponding to the ‘‘forbidden range.’’ (~s), ( ~b1), and ( ~b2)
are quasisteady states branches extending, respectively, the steady (s), (b1), and (b2) branches. (~i1) and (~i2) are new branches, never
observed in speed control. (Inset) Sketch of the ‘VK2’ experiment, with the two impellers (black). The experiment is axisymmetric
along the vertical axis, and is R# symmetric for exact counter rotation.
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of Fig. 1. Remarkably, the flow susceptibility defined using
! mean value, @"=@!, is negative in this forbidden zone
(see Fig. 1). Increasing " from a perfectly symmetric state

leads to the same sequence of events, though (~i1) and ( ~b1)
will be reached.

Valuable information about our system dynamics can be
found studying near-transition variations of global quanti-
ties [14]. We have, therefore, superposed in Fig. 3 the speed

signals close to the transitions observed in Fig. 2(c): ð~sÞ !
ð ~b1;2Þ is called a down transition, and ð ~b1;2Þ ! ð~sÞ an up
transition. Once the transition instant is accurately deter-
mined, a good collapse of all curves is observed, validating
a unique transition path. This extends the low-dimensional
system description of [14] to purely hydrodynamical quan-
tities in a nonmagnetic turbulent flow. Eventually, the joint
distributions of (f1, f2) are studied to highlight the attrac-
tors emerging from Figs. 1 and 2. In Fig. 4(a), for small ",
only one maximum appears, which confirms the steady
nature of (s). For higher asymmetries, small excursions
escaping the attractor—the previously described small
(~i2) peaks—can be found, exhibiting a new local maximum
strongly deviating from the diagonal f1 ¼ f2. Still increas-
ing the asymmetry, the system fills a large part of the
(f1, f2) plane, with three main maxima: (~s) close to the

diagonal at higher (f1, f2), and ( ~b2) off diagonal for
low (f1, f2). The third—(~i2)—attractor is harder to see,
being hidden by neighboring zones repeatedly crossed by

unsteady events. It is located near the right tip of the
histogram. With this representation, one observes a differ-
ent mean path for down and up transitions: while the down
transition starts ‘‘looping’’ next to (~s) before abruptly
transiting to ( ~b2), the up transition reaches the right tip
of the joint PDF (f1 > f2), near (~i2) before joining the
(~s) state.
The maxima height repartition of Figs. 4(c)–4(e) is

driven by ", from almost-fully (~s), (~i2) to nearly pure
( ~b2) with rare, large transitions to the faster states. For
nearly pure (~s), we clearly see [Fig. 4(c)] a fair amount of
small excursions, contrasting with the nearly pure ( ~b2)
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FIG. 2 (color online). Temporal series of the impeller speeds
f1 (blue) and f2 (red) for various ". (a), steady high-speed state
(~s) observed at " ¼ $0:0164; (b), threshold of the irregular
peaks (~i2) with very small events for " ¼ $0:0460; (c), (~i2)
irregular peaks for " ¼ $0:0668; (d), multistable regime show-
ing (~s), (~i2), and ( ~b2) events at " ¼ $0:0891; (e), single fast rare
event in an almost steady slow ( ~b2) regime for " ¼ $0:0912;
(f), steady slow (b2) regime for " ¼ $0:1049.
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FIG. 3 (color online). Shifted temporal signals of 60 randomly
chosen transitions of a two-hour experiment with " ¼ $0:0891.
We compute #i by finding the minimum of j@t !f2j, the 1 Hz
filtered signal of f2. (a),(c), respectively, f2 and f1 profiles for
down transitions. (b),(d), respectively, f2 and f1 for up transi-
tions. The thick white line represents in each subplot the rotation
frequency averaged on all 195 events of the experiment.
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FIG. 4 (color online). Joint-probability density maps of the
(f1, f2) values (density in log scale), based on Fig. 2 temporal
series: (a): steady (s) state; (b), threshold of (~i1) events; (c),
threshold of ( ~b1); (d), multistability: blue line and red line
represent, respectively, the Fig. 3 mean profile for down and
up transitions; (e), rare events; (f), steady slow state. The dashed-
dotted line represents the ! ¼ 0 condition.
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(2013). Phys. Rev. Lett.

Magnetic field reversals in an experimental turbulent dynamo

Fig. 3: (Colour Online) Magnetic field measured inside the flow vessel, by a 3-dimensional Hall probe. No external magnetic field
is applied, other than the ambient field, whose amplitude is about 0.2 gauss across the measurement volume. The temperature of
the outer copper cylinder is T = 123 ◦C. Main: time evolution of all three magnetic field components. The main component (red)
is the azimuthal one. Note that all components decay to zero at a reversal. The bottom graph shows synchronous recordings
of the power driving the flow. Right: detail of the time series of the main magnetic field and simultaneous power consumption
(arrows mark the synchronous events). Top: Chronos of the magnetic field orientation, white for a positive direction, black for
the negative direction, for 2 successive recordings 900 and 1800 seconds long (separated by the shaded area, the first sequence
corresponds to the main graph). In this regime, the von Kármán flow is driven with counter-rotating disks at frequencies
F1 = 16Hz and F2 = 22Hz.

a variety of dynamical regimes, oscillations, intermittent
bursts (not shown), as well as dynamos with random
reversals (fig. 3) are observed.
We also find pockets of parameters for which we could

not record the growth of a dynamo during 3 minute long
runs —corresponding to over 3000 forcing time scales.
We now describe reversals of the magnetic field. In fig. 3,

we show a time series that corresponds to F1 = 16Hz and
F2 = 22Hz. In this regime, the magnetic field reverses
at irregular time intervals. All three components of the
dynamo field switch polarity in perfect synchrony, so that
B changes to −B. For each polarity, the amplitude of
the magnetic field has strong fluctuations, with an rms
fluctuation level of the order of 20% of the mean. This
level of fluctuation is due to the very intense turbulence
of the flow, as the kinetic Reynolds number exceeds 106.
Reversals occur randomly and have been followed for up
to 45 minutes, i.e. 54000 characteristic time scales of the
flow forcing.
In the regime reported in fig. 3, the polarities do

not have the same probability of observation. Phases

with a positive polarity for the largest magnetic field
component have on average longer duration (〈T+〉= 120 s)
than phases with the opposite polarity (〈T−〉= 50 s). This
asymmetry can be due to the ambient magnetic field.
Note however that the amplitude of the magnetic field,
that is much larger than the Earth’s field, is the same for
both polarities. Standard deviations are of the same order
of magnitude as the mean values, although better statistics
may be needed to fully converge these estimates. The mean
duration of each reversal, τ ∼ 5 s, is longer than magneto-
hydrodynamics time scales: the flow integral time scale
is of the order of the inverse of the rotation frequencies,
i.e. 0.05 s, and the ohmic diffusive time scale is roughly
τη ∼ 0.4 s. Concerning the dynamics of field reversals, a
natural question is related to the connection between B
and −B in time. The equations of magnetohydrodynamics
are symmetric under the transformation B to −B so that
the selection of a polarity is a broken symmetry at the
dynamo bifurcation threshold. The sequences of opposite
polarities displayed in fig. 3 act as magnetic domains along
the time axis, with Ising-type walls in-between them: the
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Laboratory experiments in rotating an-
nuli with a radial temperature gradient have
helped in the understanding of the mecha-
nism of baroclinic instability and the atmo-
sphere’s general circulation (17). Introduc-
ing wavenumber 2 topography in such an-
nuli produced new phenomena (18) but did
not adequately explain the spatiotemporal
features of the atmosphere’s observed and
modeled low-frequency variability (19).

To further understand the dynamics of
zonal flow over topography, we carried out
laboratory experiments on a barotropic rotat-
ing annulus (20, 21) with two mountain ridg-
es. The flow was produced by mechanical
pumping and suction rather than by differen-
tial heating of the side walls (17). With the
rapid rotation and absence of buoyant driving
forces, the flow in the annulus was essentially
two-dimensional (21) and could be compared
with barotropic model results. These experi-
ments facilitate exploration of the flow’s be-
havior over a wide parameter range: an hour
at a rotation frequency of 2 Hz corresponds to
20 simulated years.

The annular tank’s inner radius r1 !
10.8 cm, its outer radius r2 ! 4r1, and its
height varied linearly from 17.1 cm at the
inner to 20.3 cm at the outer radius. Flow
was produced by pumping fluid in through a
ring of 120 holes (0.26 cm in diameter) at
rsource ! (3.25)r1 and out through a ring of
holes at rsink ! (1.75)r1. The annulus was
filled with water (kinematic viscosity " !

0.009 cm2 s–1) up to a flat lid. When the
tank rotated rapidly, the action of the Co-
riolis force on the radial flow resulted in a
corotating (eastward) jet with a much high-
er velocity than the radial flow generated
directly by the pumping (20, 21). The slop-
ing bottom of the annulus models the

change in Coriolis force as a function of
latitude for spherical planets [the # effect,
which in the present case is given by # !
2$s/h, where s ! 0.1 is the slope, h ! 18.7
cm is the mean height of the annulus, and
$ is the angular velocity of the annulus
(21)]. Two radial aluminum ridges were

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing
contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to
19 January 1963; the data are from the National Oceanic and Atmospheric

Administration’s Climate Analysis Center. The nearly zonal flow of (A) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent’s western part (26).

Fig. 2. Time-averaged stream function contours calculated from experimental data for (A) zonal and (B)
blocked flow. The peaks of the ridges are indicated by dashed lines, and the profile of each ridge is
shown by black curves outside the rim of the round panels. The contour interval is 15 cm2 s–1 for both
plots. The annulus rotates counterclockwise, and the flow is in the direction of rotation (eastward). The
Rossby numbers Ro for the zonal and blocked flows are 0.33 % 0.02 and 0.22 % 0.02, respectively
(pump flux F ! 390 and 260 cm3 s–1, respectively); for both flows, the Ekman number Ek ! 4.8 & 10'4

($ ! 3( rad s–1). A video camera was used to track neutrally buoyant particles of 1 mm diameter, and
time-averaged stream functions were determined by averaging the particle trajectories in time (23) and
fitting the results to basis functions. The highs and lows of the stream function are indicated by bold
letters H and L, respectively. The black dots indicate the horizontal location of the hot-film probe.
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Figure 3: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-
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Bistability in turbulent flows

antisymmetric dimensionless quantities ! and " to mea-
sure the forcing—and response—asymmetry: ! ¼ ðf1 #
f2Þ=ðf1 þ f2Þ is the reduced impeller speed difference and
" ¼ ðC1 # C2Þ=ðC1 þ C2Þ is the reduced shaft torque
difference.

Speed control.—For speed-imposed experiments, all tur-
bulent flows are steady. These steady states are character-
ized by their mean torque asymmetry ". Starting both
impellers at the same time for ! & 0, the system reaches
steady states corresponding to a ‘‘symmetric’’ branch
called (s). They statistically consist of two recirculation
cells separated by a shear layer, in agreement with [5,6]. In
such states, a small ! variation triggers a transition with a
dramatic increase of the mean torque. These new ‘‘bifur-
cated’’ states exhibit one recirculation cell, and form two
separate branches of the (", !) plane (see Fig. 1, left).
These branches, named (b1) and (b2), respectively, exhibit
a global pumping of the bottom or the top impeller.
Velocimetry measurements have confirmed that the veloc-
ity fields of the flows belonging to the (b1) and (b2) are
images of each other by theR# rotation. Once on (b1) and
(b2) branches, the (s) state cannot be reached, which is,
therefore, marginally stable. In addition, the (b1) and (b2)
branches are hysteretic, (b1) states persisting for f1 ' f2
and (b2) states for f2 ' f1 [12], agreeing with previous
results [5]. The shape of the hysteresis cycle is only weakly
Reynolds-dependent for Re ( 1:0) 105, as evidenced by
water and liquid helium experiments performed up to
Re ¼ 3:0) 108 [13]. An important feature of the cycle is
the ‘‘forbidden zone’’ of " values never accessed for
imposed speed.

Torque control.—In contrast, imposing torque allows
any value of ", assuming friction is negligible, whereas f
is no longer fixed. Hence, with our definition, we cannot
specify a priori the Reynolds number of such experiments.
We have first verified that imposing " out of the forbidden
zone provides steady states identical to those observed in
speed control (see Fig. 1). After suitable normalization,
no difference in velocimetry measurements is indeed

observed between the two controls. Our experiments
have then focused on the henceforth accessible forbidden
zone. In this region, the system loses steadiness: the impel-
ler speed may alternatively jump between multiple attract-
ing turbulent states. This multistability is identified by the
emergence of multiple local maxima in the probability
density function (PDF) of the 1.5 Hz low-pass filtered
signal of !ðtÞ. Such filtering is required considering the
discrete nature of our speed measurements; it yields a
robust density function when the filter cutoff frequency is
changed. Three types of attracting states, then, have been

identified: (~s), the high-speed state, is similar to (s); ( ~b1)
and ( ~b2) are low-speed states similar to (b1) and (b2); and
two new (~i1) and (~i2) intermediate states. These new states

can be seen in Fig. 1: while (~s), ( ~b1), and ( ~b2) states extend
their speed-imposed counterparts, (~i1) and (~i2) branches are
new and cannot be observed in speed control. Decreasing "
from a perfectly symmetric (~s) (! ¼ 0) state, we can
observe the asymmetry influence on temporal signals of
the impeller speeds, as done in Fig. 2. First, steady states
with decreasing mean ! are observed. Then [Fig. 2(b)],
when " ' #0:049—a local extremum of the mean value
of !—small localized peaks of f1 and f2 are simulta-
neously observed, breaking time invariance. Such events
are identified as excursions towards intermediate state (~i2).
Still decreasing ", the peaks grow until the biggest events
saturate at low f1 and f2 [Fig. 2(c)]. These events are

identified as transitions to the ( ~b2) state. For even lower
values of ", the system behavior is irregular, switching

between fast (~s), (~i2) and slow ( ~b2) states [Fig. 2(d)]. In this
situation, (~b) and (~i) states are quasisteady, each being able
to last more than 10 sec. (70 impeller rotations).
Decreasing " further affects the dynamics of the system,

more time being spent in ( ~b2) at the expense of (~i2) and (~s).
Therefore, for low " ' #0:0920 [Fig. 2(e)], only rare
events can drive the system to the faster states.
Eventually, for " ' #0:099 [Fig. 2(f)], the system time
invariance is restored, corresponding to a (b2) steady state
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FIG. 1 (color online). (Left), mean reduced torque asymmetry " plotted as a function of the mean reduced speed asymmetry !, for
both speed (purple squares) and torque (grey circles) experiments. The arrows indicate the possible transitions between steady states,
sketching a hysteresis cycle including a forbidden " zone (hatched region) for speed control experiments. No hysteresis is observed in
torque control. (Right), modes of the ! PDF for torque control experiments corresponding to the ‘‘forbidden range.’’ (~s), ( ~b1), and ( ~b2)
are quasisteady states branches extending, respectively, the steady (s), (b1), and (b2) branches. (~i1) and (~i2) are new branches, never
observed in speed control. (Inset) Sketch of the ‘VK2’ experiment, with the two impellers (black). The experiment is axisymmetric
along the vertical axis, and is R# symmetric for exact counter rotation.
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of Fig. 1. Remarkably, the flow susceptibility defined using
! mean value, @"=@!, is negative in this forbidden zone
(see Fig. 1). Increasing " from a perfectly symmetric state

leads to the same sequence of events, though (~i1) and ( ~b1)
will be reached.

Valuable information about our system dynamics can be
found studying near-transition variations of global quanti-
ties [14]. We have, therefore, superposed in Fig. 3 the speed

signals close to the transitions observed in Fig. 2(c): ð~sÞ !
ð ~b1;2Þ is called a down transition, and ð ~b1;2Þ ! ð~sÞ an up
transition. Once the transition instant is accurately deter-
mined, a good collapse of all curves is observed, validating
a unique transition path. This extends the low-dimensional
system description of [14] to purely hydrodynamical quan-
tities in a nonmagnetic turbulent flow. Eventually, the joint
distributions of (f1, f2) are studied to highlight the attrac-
tors emerging from Figs. 1 and 2. In Fig. 4(a), for small ",
only one maximum appears, which confirms the steady
nature of (s). For higher asymmetries, small excursions
escaping the attractor—the previously described small
(~i2) peaks—can be found, exhibiting a new local maximum
strongly deviating from the diagonal f1 ¼ f2. Still increas-
ing the asymmetry, the system fills a large part of the
(f1, f2) plane, with three main maxima: (~s) close to the

diagonal at higher (f1, f2), and ( ~b2) off diagonal for
low (f1, f2). The third—(~i2)—attractor is harder to see,
being hidden by neighboring zones repeatedly crossed by

unsteady events. It is located near the right tip of the
histogram. With this representation, one observes a differ-
ent mean path for down and up transitions: while the down
transition starts ‘‘looping’’ next to (~s) before abruptly
transiting to ( ~b2), the up transition reaches the right tip
of the joint PDF (f1 > f2), near (~i2) before joining the
(~s) state.
The maxima height repartition of Figs. 4(c)–4(e) is

driven by ", from almost-fully (~s), (~i2) to nearly pure
( ~b2) with rare, large transitions to the faster states. For
nearly pure (~s), we clearly see [Fig. 4(c)] a fair amount of
small excursions, contrasting with the nearly pure ( ~b2)

4
6
8

4
6
8

4
6
8

4
6
8

4
6
8

0 100 200 300 400 500 600

4
6
8

FIG. 2 (color online). Temporal series of the impeller speeds
f1 (blue) and f2 (red) for various ". (a), steady high-speed state
(~s) observed at " ¼ $0:0164; (b), threshold of the irregular
peaks (~i2) with very small events for " ¼ $0:0460; (c), (~i2)
irregular peaks for " ¼ $0:0668; (d), multistable regime show-
ing (~s), (~i2), and ( ~b2) events at " ¼ $0:0891; (e), single fast rare
event in an almost steady slow ( ~b2) regime for " ¼ $0:0912;
(f), steady slow (b2) regime for " ¼ $0:1049.
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FIG. 3 (color online). Shifted temporal signals of 60 randomly
chosen transitions of a two-hour experiment with " ¼ $0:0891.
We compute #i by finding the minimum of j@t !f2j, the 1 Hz
filtered signal of f2. (a),(c), respectively, f2 and f1 profiles for
down transitions. (b),(d), respectively, f2 and f1 for up transi-
tions. The thick white line represents in each subplot the rotation
frequency averaged on all 195 events of the experiment.
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FIG. 4 (color online). Joint-probability density maps of the
(f1, f2) values (density in log scale), based on Fig. 2 temporal
series: (a): steady (s) state; (b), threshold of (~i1) events; (c),
threshold of ( ~b1); (d), multistability: blue line and red line
represent, respectively, the Fig. 3 mean profile for down and
up transitions; (e), rare events; (f), steady slow state. The dashed-
dotted line represents the ! ¼ 0 condition.
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Magnetic field reversals in an experimental turbulent dynamo

Fig. 3: (Colour Online) Magnetic field measured inside the flow vessel, by a 3-dimensional Hall probe. No external magnetic field
is applied, other than the ambient field, whose amplitude is about 0.2 gauss across the measurement volume. The temperature of
the outer copper cylinder is T = 123 ◦C. Main: time evolution of all three magnetic field components. The main component (red)
is the azimuthal one. Note that all components decay to zero at a reversal. The bottom graph shows synchronous recordings
of the power driving the flow. Right: detail of the time series of the main magnetic field and simultaneous power consumption
(arrows mark the synchronous events). Top: Chronos of the magnetic field orientation, white for a positive direction, black for
the negative direction, for 2 successive recordings 900 and 1800 seconds long (separated by the shaded area, the first sequence
corresponds to the main graph). In this regime, the von Kármán flow is driven with counter-rotating disks at frequencies
F1 = 16Hz and F2 = 22Hz.

a variety of dynamical regimes, oscillations, intermittent
bursts (not shown), as well as dynamos with random
reversals (fig. 3) are observed.
We also find pockets of parameters for which we could

not record the growth of a dynamo during 3 minute long
runs —corresponding to over 3000 forcing time scales.
We now describe reversals of the magnetic field. In fig. 3,

we show a time series that corresponds to F1 = 16Hz and
F2 = 22Hz. In this regime, the magnetic field reverses
at irregular time intervals. All three components of the
dynamo field switch polarity in perfect synchrony, so that
B changes to −B. For each polarity, the amplitude of
the magnetic field has strong fluctuations, with an rms
fluctuation level of the order of 20% of the mean. This
level of fluctuation is due to the very intense turbulence
of the flow, as the kinetic Reynolds number exceeds 106.
Reversals occur randomly and have been followed for up
to 45 minutes, i.e. 54000 characteristic time scales of the
flow forcing.
In the regime reported in fig. 3, the polarities do

not have the same probability of observation. Phases

with a positive polarity for the largest magnetic field
component have on average longer duration (〈T+〉= 120 s)
than phases with the opposite polarity (〈T−〉= 50 s). This
asymmetry can be due to the ambient magnetic field.
Note however that the amplitude of the magnetic field,
that is much larger than the Earth’s field, is the same for
both polarities. Standard deviations are of the same order
of magnitude as the mean values, although better statistics
may be needed to fully converge these estimates. The mean
duration of each reversal, τ ∼ 5 s, is longer than magneto-
hydrodynamics time scales: the flow integral time scale
is of the order of the inverse of the rotation frequencies,
i.e. 0.05 s, and the ohmic diffusive time scale is roughly
τη ∼ 0.4 s. Concerning the dynamics of field reversals, a
natural question is related to the connection between B
and −B in time. The equations of magnetohydrodynamics
are symmetric under the transformation B to −B so that
the selection of a polarity is a broken symmetry at the
dynamo bifurcation threshold. The sequences of opposite
polarities displayed in fig. 3 act as magnetic domains along
the time axis, with Ising-type walls in-between them: the
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Laboratory experiments in rotating an-
nuli with a radial temperature gradient have
helped in the understanding of the mecha-
nism of baroclinic instability and the atmo-
sphere’s general circulation (17). Introduc-
ing wavenumber 2 topography in such an-
nuli produced new phenomena (18) but did
not adequately explain the spatiotemporal
features of the atmosphere’s observed and
modeled low-frequency variability (19).

To further understand the dynamics of
zonal flow over topography, we carried out
laboratory experiments on a barotropic rotat-
ing annulus (20, 21) with two mountain ridg-
es. The flow was produced by mechanical
pumping and suction rather than by differen-
tial heating of the side walls (17). With the
rapid rotation and absence of buoyant driving
forces, the flow in the annulus was essentially
two-dimensional (21) and could be compared
with barotropic model results. These experi-
ments facilitate exploration of the flow’s be-
havior over a wide parameter range: an hour
at a rotation frequency of 2 Hz corresponds to
20 simulated years.

The annular tank’s inner radius r1 !
10.8 cm, its outer radius r2 ! 4r1, and its
height varied linearly from 17.1 cm at the
inner to 20.3 cm at the outer radius. Flow
was produced by pumping fluid in through a
ring of 120 holes (0.26 cm in diameter) at
rsource ! (3.25)r1 and out through a ring of
holes at rsink ! (1.75)r1. The annulus was
filled with water (kinematic viscosity " !

0.009 cm2 s–1) up to a flat lid. When the
tank rotated rapidly, the action of the Co-
riolis force on the radial flow resulted in a
corotating (eastward) jet with a much high-
er velocity than the radial flow generated
directly by the pumping (20, 21). The slop-
ing bottom of the annulus models the

change in Coriolis force as a function of
latitude for spherical planets [the # effect,
which in the present case is given by # !
2$s/h, where s ! 0.1 is the slope, h ! 18.7
cm is the mean height of the annulus, and
$ is the angular velocity of the annulus
(21)]. Two radial aluminum ridges were

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing
contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to
19 January 1963; the data are from the National Oceanic and Atmospheric

Administration’s Climate Analysis Center. The nearly zonal flow of (A) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent’s western part (26).

Fig. 2. Time-averaged stream function contours calculated from experimental data for (A) zonal and (B)
blocked flow. The peaks of the ridges are indicated by dashed lines, and the profile of each ridge is
shown by black curves outside the rim of the round panels. The contour interval is 15 cm2 s–1 for both
plots. The annulus rotates counterclockwise, and the flow is in the direction of rotation (eastward). The
Rossby numbers Ro for the zonal and blocked flows are 0.33 % 0.02 and 0.22 % 0.02, respectively
(pump flux F ! 390 and 260 cm3 s–1, respectively); for both flows, the Ekman number Ek ! 4.8 & 10'4

($ ! 3( rad s–1). A video camera was used to track neutrally buoyant particles of 1 mm diameter, and
time-averaged stream functions were determined by averaging the particle trajectories in time (23) and
fitting the results to basis functions. The highs and lows of the stream function are indicated by bold
letters H and L, respectively. The black dots indicate the horizontal location of the hot-film probe.
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Figure 3: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-
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Bistability in turbulent flows

antisymmetric dimensionless quantities ! and " to mea-
sure the forcing—and response—asymmetry: ! ¼ ðf1 #
f2Þ=ðf1 þ f2Þ is the reduced impeller speed difference and
" ¼ ðC1 # C2Þ=ðC1 þ C2Þ is the reduced shaft torque
difference.

Speed control.—For speed-imposed experiments, all tur-
bulent flows are steady. These steady states are character-
ized by their mean torque asymmetry ". Starting both
impellers at the same time for ! & 0, the system reaches
steady states corresponding to a ‘‘symmetric’’ branch
called (s). They statistically consist of two recirculation
cells separated by a shear layer, in agreement with [5,6]. In
such states, a small ! variation triggers a transition with a
dramatic increase of the mean torque. These new ‘‘bifur-
cated’’ states exhibit one recirculation cell, and form two
separate branches of the (", !) plane (see Fig. 1, left).
These branches, named (b1) and (b2), respectively, exhibit
a global pumping of the bottom or the top impeller.
Velocimetry measurements have confirmed that the veloc-
ity fields of the flows belonging to the (b1) and (b2) are
images of each other by theR# rotation. Once on (b1) and
(b2) branches, the (s) state cannot be reached, which is,
therefore, marginally stable. In addition, the (b1) and (b2)
branches are hysteretic, (b1) states persisting for f1 ' f2
and (b2) states for f2 ' f1 [12], agreeing with previous
results [5]. The shape of the hysteresis cycle is only weakly
Reynolds-dependent for Re ( 1:0) 105, as evidenced by
water and liquid helium experiments performed up to
Re ¼ 3:0) 108 [13]. An important feature of the cycle is
the ‘‘forbidden zone’’ of " values never accessed for
imposed speed.

Torque control.—In contrast, imposing torque allows
any value of ", assuming friction is negligible, whereas f
is no longer fixed. Hence, with our definition, we cannot
specify a priori the Reynolds number of such experiments.
We have first verified that imposing " out of the forbidden
zone provides steady states identical to those observed in
speed control (see Fig. 1). After suitable normalization,
no difference in velocimetry measurements is indeed

observed between the two controls. Our experiments
have then focused on the henceforth accessible forbidden
zone. In this region, the system loses steadiness: the impel-
ler speed may alternatively jump between multiple attract-
ing turbulent states. This multistability is identified by the
emergence of multiple local maxima in the probability
density function (PDF) of the 1.5 Hz low-pass filtered
signal of !ðtÞ. Such filtering is required considering the
discrete nature of our speed measurements; it yields a
robust density function when the filter cutoff frequency is
changed. Three types of attracting states, then, have been

identified: (~s), the high-speed state, is similar to (s); ( ~b1)
and ( ~b2) are low-speed states similar to (b1) and (b2); and
two new (~i1) and (~i2) intermediate states. These new states

can be seen in Fig. 1: while (~s), ( ~b1), and ( ~b2) states extend
their speed-imposed counterparts, (~i1) and (~i2) branches are
new and cannot be observed in speed control. Decreasing "
from a perfectly symmetric (~s) (! ¼ 0) state, we can
observe the asymmetry influence on temporal signals of
the impeller speeds, as done in Fig. 2. First, steady states
with decreasing mean ! are observed. Then [Fig. 2(b)],
when " ' #0:049—a local extremum of the mean value
of !—small localized peaks of f1 and f2 are simulta-
neously observed, breaking time invariance. Such events
are identified as excursions towards intermediate state (~i2).
Still decreasing ", the peaks grow until the biggest events
saturate at low f1 and f2 [Fig. 2(c)]. These events are

identified as transitions to the ( ~b2) state. For even lower
values of ", the system behavior is irregular, switching

between fast (~s), (~i2) and slow ( ~b2) states [Fig. 2(d)]. In this
situation, (~b) and (~i) states are quasisteady, each being able
to last more than 10 sec. (70 impeller rotations).
Decreasing " further affects the dynamics of the system,

more time being spent in ( ~b2) at the expense of (~i2) and (~s).
Therefore, for low " ' #0:0920 [Fig. 2(e)], only rare
events can drive the system to the faster states.
Eventually, for " ' #0:099 [Fig. 2(f)], the system time
invariance is restored, corresponding to a (b2) steady state
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FIG. 1 (color online). (Left), mean reduced torque asymmetry " plotted as a function of the mean reduced speed asymmetry !, for
both speed (purple squares) and torque (grey circles) experiments. The arrows indicate the possible transitions between steady states,
sketching a hysteresis cycle including a forbidden " zone (hatched region) for speed control experiments. No hysteresis is observed in
torque control. (Right), modes of the ! PDF for torque control experiments corresponding to the ‘‘forbidden range.’’ (~s), ( ~b1), and ( ~b2)
are quasisteady states branches extending, respectively, the steady (s), (b1), and (b2) branches. (~i1) and (~i2) are new branches, never
observed in speed control. (Inset) Sketch of the ‘VK2’ experiment, with the two impellers (black). The experiment is axisymmetric
along the vertical axis, and is R# symmetric for exact counter rotation.
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of Fig. 1. Remarkably, the flow susceptibility defined using
! mean value, @"=@!, is negative in this forbidden zone
(see Fig. 1). Increasing " from a perfectly symmetric state

leads to the same sequence of events, though (~i1) and ( ~b1)
will be reached.

Valuable information about our system dynamics can be
found studying near-transition variations of global quanti-
ties [14]. We have, therefore, superposed in Fig. 3 the speed

signals close to the transitions observed in Fig. 2(c): ð~sÞ !
ð ~b1;2Þ is called a down transition, and ð ~b1;2Þ ! ð~sÞ an up
transition. Once the transition instant is accurately deter-
mined, a good collapse of all curves is observed, validating
a unique transition path. This extends the low-dimensional
system description of [14] to purely hydrodynamical quan-
tities in a nonmagnetic turbulent flow. Eventually, the joint
distributions of (f1, f2) are studied to highlight the attrac-
tors emerging from Figs. 1 and 2. In Fig. 4(a), for small ",
only one maximum appears, which confirms the steady
nature of (s). For higher asymmetries, small excursions
escaping the attractor—the previously described small
(~i2) peaks—can be found, exhibiting a new local maximum
strongly deviating from the diagonal f1 ¼ f2. Still increas-
ing the asymmetry, the system fills a large part of the
(f1, f2) plane, with three main maxima: (~s) close to the

diagonal at higher (f1, f2), and ( ~b2) off diagonal for
low (f1, f2). The third—(~i2)—attractor is harder to see,
being hidden by neighboring zones repeatedly crossed by

unsteady events. It is located near the right tip of the
histogram. With this representation, one observes a differ-
ent mean path for down and up transitions: while the down
transition starts ‘‘looping’’ next to (~s) before abruptly
transiting to ( ~b2), the up transition reaches the right tip
of the joint PDF (f1 > f2), near (~i2) before joining the
(~s) state.
The maxima height repartition of Figs. 4(c)–4(e) is

driven by ", from almost-fully (~s), (~i2) to nearly pure
( ~b2) with rare, large transitions to the faster states. For
nearly pure (~s), we clearly see [Fig. 4(c)] a fair amount of
small excursions, contrasting with the nearly pure ( ~b2)
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FIG. 2 (color online). Temporal series of the impeller speeds
f1 (blue) and f2 (red) for various ". (a), steady high-speed state
(~s) observed at " ¼ $0:0164; (b), threshold of the irregular
peaks (~i2) with very small events for " ¼ $0:0460; (c), (~i2)
irregular peaks for " ¼ $0:0668; (d), multistable regime show-
ing (~s), (~i2), and ( ~b2) events at " ¼ $0:0891; (e), single fast rare
event in an almost steady slow ( ~b2) regime for " ¼ $0:0912;
(f), steady slow (b2) regime for " ¼ $0:1049.
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FIG. 3 (color online). Shifted temporal signals of 60 randomly
chosen transitions of a two-hour experiment with " ¼ $0:0891.
We compute #i by finding the minimum of j@t !f2j, the 1 Hz
filtered signal of f2. (a),(c), respectively, f2 and f1 profiles for
down transitions. (b),(d), respectively, f2 and f1 for up transi-
tions. The thick white line represents in each subplot the rotation
frequency averaged on all 195 events of the experiment.
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FIG. 4 (color online). Joint-probability density maps of the
(f1, f2) values (density in log scale), based on Fig. 2 temporal
series: (a): steady (s) state; (b), threshold of (~i1) events; (c),
threshold of ( ~b1); (d), multistability: blue line and red line
represent, respectively, the Fig. 3 mean profile for down and
up transitions; (e), rare events; (f), steady slow state. The dashed-
dotted line represents the ! ¼ 0 condition.
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(2013). Phys. Rev. Lett.

Magnetic field reversals in an experimental turbulent dynamo

Fig. 3: (Colour Online) Magnetic field measured inside the flow vessel, by a 3-dimensional Hall probe. No external magnetic field
is applied, other than the ambient field, whose amplitude is about 0.2 gauss across the measurement volume. The temperature of
the outer copper cylinder is T = 123 ◦C. Main: time evolution of all three magnetic field components. The main component (red)
is the azimuthal one. Note that all components decay to zero at a reversal. The bottom graph shows synchronous recordings
of the power driving the flow. Right: detail of the time series of the main magnetic field and simultaneous power consumption
(arrows mark the synchronous events). Top: Chronos of the magnetic field orientation, white for a positive direction, black for
the negative direction, for 2 successive recordings 900 and 1800 seconds long (separated by the shaded area, the first sequence
corresponds to the main graph). In this regime, the von Kármán flow is driven with counter-rotating disks at frequencies
F1 = 16Hz and F2 = 22Hz.

a variety of dynamical regimes, oscillations, intermittent
bursts (not shown), as well as dynamos with random
reversals (fig. 3) are observed.
We also find pockets of parameters for which we could

not record the growth of a dynamo during 3 minute long
runs —corresponding to over 3000 forcing time scales.
We now describe reversals of the magnetic field. In fig. 3,

we show a time series that corresponds to F1 = 16Hz and
F2 = 22Hz. In this regime, the magnetic field reverses
at irregular time intervals. All three components of the
dynamo field switch polarity in perfect synchrony, so that
B changes to −B. For each polarity, the amplitude of
the magnetic field has strong fluctuations, with an rms
fluctuation level of the order of 20% of the mean. This
level of fluctuation is due to the very intense turbulence
of the flow, as the kinetic Reynolds number exceeds 106.
Reversals occur randomly and have been followed for up
to 45 minutes, i.e. 54000 characteristic time scales of the
flow forcing.
In the regime reported in fig. 3, the polarities do

not have the same probability of observation. Phases

with a positive polarity for the largest magnetic field
component have on average longer duration (〈T+〉= 120 s)
than phases with the opposite polarity (〈T−〉= 50 s). This
asymmetry can be due to the ambient magnetic field.
Note however that the amplitude of the magnetic field,
that is much larger than the Earth’s field, is the same for
both polarities. Standard deviations are of the same order
of magnitude as the mean values, although better statistics
may be needed to fully converge these estimates. The mean
duration of each reversal, τ ∼ 5 s, is longer than magneto-
hydrodynamics time scales: the flow integral time scale
is of the order of the inverse of the rotation frequencies,
i.e. 0.05 s, and the ohmic diffusive time scale is roughly
τη ∼ 0.4 s. Concerning the dynamics of field reversals, a
natural question is related to the connection between B
and −B in time. The equations of magnetohydrodynamics
are symmetric under the transformation B to −B so that
the selection of a polarity is a broken symmetry at the
dynamo bifurcation threshold. The sequences of opposite
polarities displayed in fig. 3 act as magnetic domains along
the time axis, with Ising-type walls in-between them: the
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Laboratory experiments in rotating an-
nuli with a radial temperature gradient have
helped in the understanding of the mecha-
nism of baroclinic instability and the atmo-
sphere’s general circulation (17). Introduc-
ing wavenumber 2 topography in such an-
nuli produced new phenomena (18) but did
not adequately explain the spatiotemporal
features of the atmosphere’s observed and
modeled low-frequency variability (19).

To further understand the dynamics of
zonal flow over topography, we carried out
laboratory experiments on a barotropic rotat-
ing annulus (20, 21) with two mountain ridg-
es. The flow was produced by mechanical
pumping and suction rather than by differen-
tial heating of the side walls (17). With the
rapid rotation and absence of buoyant driving
forces, the flow in the annulus was essentially
two-dimensional (21) and could be compared
with barotropic model results. These experi-
ments facilitate exploration of the flow’s be-
havior over a wide parameter range: an hour
at a rotation frequency of 2 Hz corresponds to
20 simulated years.

The annular tank’s inner radius r1 !
10.8 cm, its outer radius r2 ! 4r1, and its
height varied linearly from 17.1 cm at the
inner to 20.3 cm at the outer radius. Flow
was produced by pumping fluid in through a
ring of 120 holes (0.26 cm in diameter) at
rsource ! (3.25)r1 and out through a ring of
holes at rsink ! (1.75)r1. The annulus was
filled with water (kinematic viscosity " !

0.009 cm2 s–1) up to a flat lid. When the
tank rotated rapidly, the action of the Co-
riolis force on the radial flow resulted in a
corotating (eastward) jet with a much high-
er velocity than the radial flow generated
directly by the pumping (20, 21). The slop-
ing bottom of the annulus models the

change in Coriolis force as a function of
latitude for spherical planets [the # effect,
which in the present case is given by # !
2$s/h, where s ! 0.1 is the slope, h ! 18.7
cm is the mean height of the annulus, and
$ is the angular velocity of the annulus
(21)]. Two radial aluminum ridges were

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing
contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to
19 January 1963; the data are from the National Oceanic and Atmospheric

Administration’s Climate Analysis Center. The nearly zonal flow of (A) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent’s western part (26).

Fig. 2. Time-averaged stream function contours calculated from experimental data for (A) zonal and (B)
blocked flow. The peaks of the ridges are indicated by dashed lines, and the profile of each ridge is
shown by black curves outside the rim of the round panels. The contour interval is 15 cm2 s–1 for both
plots. The annulus rotates counterclockwise, and the flow is in the direction of rotation (eastward). The
Rossby numbers Ro for the zonal and blocked flows are 0.33 % 0.02 and 0.22 % 0.02, respectively
(pump flux F ! 390 and 260 cm3 s–1, respectively); for both flows, the Ekman number Ek ! 4.8 & 10'4

($ ! 3( rad s–1). A video camera was used to track neutrally buoyant particles of 1 mm diameter, and
time-averaged stream functions were determined by averaging the particle trajectories in time (23) and
fitting the results to basis functions. The highs and lows of the stream function are indicated by bold
letters H and L, respectively. The black dots indicate the horizontal location of the hot-film probe.

REPORTS

www.sciencemag.org ! SCIENCE ! VOL. 278 ! 28 NOVEMBER 1997 1599

E. R. Weeks et al. (1997). Science

Introduction

         








        









β = 0.555βmid α = 1.5 · 10−3

|q3|

|q2|
Ek

∫ 2
π

0
q(

t,
x
,y

)
d
x

αt

Figure 3: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-
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Bistability in turbulent flows

antisymmetric dimensionless quantities ! and " to mea-
sure the forcing—and response—asymmetry: ! ¼ ðf1 #
f2Þ=ðf1 þ f2Þ is the reduced impeller speed difference and
" ¼ ðC1 # C2Þ=ðC1 þ C2Þ is the reduced shaft torque
difference.

Speed control.—For speed-imposed experiments, all tur-
bulent flows are steady. These steady states are character-
ized by their mean torque asymmetry ". Starting both
impellers at the same time for ! & 0, the system reaches
steady states corresponding to a ‘‘symmetric’’ branch
called (s). They statistically consist of two recirculation
cells separated by a shear layer, in agreement with [5,6]. In
such states, a small ! variation triggers a transition with a
dramatic increase of the mean torque. These new ‘‘bifur-
cated’’ states exhibit one recirculation cell, and form two
separate branches of the (", !) plane (see Fig. 1, left).
These branches, named (b1) and (b2), respectively, exhibit
a global pumping of the bottom or the top impeller.
Velocimetry measurements have confirmed that the veloc-
ity fields of the flows belonging to the (b1) and (b2) are
images of each other by theR# rotation. Once on (b1) and
(b2) branches, the (s) state cannot be reached, which is,
therefore, marginally stable. In addition, the (b1) and (b2)
branches are hysteretic, (b1) states persisting for f1 ' f2
and (b2) states for f2 ' f1 [12], agreeing with previous
results [5]. The shape of the hysteresis cycle is only weakly
Reynolds-dependent for Re ( 1:0) 105, as evidenced by
water and liquid helium experiments performed up to
Re ¼ 3:0) 108 [13]. An important feature of the cycle is
the ‘‘forbidden zone’’ of " values never accessed for
imposed speed.

Torque control.—In contrast, imposing torque allows
any value of ", assuming friction is negligible, whereas f
is no longer fixed. Hence, with our definition, we cannot
specify a priori the Reynolds number of such experiments.
We have first verified that imposing " out of the forbidden
zone provides steady states identical to those observed in
speed control (see Fig. 1). After suitable normalization,
no difference in velocimetry measurements is indeed

observed between the two controls. Our experiments
have then focused on the henceforth accessible forbidden
zone. In this region, the system loses steadiness: the impel-
ler speed may alternatively jump between multiple attract-
ing turbulent states. This multistability is identified by the
emergence of multiple local maxima in the probability
density function (PDF) of the 1.5 Hz low-pass filtered
signal of !ðtÞ. Such filtering is required considering the
discrete nature of our speed measurements; it yields a
robust density function when the filter cutoff frequency is
changed. Three types of attracting states, then, have been

identified: (~s), the high-speed state, is similar to (s); ( ~b1)
and ( ~b2) are low-speed states similar to (b1) and (b2); and
two new (~i1) and (~i2) intermediate states. These new states

can be seen in Fig. 1: while (~s), ( ~b1), and ( ~b2) states extend
their speed-imposed counterparts, (~i1) and (~i2) branches are
new and cannot be observed in speed control. Decreasing "
from a perfectly symmetric (~s) (! ¼ 0) state, we can
observe the asymmetry influence on temporal signals of
the impeller speeds, as done in Fig. 2. First, steady states
with decreasing mean ! are observed. Then [Fig. 2(b)],
when " ' #0:049—a local extremum of the mean value
of !—small localized peaks of f1 and f2 are simulta-
neously observed, breaking time invariance. Such events
are identified as excursions towards intermediate state (~i2).
Still decreasing ", the peaks grow until the biggest events
saturate at low f1 and f2 [Fig. 2(c)]. These events are

identified as transitions to the ( ~b2) state. For even lower
values of ", the system behavior is irregular, switching

between fast (~s), (~i2) and slow ( ~b2) states [Fig. 2(d)]. In this
situation, (~b) and (~i) states are quasisteady, each being able
to last more than 10 sec. (70 impeller rotations).
Decreasing " further affects the dynamics of the system,

more time being spent in ( ~b2) at the expense of (~i2) and (~s).
Therefore, for low " ' #0:0920 [Fig. 2(e)], only rare
events can drive the system to the faster states.
Eventually, for " ' #0:099 [Fig. 2(f)], the system time
invariance is restored, corresponding to a (b2) steady state

−0.4 −0.2 0 0.2 0.4−0.4 −0.2 0 0.2 0.4
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FIG. 1 (color online). (Left), mean reduced torque asymmetry " plotted as a function of the mean reduced speed asymmetry !, for
both speed (purple squares) and torque (grey circles) experiments. The arrows indicate the possible transitions between steady states,
sketching a hysteresis cycle including a forbidden " zone (hatched region) for speed control experiments. No hysteresis is observed in
torque control. (Right), modes of the ! PDF for torque control experiments corresponding to the ‘‘forbidden range.’’ (~s), ( ~b1), and ( ~b2)
are quasisteady states branches extending, respectively, the steady (s), (b1), and (b2) branches. (~i1) and (~i2) are new branches, never
observed in speed control. (Inset) Sketch of the ‘VK2’ experiment, with the two impellers (black). The experiment is axisymmetric
along the vertical axis, and is R# symmetric for exact counter rotation.
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of Fig. 1. Remarkably, the flow susceptibility defined using
! mean value, @"=@!, is negative in this forbidden zone
(see Fig. 1). Increasing " from a perfectly symmetric state

leads to the same sequence of events, though (~i1) and ( ~b1)
will be reached.

Valuable information about our system dynamics can be
found studying near-transition variations of global quanti-
ties [14]. We have, therefore, superposed in Fig. 3 the speed

signals close to the transitions observed in Fig. 2(c): ð~sÞ !
ð ~b1;2Þ is called a down transition, and ð ~b1;2Þ ! ð~sÞ an up
transition. Once the transition instant is accurately deter-
mined, a good collapse of all curves is observed, validating
a unique transition path. This extends the low-dimensional
system description of [14] to purely hydrodynamical quan-
tities in a nonmagnetic turbulent flow. Eventually, the joint
distributions of (f1, f2) are studied to highlight the attrac-
tors emerging from Figs. 1 and 2. In Fig. 4(a), for small ",
only one maximum appears, which confirms the steady
nature of (s). For higher asymmetries, small excursions
escaping the attractor—the previously described small
(~i2) peaks—can be found, exhibiting a new local maximum
strongly deviating from the diagonal f1 ¼ f2. Still increas-
ing the asymmetry, the system fills a large part of the
(f1, f2) plane, with three main maxima: (~s) close to the

diagonal at higher (f1, f2), and ( ~b2) off diagonal for
low (f1, f2). The third—(~i2)—attractor is harder to see,
being hidden by neighboring zones repeatedly crossed by

unsteady events. It is located near the right tip of the
histogram. With this representation, one observes a differ-
ent mean path for down and up transitions: while the down
transition starts ‘‘looping’’ next to (~s) before abruptly
transiting to ( ~b2), the up transition reaches the right tip
of the joint PDF (f1 > f2), near (~i2) before joining the
(~s) state.
The maxima height repartition of Figs. 4(c)–4(e) is

driven by ", from almost-fully (~s), (~i2) to nearly pure
( ~b2) with rare, large transitions to the faster states. For
nearly pure (~s), we clearly see [Fig. 4(c)] a fair amount of
small excursions, contrasting with the nearly pure ( ~b2)
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FIG. 2 (color online). Temporal series of the impeller speeds
f1 (blue) and f2 (red) for various ". (a), steady high-speed state
(~s) observed at " ¼ $0:0164; (b), threshold of the irregular
peaks (~i2) with very small events for " ¼ $0:0460; (c), (~i2)
irregular peaks for " ¼ $0:0668; (d), multistable regime show-
ing (~s), (~i2), and ( ~b2) events at " ¼ $0:0891; (e), single fast rare
event in an almost steady slow ( ~b2) regime for " ¼ $0:0912;
(f), steady slow (b2) regime for " ¼ $0:1049.
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FIG. 3 (color online). Shifted temporal signals of 60 randomly
chosen transitions of a two-hour experiment with " ¼ $0:0891.
We compute #i by finding the minimum of j@t !f2j, the 1 Hz
filtered signal of f2. (a),(c), respectively, f2 and f1 profiles for
down transitions. (b),(d), respectively, f2 and f1 for up transi-
tions. The thick white line represents in each subplot the rotation
frequency averaged on all 195 events of the experiment.
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FIG. 4 (color online). Joint-probability density maps of the
(f1, f2) values (density in log scale), based on Fig. 2 temporal
series: (a): steady (s) state; (b), threshold of (~i1) events; (c),
threshold of ( ~b1); (d), multistability: blue line and red line
represent, respectively, the Fig. 3 mean profile for down and
up transitions; (e), rare events; (f), steady slow state. The dashed-
dotted line represents the ! ¼ 0 condition.
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Magnetic field reversals in an experimental turbulent dynamo

Fig. 3: (Colour Online) Magnetic field measured inside the flow vessel, by a 3-dimensional Hall probe. No external magnetic field
is applied, other than the ambient field, whose amplitude is about 0.2 gauss across the measurement volume. The temperature of
the outer copper cylinder is T = 123 ◦C. Main: time evolution of all three magnetic field components. The main component (red)
is the azimuthal one. Note that all components decay to zero at a reversal. The bottom graph shows synchronous recordings
of the power driving the flow. Right: detail of the time series of the main magnetic field and simultaneous power consumption
(arrows mark the synchronous events). Top: Chronos of the magnetic field orientation, white for a positive direction, black for
the negative direction, for 2 successive recordings 900 and 1800 seconds long (separated by the shaded area, the first sequence
corresponds to the main graph). In this regime, the von Kármán flow is driven with counter-rotating disks at frequencies
F1 = 16Hz and F2 = 22Hz.

a variety of dynamical regimes, oscillations, intermittent
bursts (not shown), as well as dynamos with random
reversals (fig. 3) are observed.
We also find pockets of parameters for which we could

not record the growth of a dynamo during 3 minute long
runs —corresponding to over 3000 forcing time scales.
We now describe reversals of the magnetic field. In fig. 3,

we show a time series that corresponds to F1 = 16Hz and
F2 = 22Hz. In this regime, the magnetic field reverses
at irregular time intervals. All three components of the
dynamo field switch polarity in perfect synchrony, so that
B changes to −B. For each polarity, the amplitude of
the magnetic field has strong fluctuations, with an rms
fluctuation level of the order of 20% of the mean. This
level of fluctuation is due to the very intense turbulence
of the flow, as the kinetic Reynolds number exceeds 106.
Reversals occur randomly and have been followed for up
to 45 minutes, i.e. 54000 characteristic time scales of the
flow forcing.
In the regime reported in fig. 3, the polarities do

not have the same probability of observation. Phases

with a positive polarity for the largest magnetic field
component have on average longer duration (〈T+〉= 120 s)
than phases with the opposite polarity (〈T−〉= 50 s). This
asymmetry can be due to the ambient magnetic field.
Note however that the amplitude of the magnetic field,
that is much larger than the Earth’s field, is the same for
both polarities. Standard deviations are of the same order
of magnitude as the mean values, although better statistics
may be needed to fully converge these estimates. The mean
duration of each reversal, τ ∼ 5 s, is longer than magneto-
hydrodynamics time scales: the flow integral time scale
is of the order of the inverse of the rotation frequencies,
i.e. 0.05 s, and the ohmic diffusive time scale is roughly
τη ∼ 0.4 s. Concerning the dynamics of field reversals, a
natural question is related to the connection between B
and −B in time. The equations of magnetohydrodynamics
are symmetric under the transformation B to −B so that
the selection of a polarity is a broken symmetry at the
dynamo bifurcation threshold. The sequences of opposite
polarities displayed in fig. 3 act as magnetic domains along
the time axis, with Ising-type walls in-between them: the

59001-p3

M. Berhanu et al. (2007). EPL

Laboratory experiments in rotating an-
nuli with a radial temperature gradient have
helped in the understanding of the mecha-
nism of baroclinic instability and the atmo-
sphere’s general circulation (17). Introduc-
ing wavenumber 2 topography in such an-
nuli produced new phenomena (18) but did
not adequately explain the spatiotemporal
features of the atmosphere’s observed and
modeled low-frequency variability (19).

To further understand the dynamics of
zonal flow over topography, we carried out
laboratory experiments on a barotropic rotat-
ing annulus (20, 21) with two mountain ridg-
es. The flow was produced by mechanical
pumping and suction rather than by differen-
tial heating of the side walls (17). With the
rapid rotation and absence of buoyant driving
forces, the flow in the annulus was essentially
two-dimensional (21) and could be compared
with barotropic model results. These experi-
ments facilitate exploration of the flow’s be-
havior over a wide parameter range: an hour
at a rotation frequency of 2 Hz corresponds to
20 simulated years.

The annular tank’s inner radius r1 !
10.8 cm, its outer radius r2 ! 4r1, and its
height varied linearly from 17.1 cm at the
inner to 20.3 cm at the outer radius. Flow
was produced by pumping fluid in through a
ring of 120 holes (0.26 cm in diameter) at
rsource ! (3.25)r1 and out through a ring of
holes at rsink ! (1.75)r1. The annulus was
filled with water (kinematic viscosity " !

0.009 cm2 s–1) up to a flat lid. When the
tank rotated rapidly, the action of the Co-
riolis force on the radial flow resulted in a
corotating (eastward) jet with a much high-
er velocity than the radial flow generated
directly by the pumping (20, 21). The slop-
ing bottom of the annulus models the

change in Coriolis force as a function of
latitude for spherical planets [the # effect,
which in the present case is given by # !
2$s/h, where s ! 0.1 is the slope, h ! 18.7
cm is the mean height of the annulus, and
$ is the angular velocity of the annulus
(21)]. Two radial aluminum ridges were

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing
contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to
19 January 1963; the data are from the National Oceanic and Atmospheric

Administration’s Climate Analysis Center. The nearly zonal flow of (A) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent’s western part (26).

Fig. 2. Time-averaged stream function contours calculated from experimental data for (A) zonal and (B)
blocked flow. The peaks of the ridges are indicated by dashed lines, and the profile of each ridge is
shown by black curves outside the rim of the round panels. The contour interval is 15 cm2 s–1 for both
plots. The annulus rotates counterclockwise, and the flow is in the direction of rotation (eastward). The
Rossby numbers Ro for the zonal and blocked flows are 0.33 % 0.02 and 0.22 % 0.02, respectively
(pump flux F ! 390 and 260 cm3 s–1, respectively); for both flows, the Ekman number Ek ! 4.8 & 10'4

($ ! 3( rad s–1). A video camera was used to track neutrally buoyant particles of 1 mm diameter, and
time-averaged stream functions were determined by averaging the particle trajectories in time (23) and
fitting the results to basis functions. The highs and lows of the stream function are indicated by bold
letters H and L, respectively. The black dots indicate the horizontal location of the hot-film probe.
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Figure 3: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-
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Main questions

General questions

I Does the general circulation admit multiple attractors? Can we compute
them?

I What is the probability of transitions between climate attractors?

I Which dynamical mechanisms at play?

I Which aspects are predictible?

I will focus on a candidate for bistability of the general circulation of the
atmosphere: Superrotation
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The Kramers problem1

Overdamped Langevin dynamics:

dXt = −V ′(Xt)dt +
√

2εdWt , V (x) = (x2 − 1)
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1H. A. Kramers (1940). Physica.
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Transition probability

In the weak noise limit (ε→ 0), transition times form a Poisson point process
with transition rate λ = τ−1e−∆V/ε.

1H. A. Kramers (1940). Physica.
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Rare transitions of atmosphere jets: numerics
Rare transitions of atmosphere jets: theory

Freidlin–Wentzell theory and Eyring–Kramers law

Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Most Reactive Paths Follow the Instanton

In the weak noise limit, most transitions (reactive paths)
follow the most probable path (instanton)

Figure by Eric
Vanden Eijnden

For gradient dynamics, instantons are time reversed relaxation
paths from a saddle point to an attractor. Arrhenius law then
follows

logP (x1,T ;x�1,0) ⇠
kBTe
�V !0

� �V
kBTe

.

F. Bouchet CNRS–ENSL Large deviation theory and GFD

Fig. E. Vanden-Eijnden (Courant)

Instantons

Path integral formalism

E[O] =

∫
D[x ]O[x ] exp(−A[x ]/ε), Action: A[x ] =

1

4

∫
dt(ẋ + V ′(x))2.

Instanton: most probable path: minx{A[x ]|x(−∞) = −1, x(+∞) = 1}.
1H. A. Kramers (1940). Physica.
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Rare event algorithms

Adaptive Multilevel Splitting

the exponential reduction of computational time in order to
compute thousands of transitions.
Figure 4 and the associated movie (Supplemental

Material [19], video) describe 2 → 3 transitions for
α ¼ 6.0 × 10−4. Both the movie and the figure clearly
illustrate that a new jet formation proceeds through the
nucleation of two new ensembles of small positive and
negative vortices lying in an area of overall zero vorticity
located at a westward jet. Like in condensed matter, such a
nucleation is highly improbable. Indeed a too small new

vortex band is unstable. However, when exceptionally,
by chance, a critical size is reached, the new band becomes
stable and will last for an extremely long time. In
combination with this growth, the three jets move apart.
It is striking to note that all nucleations (2 → 3 transitions)
have been observed at the edge of westward jets, and all
coalescences (3 → 2 transitions) occurred at the edge of
eastward jets. This phenomenology is illustrated on an even
clearer way on Fig. 5(a) that shows a typical zonal velocity
evolution during the nucleation of new jet and Fig. 5(b) that
shows jet coalescence.
The Arrhenius law, from thermodynamics and statistical

physics, states that transitions rates are proportional to
λ ∝ expð−ΔV=αÞ, where ΔV is either a free energy, an
entropy, or a potential difference, and α is related to thermal
or non-thermal noises. This classical law describes transi-
tions in many fields of physics, chemistry, biology, stat-
istical, and quantum mechanics. Could it be relevant to
turbulence problems, extremely far from equilibrium? This
fascinating hypothesis has never been tested for turbulent
flows because this requires a huge number of rare transitions
for different values of α, an impossible task without a rare
event algorithm. The validity of this hypothesis is suggested
by the nucleation phenomenology. Moreover, we have
recently conjectured [30,31] that the slow evolution of the
zonally averaged part of the flow, Uðy; tÞ ¼

R
dxvðx; y; tÞ,

may be described by an effective equation

∂U
∂τ ¼ FðUÞ þ

ffiffiffi
α

p
σðU; τÞ; ð2Þ

FIG. 3. (a) Sketch of the adaptive multilevel splitting (AMS)
algorithm, one of the most versatile rare event algorithms. The
aim of the algorithm is to compute the very small probability to
go from a set A (for instance a two jet state) to a set B (for
instance a three jet state). N initial trajectories are computed from
the model (N is typically a few thousands). A score function Q
measures how far each trajectory goes in the direction of B. The
worst trajectory is deleted (trajectory No. 1 on the sketch). It is
replaced by a new trajectory (purple trajectory) whose initial
condition is picked from one of the other previous trajectories
(trajectory 2 on the sketch) at the time (red dot on the sketch)
when it was crossing the Q level with the maximum value of Q
for the deleted trajectory. This last step is called resampling or
cloning. As the new set of N trajectories has been obtained by
selecting N − 1 trajectories among N, and computing a new
trajectory which has the same probability as the N − 1 other ones,
the new set has a probability 1 − 1=N. The resampling step is
iterated K times, leading to a new trajectory set with probability
ð1 − 1=NÞK . This very efficiently produces extremely rare
transitions from one attractor to another and gives an unbiased
estimate of their probability (see the Supplemental Material [19],
PDF file for more precise explanations).

TABLE I. CPU time [days (d), years (yr)] needed to obtain
1000 transition paths using 200 processors for the adaptive
multilevel splitting algorithm compared to direct numerical
simulation for different values of α.

α AMS DNS

1.2 × 10−3 1.0 d 15 d
0.9 × 10−3 1.4 d 210 d
0.6 × 10−3 2.2 d ∼51 yr
0.45 × 10−3 3.4 d ∼2050 yr

FIG. 4. Nucleation of a new jet. The panels display the same
quantities as Fig. 1. A set of vortices is able to nucleate a new
band of blue vorticity, a very unlikely process, leading to the birth
of a new jet seen on the green velocity curve. As in nucleation
processes in condensed matter, once the nucleated structure is
large enough the new jet will be stable and persist for extremely
long times, as seen on the Hovmöller diagram (see also the
Supplemental Material [19], video).
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interest.
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Rare transitions in jet dynamics2

Zonal jets in the stochastic barotropic
vorticity equation:

∂tω + u · ∇ω + βv = −αω + ν∆ω

Introduction
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Figure 3: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-

9
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CPU time for computing 2000 reactive trajectories with 200 procs

α AMS DNS
1.20 · 10−3 1.0 d 21 d
0.90 · 10−3 1.4 d ∼ 200 d
0.60 · 10−3 2.2 d ∼ 70 y
0.45 · 10−3 3.4 d ∞
0.22 · 10−3 25.0 d ∞

“Instantons”:

Efficient sampling of reactive trajectories with AMS algorithm.

2F. Bouchet, J. Rolland, and E. Simonnet (2019). Phys. Rev. Lett.
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Return times: Ornstein-Uhlenbeck Process3

Return time of fluctuations of amplitude a for the Ornstein-Uhlenbeck process:

dXt = −αXtdt +
√

2εdWt . (we use α = 1, ε = 1/2)

I Instantaneous Observable: A(Xt) = Xt .

I Time-averaged Observable: XT (t) = 1
T

∫ t

t−T
Xsds, t ∈ [T ,Ta].

100 105 1010 1015

r(a)

0

2σ

4σ

6σ

a

AMS
Theory
Direct sampling

Instantaneous observable.
N = 100,Ta = 5τc , amax = 7σ, score
function: ξ(x , t) = x .
Theoretical formula:

Es [τa] =

√
α

2πε3

∫ a

−∞
dye

αy2

2ε

(∫ y

−∞
dze−

αz2

2ε

)2

.

100 105 1010 1015

r(a)

0

2σ

4σ

6σ

8σ

a

GKTL
AMS
Direct sampling

Time-averaged observable (T = 10τc).
N = 100, Ta = 50, amax = 6.5σT ,
K = 10 repetitions, and score function
ξ(t) = X̄T (t).

3T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert, and F. Bouchet (2018). J. Stat. Mech.
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Return times: drag force in a turbulent flow4

Grid turbulence: 2D channel flow with square obstacle in the middle of the
domain, simulated with a Lattice Boltzmann method.

3σ

4σ

5σ

6σ

a

103 104 105

r(a)

Figure 1.9: Illustration of the computation of return times for the averaged drag over

the square obstacle pictured in test flow №2, using 50 repetitions of the GKTL algo-

rithm. The parameters are the same as in Fig. 1.8. This figure illustrates the reduction

in the occurrence of plateaus for the return time curve obtained using the GKTL al-

gorithm. The dashed black line represents the reference return times. The solid blue

line represents the return times obtained using the GKTL algorithm.

improved this formula (see (1.8)) and further showed that it was possible, provided only

minor modifications, to evaluate it with data produced by rare event algorithms. In-

deed, the traditional block maximum method consists in dividing a given trajectory

in blocks with arbitrary length, larger than the correlation time of the system, and

smaller than the return time one seeks to estimate. In this section we stressed that

there is actually a class of rare event algorithms which yields precisely an ensemble of

trajectories exhibiting the rare event more often than direct simulation, together with

the probability of observing each member of the ensemble.

Hence, we have generalised the block maximum formula to non-equiprobable trajec-

tory blocks; this allowed us to use directly rare event algorithms, such as the AMS and

the GKTL algorithm, to estimate return times for rare events. Using the Ornstein–

Uhlenbeck process as an illustration, we showed that the method is easy to use and

accurately computes return times in a computationally e�cient manner. Indeed, com-

pared to direct sampling, combining the generalised block maximum approach to rare

event algorithms allowed for computing return times many orders of magnitude larger,

at fixed computational cost. This method does not depend on the dynamics of the sys-

tem or on the type of observable, as long as a suitable rare event algorithm is selected.

This approach paves the way to numerical computation of return times in complex

dynamical systems. To showcase the potential of the method, we discussed briefly an

application of practical interest: extreme values of the drag force on an object im-

mersed in turbulent flows. Another example of application given very recently is the

study of heat waves [?].

23

Return time plot for
time-averaged drag (5τc):
GKTL (blue),
N = 128,Ta = 10τc , K = 10
(cost 104τc) and direct
sampling (dashed, cost 106τc).

4T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert, and F. Bouchet (2018). J. Stat. Mech.



Introduction Abrupt transitions in bistable systems Equatorial Superrotation Abrupt transitions to superrotation Conclusion

Heat Waves6

Return time plot for 90-day
temperature anomaly over Europe,
computed with the PLASIM model 5,
using direct sampling (black, 1000
years) and the GKTL algorithm (red),
at constant computational cost.

a gain of a factor 100. The importance sampling gain grows like
the inverse of the probability �B . The key question is: How to
perform importance sampling, relevant for extreme heat waves,
starting from a climate model?

Since the climate is a nonequilibrium dynamical system,
importance sampling has to be performed at the level of
the trajectories. Trajectories generated by the model are dis-
tributed according to the unknown PDF P0

⇣
{X (t)}0tT =

{x (t)}0tT

⌘
[this is a formal notation for the probability of

the model variables X (t) to be close to x (t)]. We use the GKLT
large deviation algorithm, described below, that selects trajecto-
ries distributed according to the importance sampling PDF Pk ,

Pk

⇣
{X (t)}0tT = {x (t)}0tT

⌘

=
1

Z (k ,T )
exp

✓
k

Z T

0

A (X (t)) dt

◆

⇥P0

⇣
{X (t)}0tT = {x (t)}0tT

⌘
,

[2]

where k is a real-valued parameter, and Z (k ,T ) is a normal-
ization constant such that Pk is a normalized PDF. The surface-
averaged temperature is Ã(t) =A (X (t)). One observes that for
positive values of k , the measure Pk is tilted with respect to P0

such that large values of
R T

0
A (X (t)) dt will be favored with

an exponential weight. Tuning k , we study different ranges of
extreme values for a = 1

T

R T

0
A (X (t)) dt and thus different

classes of extreme heat waves when a is the time-averaged Euro-
pean temperature (Eq. 1).

The large deviation algorithm performs an ensemble simu-
lation with N trajectories (ensemble members), typically N ⇠
O(102�103). The trajectories start from independent initial con-
ditions that sample the model’s invariant measure. After time
intervals of constant duration ⌧ we stop the simulation, and
for each trajectory we compute a score function based on the
dynamics in the previous time interval of length ⌧ (see SI Data

and Methods for the definition of the score function). Trajecto-
ries which are going in the direction of the extremes of inter-
est, as measured by the score function, are cloned in one or
more copies, while poorly scoring trajectories are killed. We call
this step resampling and ⌧ the resampling time. The different
copies of a successful trajectory are slightly perturbed, so that
they can evolve differently. Then the ensemble of trajectories is
iterated for another resampling time ⌧ . Once the final time Ta

has been reached, resampling is performed one last time. With
a proper choice of the score function we obtain an ensemble
of N trajectories of length Ta distributed according to Eq. 2,
where k enters as a chosen parameter of the algorithm. The full
details of the algorithm implementation are provided in SI Data

and Methods.
In the normalization term of [2], Z (k ,T ) = E0

h
ek

R T
0 A(X (t)) dt

i
,

the average is taken over the model statistics P0. In large
deviation theory (36), �(k) = limT!1�(k ,T ) with �(k ,T ) =
1
T

log Z (k , t) is called a scaled cumulant generating function.
One can prove that for large times, the PDF P(a,T ) of time-
averaged temperature a satisfies P(a,T ) ⇣

T !1
e�TI [a]. When-

ever I is convex, � and I are the Legendre–Fenchel trans-
form of one another: �(k) = supa {ka � I (a)} and I (a) =
supk {ka � �(k)}. The reader knowledgeable of statistical
mechanics or thermodynamics will immediately note the analo-
gies between Z and the partition function, a and the energy,
k and the temperature, � and the free energy, and I and the
entropy. To summarize, the large deviation algorithm allows us
to choose the “temperature” k for which dynamical states of

“energy” a (in this case time-averaged European temperature)
will become common. Increasing k , we can thus study events with
more and more extreme heat waves.

Return Times for 90-d Heat Waves
We use the large deviation algorithm and Eq. 2 to compute the
return times for heat waves lasting several weeks, following the
methodology described in SI Data and Methods. Fig. 4 shows
return times vs. amplitude a = 1

T

R T

0
Ã(t) dt , for T = 90 d.

The black curve has been plotted from a 1,000-y control run. The
red curve has been obtained as explained in SI Data and Methods

from six experiments with the large deviation algorithm with val-
ues of the bias parameter k ranging from 10 to 40 (Eq. 2). Each
of these simulations has a computational cost of about 182 y.

The first striking result in Fig. 4 is that we can compute return
times up to 106�107 y with a total computational cost of the
order of 103 y. This is thus a gain of more than three orders of
magnitude in the sampling efficiency. It is striking that we can
compute the return times for events that could not have been
observed in a direct numerical simulation with the current or
foreseeable computational possibilities.

Another aspect is the improvement of the quality of the statis-
tics. In the control run there is only one heat wave with tempera-
ture in excess of 2 K during 90 d, while in the k = 50 experiment
there are several hundred, at a fraction of the computational
cost. We can thus recover the return time of such heat waves
either at a much smaller numerical cost compared with the con-
trol run or with a much smaller relative error, for a given numer-
ical cost. Such an improvement of the statistics will be crucial
to perform a dynamical analysis that involves temperature and
pressure fields.

Teleconnection Patterns for Extreme Heat Waves
We use the excellent statistics gathered with the large devi-
ation algorithm to describe the corresponding state of the
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Fig. 4. Return times for the 90-d Europe surface temperature, computed
from the 1,000-y-long control run (black) and from the large deviation algo-
rithm, at the same computational cost as the control run (red). This illus-
trates both the good overlap on the 10- to 300-y range and the fact that the
algorithm can predict probability for events that cannot be observed in the
control run.
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atmosphere during extreme heat wave events. Fig. 5A shows
the temperature and the 500-hPa geopotential height anomalies,
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Fig. 5. (A) Northern Hemisphere surface temperature anomaly (colors)
and 500-hPa geopotential height anomaly (contours), conditional on the
occurrence of heat wave conditions 1

T

R
T

0 A(x
n

(t))dt > a, with T = 90 d
and a = 2 K, estimated from the large deviation algorithm. (B) North-
ern Hemisphere anomaly of the averaged kinetic energy for the zonal
velocity at 500 hPa conditional on the occurrence of heat wave condi-
tions E

h
KE500 | 1

T

R
T

0 A(x
n

(t))dt > a

i
, with T = 90 d and a = 2 K, estimated

from the large deviation algorithm, with respect to the long-time average
E [KE500] computed from the control run.

conditioned on the occurrence of a 90-d 2 K heat wave (com-
posite statistics). Those conditional statistics are reminiscent of
the teleconnection pattern maps sometimes shown in the climate
community. However, while usual teleconnection patterns are
computed from empirical orthogonal function (EOF) analysis,
and thus describe typical fluctuations, our extreme event condi-
tional statistics describe very rare flows that characterize extreme
heat waves. Those global maps are a unique way to consider rare
event and atmosphere fluctuation statistics, which is extremely
interesting from a dynamical point of view.

By definition, as we plot statistics conditioned on a =
1
T

R T

0
A(xn(t))dt > 2K, with T = 90 d, Fig. 5A shows a warming

pattern over Europe. The geopotential height map also shows
a strong anticyclonic anomaly right above the area experiencing
the maximum warming, as expected through the known positive
correlation between surface temperature and anticyclonic condi-
tions (34). A less expected and striking result is that the strong
warming over Europe is correlated with a warming over south-
eastern Asia and a warming over North America, both with sub-
stantial surface temperature anomalies of order of 1 K to 3 K,
and anticorrelated with strong cooling over Russia and Green-
land, of the order of -1 K to -2 K. This teleconnection pattern is
due to a strongly nonlinear stationary pattern for the jet stream,
with a wavenumber 3 dominating the pattern, as is clearly seen
from the geopotential height anomaly. In Fig. 5B, the anomaly
of the kinetic energy gives a complementary view: Over Europe,
the succession of a southern blue band (negative anomaly) and
a northern red band (positive anomaly) should be interpreted as
a northward shift of the jet stream there. Strikingly, over Green-
land and North America, the jet stream is at the same position
(but it is more intense) for the large deviation algorithm statis-
tics as for the control run, while it is shifted northward over
Europe and very slightly southward over Asia. This is related
to the strong southwest–northeast tilt of the geopotential height
anomalies over the Northern Atlantic. The extended red area
(positive anomaly of kinetic energy) over Asia is rather due to
a more intense cyclonic activity there, than to a change of jet
stream position.

Inspection of the time series of the daily temperature shows
that along the long duration of heat waves, the synoptic fluctua-
tions on timescales of weeks are still present (Fig. 2B). The tem-
perature is thus fluctuating with fluctuations of order of 5–10 �C,
as usual, but they fluctuate around a larger temperature value
than usual. This is also consistent with the northward shift of the
jet stream over Europe, but does not seem to be consistent with
a blocking phenomenology as hypothesized in many other pub-
lications. This calls for using similar large deviation algorithms
with other models and other setups to test the robustness of the
present observation.

Conclusions
We have demonstrated that rare event algorithms, developed
using statistical physics ideas, can improve the computation of
the return times and the dynamical aspects of extreme heat
waves. One of the future challenges in the use of rare event algo-
rithms for studying climate extremes will be to identify which
algorithms and which score functions will be suitable for each
type of rare event. We anticipate that this tool will make avail-
able a range of studies that have been out of reach to date.
First, it will pave the way to the use of state of the art climate
models to study rare extreme events, without having to run the
model for unaffordable times. The demonstrated gain of sev-
eral orders of magnitude in the sampling efficiency will also help
to make quantitative model comparisons, to assess on a more
quantitative basis the skill to predict extreme events, for the
existing models. It will also make available a range of dynami-
cal studies. As an example, having a high number of heat waves

Ragone et al. PNAS Early Edition | 5 of 6

Average surface temperature (colors)
and 500 hPa geopotential (contours)
anomalies conditioned on the
occurrence of heat wave conditions.

5K. Fraedrich, H Jansen, E Kirk, U Luksch, and F. Lunkeit (2005). Meteorol. Z.
6F. Ragone, J. Wouters, and F. Bouchet (2018). Proc. Natl. Acad. Sci. U.S.A..
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Superrotation: a robust phenomenon

Angular momentum:
M = a cosφ(Ωa cosφ+ u)

M > Ωa2 ⇐⇒ u > Ωa sin2 φ
cosφ

≡ Um
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Superrotation: a robust phenomenon

In the solar system7
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Shallow-water
equations7

[13] While our model is highly idealized, we have never-
theless selected parameters that correspond, approximately,
to the Jovian atmosphere. Rossby numbers are similar to
Jovian values, with resulting equatorial jet speeds of ap-
proximately 200 ms!1, and LD/a ranges down to 0.025. As
far as we are aware, this is the first numerical integration
with physically relevant parameters in rotating shallow
water to produce the observed sign of the equatorial jet.
(In a two-dimensional barotropic model, that is, the shallow
water model in the limit LD/a ! 1, Dunkerton and Scott
[2008] showed that superrotating and subrotating equatorial
jets emerged with roughly equal probability in an ensemble
of numerical calculations with identical physical parameters.
Similar behavior also emerges in the shallow water equations
with linear friction for LD/a ^ 1, but has until now not been
found for LD/a " 1, the regime of relevance for the giant
planets.)
[14] The spontaneous formation of the superrotating

equatorial jet and the alternating midlatitude jets, for the
case LD/a = 0.025, is illustrated in Figure 2. Note that the
zonal jets are very robust, despite the fact that the flow is
highly turbulent, as can be seen in Figure 3, which shows
the potential vorticity q at time t = 10000 for the same
integration. Further, we have found that once the equatorial
superrotation has formed it is a robust feature. Several
integrations were carried out beginning from a preexisting
state of superrotation, but without any forcing or dissipation;
in all cases the equatorial superrotation persisted throughout
these integrations (typically for thousands of days).
[15] Despite the simplicity of our model, it is worth

remarking that it also captures another key qualitative
aspect of the circulation of the giant planets. The instanta-
neous potential vorticity field shown in Figure 3 exhibits a
mixture of zonal structures, coherent vortices and filamen-
tary turbulence, not dissimilar to the cloud-top patterns
observed on the planets (here, the potential vorticity and
cloud top fields can both be approximately considered as
quasi-conserved tracer). Despite the qualitative nature of
such a comparison, we submit that any model that purports
to capture the atmospheric circulation of the giant planets
should also be able to reproduce such features.

[16] Finally, we stress that the results presented above are
not fortuitous, isolated members of large ensembles of inte-
grations: they are entirely reproducible. In fact we have
performed dozens of integrations with various parameter
settings (varying LD, !0, tfr and trad) and have found that
equatorial superrotation emerges in every calculation in which
radiative relaxation is the dominant form of dissipation.
[17] Equatorial superrotation can be understood diagnos-

tically in terms of the mixing by turbulent eddies of the
shallow water potential vorticity q = za/h. It is consistent
with angular momentum conservation provided one recog-
nizes the role of upgradient (i.e. non-advective) potential
vorticity fluxes [McIntyre, 1982; Dunkerton and Scott,
2008]. As can be seen in Figure 3, mixing of q takes place
on either side of, but not across, the equator, resulting in a
sharp jump at the equator (visible as the white band).
Through the diagnostic relation linking the zonal mean q,
u and h, the jump at the equator will necessarily be
accompanied by a superrotating equatorial jet (seeDunkerton
and Scott [2008] for details in the barotropic case).
[18] The jump in q at the equator is associated with an

upgradient (non-advective) flux of q across the equator. In
particular, we note that the equatorial jet here is eddy-
driven, rather than forced directly by the effect of the
radiative relaxation on the zonal flow, in the sense that
the upgradient PV flux is an eddy flux of the form v0q0. This
is demonstrated in Figure 4, which shows the time averaged
potential vorticity flux v0q0. The eddy PV flux is related to
the eddy momentum flux convergence, and hence to an
acceleration of !u through the well-known Taylor identity,
another diagnostic relation, which, in the simplest case of
barotropic motion, takes the form

v0q0 ¼ ! 1

a

d

dm
u0v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! m2
p

" #

: ð3Þ

(Positive v0q0 coincides with the development of positive !u,
and vice versa.) Conceptually the situation is the same as

Figure 3. Instantaneous q = za/h, at t = 10000 for the
case LD/a = 0.025 (corresponding to the solid bold line in
Figure 1).

Figure 4. Time averaged v0q0. Dashed line shows !u (&4 &
10!4) at t = 10000.
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Primitive equations8

though no large coherent vortices such as the Great
Red Spot. It is possible that large vortices such as the
Great Red Spot form spontaneously but would require
longer integration times than we can achieve in our
simulation, or that deep-atmosphere dynamics not cap-
tured in our simulation are important for their forma-
tion and stability. That the zonal jets are present and
coherent at every instant, not only upon averaging, is
most clearly evident in the zonal velocity field, which
also shows the equatorial waves recognizable in the
other flow fields, as well as undulations of off-equatorial
jets (Fig. 3d). Animations (available at www.gps.caltech.
edu/;tapio/papers/) show that the equatorial waves, or-
ganized into large wave packets, exhibit retrograde phase

velocities, consistent with their being Rossby waves. The
retrograde tilt of their phase lines away from the equator
(Fig. 3d) indicates that they transport angular momen-
tum toward the equator (cf. Peixoto and Oort 1992,
chapter 11).

b. Vertical structure and angular momentum fluxes

The vertical structure of the zonal flow in the simu-
lation indicates preferential baroclinic eddy generation
in prograde off-equatorial jets and is consistent with
what is known about Jupiter’s equatorial jet in lower
layers (Fig. 4a). The speed of the prograde equatorial jet
increases with depth, for example, at the equator, from

FIG. 3. Flow fields at 0.65 bar at one instant in Jupiter simulation: (a) horizontal divergence, (b) Rossby wave source (5),
(c) relative vorticity of horizontal flow, and (d) zonal velocity. The instant shown is within the period for which the mean zonal
flow is shown in Fig. 1a.

MARCH 2009 S C H N E I D E R A N D L I U 589

7R. K. Scott and L. M. Polvani (2008). Geophys. Res. Lett.
8T. Schneider and J. Liu (2009). J. Atmos. Sci.
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Superrotation in past climates

Was the atmosphere superrotating
during the Eocene?
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commentary

Convergent Cenozoic CO2 
history
David J. Beerling and Dana L. Royer

Reconstructions of atmospheric carbon dioxide concentrations over the past 65 million years are 
heading towards consensus. It is time for systematic testing of the proxies, against measurements and 
against each other.

Atmospheric carbon dioxide is 
clearly a primary driver of global 
temperature change1, but efforts 

to slow anthropogenic emissions from 
fossil fuel burning and land use change 
are failing. Average increases in the rates 
of fossil fuel CO2 emissions more than 
tripled from 1% per year in the 1990s to 
3.7% per year in the following decade2. 
The Earth’s atmosphere is steadily heading 
towards a burden of greenhouse gases 
not seen for some 20 million years. This 
burden will lead to a warmer future both 
in our lifetime and for generations to 
come as the energy balance of the Earth 
system slowly comes into equilibrium 
with rising greenhouse gas concentrations. 
Our planet’s climatic future can be 
estimated from an understanding of 
ancient climate change without recourse 
to computer models of Earth’s climate 
system — but only if we have reliable 
information on past concentrations of CO2 
in the atmosphere3. 

The past 65 million years (Myr) of 
Earth history is known as the Cenozoic 
era and encompasses large climate 
variations, including the transition from 
an ice-free planet to the onset of the 
Pleistocene glacial–interglacial cycles. 
This interval also saw the origin and 
worldwide diversification of grasses with 
the C4 photosynthetic pathway that today 
dominate savannas4. Over the past 50 Myr, 
the Cenozoic climate trend is characterized 
by a deep-sea cooling of approximately 
12 °C thought to have been forced by 
changes in atmospheric greenhouse 
gas composition3.

A decade ago, efforts to reconstruct 
atmospheric CO2 levels during this era 
showed fundamental disagreements 
between different proxy indicators of 
atmospheric CO2 concentrations5. This 
was especially true for the first half of the 
Cenozoic, with discrepancies between 
proxies5 spanning a range from less than 
300 ppm to more than 3,000 ppm. Our 

extensive compilation of 370 revised 
estimates of Cenozoic CO2 levels (see 
Supplementary Information) reveals 

better agreement and documents a 
coherent pattern of CO2 change, with a 
clear connection to global temperature 

12

8

4

0

2,000

1,500

1,000

500

0
60 50 40 30 20 10 0

Time (Myr ago)

Antarctic ice sheet

Stomata

Phytoplankton

Palaeosols

Liverworts
Boron

B/Ca

Nahcolite–trona

Pal. Eocene Olig. Miocene

Te
m

pe
ra

tu
re

 (°
C)

At
m

os
ph

er
ic

 C
O

2 
(p

pm
)

Plio.

Figure 1 | Earth’s Cenozoic atmospheric CO2 history by proxy. Deep-sea temperatures3 (upper panel) 
generally track the estimates of atmospheric CO2 (lower panel) reconstructed from terrestrial and 
marine proxies following recent revisions (see Supplementary Information). Errors represent reported 
uncertainties. Symbols with arrows indicate either upper or lower limits. The vertical grey bar on the 
right axis indicates glacial–interglacial CO2 range from ice cores. The top blue bar indicates approximate 
timing of ice-sheet development on Antarctica. Horizontal dashed line indicates the present-day 
atmospheric CO2 concentration (390 ppm).

© 2011 Macmillan Publishers Limited. All rights reserved
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Superrrotation in warm climates

(Caballero & Huber GRL 2010)

COLD (1xCO2) HOT (32xCO2)

Zonal-mean zonal wind in simulations with CAM3 coupled to aquaplanet slab ocean

Superrrotation in warm climates

(Caballero & Huber GRL 2010)

COLD (1xCO2) HOT (32xCO2)

Zonal-mean zonal wind in simulations with CAM3 coupled to aquaplanet slab ocean

Zonal-mean zonal wind (CAM3).
R. Caballero and M. Huber (2010). Geophys. Res. Lett.
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Superrotation in past climates

Observations indicate a reduced Pacific
SST gradient in the Pliocene.Geophysical Research Letters 10.1029/2019GL083802

Figure 1. Pliocene SST anomalies (mid-Piacenzian–preindustrial, calculated from UK′
37 ) at the core sites used in this

study. Sites are labeled with their Deep Sea Drilling Project, Ocean Drilling Project, or Integrated Ocean Drilling
Project number. Layered circles show the 2.5% (outside ring), 50% (median, middle ring), and 95% confidence levels
(inner circle) for each site. Shaded bands and darker boxes mark the tropical and midlatitude regions, and western and
eastern Pacific regions, used for model box averages, respectively. SST = sea surface temperature.

Here, we recalculate Pliocene patterns of warmth and SST gradients using a single proxy and a probabilis-
tic approach. Given controversies associated with the Mg/Ca and TEX86 paleothermometers (O'Brien et al.,
2014; Ravelo et al., 2014) we base our reconstruction solely on alkenone (UK′

37 ) paleothermometric data, an
established proxy for SSTs. Eighty-three percent of the SST records from the Pliocene have UK′

37 measure-
ments, providing global coverage (Figure 1). The main limitation of UK′

37 is that it has an upper bound of
∼30 ◦C, challenging inference in warm waters. However, a new Bayesian calibration, BAYSPLINE, improves
prediction of SSTs near the saturation point (Tierney & Tingley, 2018) and allows us to generate probabilistic
representations of Pliocene SSTs that fully incorporate uncertainties in the UK′

37 proxy.

Following Fedorov et al. (2015), we reconstruct SST anomalies from key regions (eastern Pacific, western
Pacific, tropics, and midlatitudes) as well as zonal and meridional gradients. We investigate the merid-
ional SST gradient (tropics—midlatitudes) because one mechanism for the permanent El Niño involves
strong subtropical warming, which would feed warm waters into the tropical Pacific thermocline and reduce
the zonal gradient (Burls & Fedorov, 2014; Fedorov et al., 2015). We focus on the mid-Piacenzian warm
period (MPWP, 3.264–3.025 Ma; Dowsett et al., 2010), because the Pliocene Model Intercomparison Project
1 (PlioMIP1; Haywood et al., 2013) targeted this specific time. We use model output from PlioMIP1 and
a new simulation conducted with the Community Earth System Model (CESM1-CAM5) to compare with
proxy-derived estimates. We aim to assess (1) whether there was a permanent El Niño, and (2) more gen-
erally, whether simulations forced with standard MPWP boundary conditions can reproduce proxy SST
anomalies.

2. Materials and Methods
2.1. Alkenone Proxy Approach
Our SST anomaly reconstructions are based on published alkenone UK′

37 data from 28 sites (Figure 1 and
supporting information Table S1). We use these data to reconstruct regional SST anomalies and the Pacific
SST field (see section 2.3). The regions targeted include the midlatitudes, following the definition in Fedorov
et al. (2015; 30–50◦N or ◦S, excludes subtropical upwelling zones, includes Site 982 at 57◦N), the eastern
equatorial Pacific, the western Pacific warm pool, and the tropics (see Table S1 for a list of sites assigned to
each region). Our analysis is limited to the last 4 Ma because prior to this time, only one site is available
in the western Pacific (ODP 806) and this biases the regional average. We calibrated UK′

37 data to SSTs using
BAYSPLINE (Tierney & Tingley, 2018) with a prior standard deviation of 5 ◦C, a loose prior that only mini-
mally impacts the posterior. For each site, anomalies were calculated relative to a preindustrial estimate of
SST, which, wherever possible, was based on a coretop or latest Holocene UK′

37 value (see Text S1). In order to

TIERNEY ET AL. 9137

J. E. Tierney, A. M. Haywood, R. Feng, T. Bhattacharya, and
B. L. Otto-Bliesner (2019). Geophys. Res. Lett.

Could superrotation alter El Niño?

momentum which tended to weaken or diminish equatorial
easterlies.
[19] 3. The weaker easterlies led to a positive feedback: a

weaker surface stress decreased the east-west slope of the
equatorial Pacific thermocline, deepened the east Pacific
thermocline and eliminated the cold tongue in the east
Pacific. The diminished east-west SST gradient reduced
the atmospheric pressure gradient, further weakened the
Walker circulation and perhaps strengthened or rearranged
convective activity in the warmer east Pacific leading to
more Rossby wave production.
[20] As climate cooled since the early Pliocene (because

of reasons we cannot identify here, possibly changes in
greenhouse gas concentration), organized tropical convec-
tive activity weakened. This led gradually to diminishing of
the proposed dynamical regime as the pressure gradient in
(1) became dominant over the eddy momentum flux, result-
ing in gradual establishment of a strong equatorial Pacific
SST gradient by 2–3 Ma BP. We now support each step in
the above scenario with references to the relevant literature
following the same three steps as above.
[21] 1. The atmosphere in a warmer climate contains more

moisture and one may therefore expect a stronger or at least
reorganized convection-related tropical variability. Indeed,
Slingo et al. [1999] found an increase in MJO activity since
the mid-1970s possibly due to a decadal time scale warm-
ing in the tropical SSTs. Similarly, idealized atmospheric
general circulation model results support the idea that
MJO activity should be stronger in a warmer climate [Lee,
1999].
[22] 2. The next stage in the proposed mechanism is

divided into several steps. In the first step, stronger or rear-
ranged tropical convective activity results in stronger Rossby
wave excitation.While this is a sensible assumption, it cannot

be easily quantified by existing models which have difficul-
ties in producing even the wide range of present-day tropical
convective activity. Second, there is a large literature dem-
onstrating that equivalent barotropic atmospheric Rossby
waves can be excited at the equator, escape and create
remote atmospheric teleconnections [Hoskins and Karoly,
1981]. Third and most critical, consider the evidence for
stronger wave excitation at the equator leading to weakened
surface easterlies. Lee [1999] found that a prescribed global
SSTwarming leads both to a stronger MJO and to westerlies
at the equator. Huang et al. [2001] found a tendency to
produce superrotation in a global warming simulation and
speculated that this is a result of increased tropical stochas-
tic forcing by atmospheric convection. Biello et al. [2007]
found tendency to superrotation due to MJO related hori-
zontal momentum flux. Held and Suarez [1978] found that
minor changes to their convective parameterization could
lead to equatorial superrotation. Held [1999] later inter-
preted this result to be the consequence of noise created in
this model by the convection scheme (serving the role of the
convection-related stochastic excitation proposed here),
resulting in Rossby waves propagating off the equator and
inducing equatorial superrotation. Held also speculated that
this scenario may occur under global warming. Finally, B. F.
Farrell and P. J. Ioannou (Emergence of jets from turbulence
in the shallow water equations on an equatorial beta plane,
submitted to Journal of the Atmospheric Sciences, 2008)
recently explicitly prescribed stochastic forcing representing
convective activity in the tropics and found that superrotation
resulted in an idealized equivalent barotropic model.
[23] Atmospheric superrotation in models tends to be

stronger in the upper troposphere. However, convectively
forced Rossby waves propagating away from the equator
may lead to weakened easterlies at the surface as well.
Equivalent barotropic tropospheric Rossby waves would
probably be especially effective for this purpose because
they can escape the equatorial waveguide and because they
would tend to induce equivalent barotropic momentum forc-
ing at the equator, more likely to lead to a surface signature.
The response of surface winds to elevated thermal forcing
has been studied, for example, by Wu et al. [1999, 2000]
and Chiang et al. [2001] and turns out to be quite sensitive
to model parameters and to the level of the elevated heating.
Understanding the surface wind response to possibly elevated
eddy momentum fluxes will similarly require a careful fur-
ther study.
[24] 3. The final step requires no justification, as the

relationship between the easterlies, thermocline slope, and
east-west temperature gradient is a cornerstone of equatorial
dynamics and plays a well known role in the physics of
ENSO.
[25] Increase in east Pacific SST may reduce highly reflec-

tive marine stratus clouds there, enhancing the warming and
leading to yet another positive feedback [Fedorov et al.,
2006; Barreiro et al., 2006]. The gradual evolution of the
SST gradient during the Pliocene indicates that the positive
feedbacks do not lead to bifurcations and abrupt transitions.
While abrupt transitions are a focus of much of the super-
rotation literature, bifurcations are not essential for our

Figure 1. A schematic of the proposed mechanism for the
weak Pliocene equatorial Pacific SST gradient.
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Momentum convergence by Rossby waves

Localised sources of Rossby waves produce momentum convergence.

Eddy-driven	westerlies

What did we just see?

Group 
propagation

Localized wave 
generation

Phase 
propagation

Phase 
propagation

Group 
propagation

u0v0 > 0

u0v0 < 0

Image: W. Young.
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Forced equatorial waves: Matsuno-Gill problem

Linearized shallow-water equations on an equatorial beta plane:

∂tu−βyv + g∂xh = 0, or Ẋ + LX = 0

∂tv+βyu + g∂yh = 0, L† = −L,
∂th+H∂xu + H∂yv = 0.
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Linearized shallow-water equations on an equatorial beta plane:

∂tu−βyv + g∂xh = 0, or Ẋ + LX = 0

∂tv+βyu + g∂yh = 0, L† = −L,
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Fig. 4. Pressure and velocity distributions of 
   eigensolutions for n=1 

 a : Eastward propagating inertio-gravity wave 
 b : Westward propagating inertio-gravity wave 
 c : Rossby wave.

Fig. 5. Same as Fig. 4 but for n=2.
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detail. As understood from the expression 
for eigensolutions (17) the waves of both 
gravity and Rossby type of lower modes are 
confined in the region near the equator. From 
the equation (6) we can recognize that the 
solution v has an appreciable amplitude 
only in the domain,

(21)
Fig. 8. Pressure and velocity distributions of 

   eigensolution for n=-1 and k=0.5. 
   This wave behaves like as the Kelvin wave.

longitudinal pressure gradient is small and 
zonal velocity is large, the other aspect, the 
geostrophic balance between the pressure and 
the wind fields is pronounced. It is plausible 
that the former character predominates in 
short waves and the latter becomes more 
pronounced in long waves. 

 In conclusion we might say that there is 
no marked difference between the Rossby 
and the gravity waves for the lowest modes, 
the wave confined near the equator. Since 
we have no physical reason to distinguish 
"quasi -geostrophic wave" and "gravity wave" 
we cannot apply the concept of filtering to the 
motions in the equatorial area. 

6. Trapping of waves in the equatorial area 
 As mentioned previously, one of the charac-

teristic phenomena concerning the equatorial 
disturbances is trapping of the waves of low 
frequencies. This problem was first discus-
sed by Yoshida (1959), based upon the same 
set of equations as treated in this paper. 
But his analysis was not complete, because 
he derived an equation of surface elevation 
which was difficult to be dealt with and he 
suggested the existence of trapped waves 
from the asymptotic behaviors of the solution. 
Stern (1963) treated inertia oscillation in the 
low latitudes and Bretherton (1964) discussed 
inertio-gravity oscillations in a two-layered 
ocean. Either of them confined the problem 
to the motions in the meridional plane, i. e., 
they assumed the motion is uniform in the 
longitudinal direction. Therefore it might be 
said that they did not discuss about "waves ", 
but motions of fluid ring, so to say. 

 Here we shall discuss about the trapping 
of waves in the equatorial area in more

Within this domain the solution becomes 
wavy, and in the outer part of this domain 
it approaches to 0. y* denotes the approximate 
north-south extent of the wave. The equa-
tion (6) is equivalent to a equation which 
describes the wave motions in an inhomo-
geneous medium and condition (21) determines 
the domain where refractive index is positive. 
Bretherton (1964) gave an explanation to the 
trapping phenomenon of pure intertia oscilla-
tion from the view point of reflection of waves 
at the top and the bottom of the fluid. 

 In our case, the existence of trapped modes 
of waves may be understood as a result of 
refraction of primary waves. Though the 
medium is not inhomogeneous, the variation 
of the Coriolis effects give arise the varia-
tion of propagation velocity of inertio-gravity 
waves. The phase velocity of inertio-gravity 
wave is given as ;

(22)

where k is the vector wave number in 
horizontal plane and the velocity of pure 
gravity wave is denoted by cg. The relation 
(22) is valid in this discussion, because now 
we are concerning propagation of wavelets 
from a wave front, so we may take the 
Coriolis parameter is constant in such a small 
range. Since (22) states that propagation 
velocity is larger for higher latitudes, the 
wave generated near the equator will be re-
fracted and reflected toward the equator. 

 In this meaning the equator plays the role 
of a duct in the propagations of inertio-
gravity waves. The solutions of lower mode 
we have obtained are the guided waves 
through this duct. 

 From the same view point we shall consider 
the trapping of the Rossby waves. The pro-

Rossby (n = 1)

Kelvin

T. Matsuno (1966). J. Meteor. Soc. Japan; A. E. Gill (1980). Q. J. R. Meteorol. Soc.
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Forced equatorial waves: Matsuno-Gill problem

Linearized shallow-water equations on an equatorial beta plane:

∂tu−βyv + g∂xh = −εu, or Ẋ + LX = B − DX

∂tv+βyu + g∂yh = −εv , L† = −L,
∂th+H∂xu + H∂yv = Q − h/τ.
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Forced equatorial waves: Matsuno-Gill problem

Linearized shallow-water equations on an equatorial beta plane:

∂tu−βyv + g∂xh = −εu, or Ẋ + LX = B − DX

∂tv+βyu + g∂yh = −εv , L† = −L,
∂th+H∂xu + H∂yv = Q − h/τ.

Matsuno-Gill response: X = (L + D)−1B.
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the equator both exhibit a predominantly northwest–
southeast tilt in the Northern Hemisphere and a south-
west–northeast tilt in the Southern Hemisphere, with
diffluent easterly flow over the Indian Ocean and con-
fluent westerly flow over the central Pacific. This tilt is
responsible for the equatorward eddy flux of westerly
momentum noted in Figs. 2a and 3a.

The leading terms in the annual-mean zonal momen-
tum balance (1) are shown in Fig. 6. In the free tropo-

sphere there exists a strong compensation between the
MMC term (Fig. 6a) and the eddy momentum flux con-
vergence (Fig. 6b). The contribution from the vertical
eddy flux and mean vertical advection (not shown) are
!3 to 4 times smaller than the leading terms; including
these terms does not significantly alter the appearance
of the residual in Fig. 6c. The most significant imbal-
ances (Fig. 6c) occur outside of the region of interest in
this study: in the boreal stratosphere, where gravity

FIG. 5. Nonlinear solution of the shallow water wave equation forced by an equatorial heat
source. The geopotential height field is contoured, the wind field is represented by arrows, and
the heat source is shown in gray shades. The response bears a strong qualitative resemblance
to the observed zonal variations in the geopotential height and wind fields.

FIG. 4. The 150-hPa annual-mean geopotential height (contours) and wind (arrows); super-
imposed (color) is the tropical annual-mean precipitation (mm day"1). The contour interval
for the geopotential height is 100 m (gray lines); additional contours (black) at 10 m are
inserted in the tropical belt. The contour succession is (. . . 14 100, 14 200, 14 210, 14 220, . . .)
m, with the first black contour at the separation between gray and black contours representing
the 14 210-m line. The wind arrows are plotted only up to 23° in both hemispheres.

JULY 2005 D I M A E T A L . 2503

I. M. Dima, J. M. Wallace, and I Kraucunas (2005). J. Atmos. Sci.

Reanalysis (NCEP) 150-hPa
annual-mean geopotential height
(contours) and wind (arrows).
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Forced equatorial waves: Matsuno-Gill problem

Linearized shallow-water equations on an equatorial beta plane:

∂tu−βyv + g∂xh = −εu, or Ẋ + LX = B − DX

∂tv+βyu + g∂yh = −εv , L† = −L,
∂th+H∂xu + H∂yv = Q − h/τ.

Matsuno-Gill response: X = (L + D)−1B.
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Forced equatorial waves: GCM results

General Circulation Model simulations:

departures from the zonal mean (e.g., u9 5 u 2 u). The
agreement between CAM and theory appears to be quite
good; the theory captures qualitative shifts in phase tilt
and amplitude across the bifurcation.

The analytical solutions can be used to calculate a
zonal-mean eddy momentum flux convergence on the
equator 2›y(u9y9)jeqtr as a function of U. The resulting
dependence is shown in Fig. 4a, along with a similar
curve derived from a CAM simulation in which Q0 was
increased slowly and continuously (0.03 K day21 yr21),
to allow the zonal wind and eddy fluxes to be in quasi-
equilibrium with the forcing. Both curves indicate a max-
imum eddy flux when the mean flow nears 16 m s21, the
phase speed of the n 5 1 Rossby wave for the equivalent
depth of 250 m used here. Although there is a relative
phase shift between u and y associated with changes in U,
most of the change in momentum transport is due to the
amplification of the wave fields.

To evaluate the accuracy with which this theory re-
produces the behavior seen in CAM, we run a series of
simulations in which we vary k and cf. If the resonance is
indeed determined by the zonal wind speed relative to
the forcing, then we expect the velocity at which mo-
mentum convergence is maximized to be Ue 5 2cR 1 cf.
Figure 4b summarizes the velocity of maximum eddy
momentum convergence in this set of CAM simulations.

The simulated U is plotted against the expected value of
Ue, with the Rossby wave phase speed given by

cR 5
2b

k2 1 (2n 1 1)b/
ffiffiffiffiffiffiffi
gH
p ,

where we use n 5 1 and H 5 250 m for all cases. The
agreement with theory is again quite good, leading us
to conclude that the shallow water theory does indeed
capture the essential mechanism of the feedback and
bifurcation. Two points, from k 5 4, cf 5 0 and k 5 6,
cf 5 0, lie more than two standard deviations from the
theoretical curve. It is unclear why, since they are both
near the center of the model parameter space sampled
here, but we take a moment to speculate why the theo-
retical solution might break down. First, the jet produced
in the GCM is not uniform, but roughly Gaussian in
meridional and vertical extent. The resulting shear may
distort the wave field, and also modify the background
vorticity gradient on which the waves propagate. This, in
turn, leads to a change in the free wave velocity and
shifts the resonance location. Second, the Phlips and Gill
solution assumes small U and k, but the dropped terms
are not strictly negligible in all cases shown here. Finally,
the eddy velocities can exceed 5 m s21, suggesting that
nonlinearities may be significant.

FIG. 3. Equilibrium eddy response (a),(c) before and (b),(d) after the bifurcation, with Q0 5 0.3 K day21, showing
(a),(b) CAM 200-mb fields and (c),(d) shallow water solutions. Contours indicate geopotential height, shading in-
dicates heating (QCAM and QSW), and vectors indicate the wind field. Contour interval is 0.6 m before transition and
3 m after, showing that the wave amplitude is increased by a factor of 5.
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200 hPa geopotential height (contours)
and wind (arrows).

4. Analysis of the wave–mean flow feedback and
transition to superrotation

We can gain some insight into the mechanism of the
transition to superrotation by considering analytical
solutions to the forced shallow water equations on an
equatorial beta plane. Although the simulated jet has
a nearly Gaussian meridional structure, explicitly taking
this structure into account renders analytical solutions
intractable. Instead we consider the response to forcing
in the presence of a uniform background flow U, fol-
lowing the approach of Phlips and Gill (1987), in the
hope that this approximation still captures the essential
mechanism of the bifurcation. Showman and Polvani
(2010) recently pointed out that the classical Matsuno–
Gill system will not lead to superrotation due to an
artificial cancellation between the horizontal and ver-
tical eddy fluxes. This results from neglect of the mo-
mentum transport by the imposed mass/heat source.
When this term is accounted for, vertical fluxes become
smaller than horizontal fluxes and superrotation will
develop. Consistent with their corrected model, the
vertical eddy fluxes in our simulations are generally of
opposite sign to the horizontal fluxes and smaller in
magnitude. However, the temporal evolution of the
vertical fluxes during transitions to superrotation varies
significantly between simulations, so for simplicity we
will focus on the horizontal fluxes. We believe this is
consistent with our use of the shallow water framework

only to gain physical insight into the wave–mean flow
feedback.

We begin with the nondimensional steady-state shal-
low water equations:

U›xu 2 byy 5 2›xf 2 k=4u,

U›xy 1 byu 5 2›yf 2 k=4y,

U›xf 1 ›xu 1 ›yf 5 QSW.

The =4 hyperdiffusion term is included because of its
appearance in CAM, and for a given simulation may be
approximated as 2!u, where ! 5 k(k2 1 l2), k is the
heating zonal wavenumber and l is assumed to be 2p over
the deformation radius. This value is very near the co-
efficient of Rayleigh friction used in classical Matsuno–
Gill studies (e.g., Gill 1980).

We assume a heat forcing given by

QSW 5 Q0 cos(kx) exp(2y2/L2
d),

which excites only the Kelvin and n 5 1 planetary wave
modes, and allows a simple Fourier transform in longi-
tude, greatly simplifying the problem. The meridional
structure can be found in terms of Hermite polynomials,
following the well-known methodology outlined by Gill
and others. Details for this case can be found in the ap-
pendix.

FIG. 1. Zonally averaged quantities, (a),(c) before and (b),(d) after the bifurcation, for simulations without me-
ridional temperature gradient, DT 5 0 K. All fields are in equilibrium with Q0 5 0.3 K day21, demonstrating
multiple equilibria for this limited case. Contour intervals are (a) 1 m s21, (b) 2.5 m s21, and (c),(d) 0.5 3 109 kg s21).
Negative contours are dashed.
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Zonally averaged zonal wind.

N. P. Arnold, E. Tziperman, and B. Farrell (2012). J. Atmos. Sci.

CAM3.1, T42, 26 levels. Held-Suarez forcing9.

9I. M. Held and M. J. Suarez (1994). Bull. Amer. Meteor. Soc.
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Dynamical mechanisms for bistability
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I Which dynamical mechanisms maintain the jet?

I Is the transition smooth or abrupt? Bistability requires a positive feedback:
δF
δū

> 0.

critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt5X(12X/K)2 c(X2/(X21 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
systemmoves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashedmiddle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1
or point F2), a tiny change in the conditionmay cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt5X(12X/K)2 c(X2/(X21 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
systemmoves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashedmiddle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1
or point F2), a tiny change in the conditionmay cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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Dynamical mechanisms for bistability
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I Which dynamical mechanisms maintain the jet?

I Is the transition smooth or abrupt? Bistability requires a positive feedback:
δF
δū

> 0.

Potential feedback mechanisms

1. Hadley cell feedback

2. Wave-jet resonance

In which range of parameters are those positive feedback robust? Are they
compatible? Are they robust to model complexity (will we see them in GCM
and actual planets)?
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The Hadley cell feedback: theory10
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The Hadley cell feedback: theory10
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Layer thickness:

I Geostrophic balance with angular momentum conserving wind in the
tropics

I Radiative equilibrium outside
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10K. M. Shell and I. M. Held (2004). J. Atmos. Sci.
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FIG. 4. Nondimensional zonal wind at the equator for a range of
equatorial forcing values. Circles correspond to full model results,
asterisks to stable solutions of the analytic model, and 3’s to unstable
solutions. Analytic solutions with U . 1 are not valid and are shown
for illustrative purposes only.

creasing in magnitude with increasing U, while the up-
per value (assuming it is valid) corresponds to the min-
imum strongly superrotating U, where the deceleration
terms begin increasing in magnitude with decreasing U.
When r/p . 1/3, U never jumps to a different branch
as the flow is too frictionally dominated.
Using the variable values listed in section 2, the non-

dimensional parameters are p 5 0.0772, r 5 0.008, and
q 5 13 333 3 F0. The asterisks and 3s in Fig. 4 show
the steady states in the simple model. The asterisks cor-
respond to stable solutions, while the 3s indicate un-
stable solutions. The maximum U on the lower branch
is 0.39, corresponding to an applied forcing of 10.1 3
1027 m s22. The minimum U on the upper branch is
0.94 (F0 5 5.83 1027 m s22). For this set of parameters,
there are valid upper branch solutions (i.e., where U ,
1) for a small range of applied forcing. However, most
of the upper branch solutions are invalid.
Thus, the simple model predicts an abrupt transition

from weak to strong superrotation. However, the model
does not always predict valid strongly superrotating
states since Held–Hou theory no longer applies. Fur-
thermore, the simple model unrealistically assumes that
the applied forcing affects the angular momentum bud-
get only at the equator. Finally, the statements concern-
ing the stability of the different equilibria in the ana-
lytical model ignore the time dependence associated
with the adjustment of the Hadley cell to these equatorial
conditions. To address these limitations, we explore the
behavior of an axisymmetric atmosphere using a com-
putational model.

4. Results from the full model

We next look for multiple equilibria in the full model
by integrating our shallow-water system to steady states
using different initial conditions and forcing magni-
tudes. We sampled the forcing in increments of 2 3
1028 m s22. There are two distinct branches of solutions,
one similar to the simple angular momentum conserving
Hadley cell model (weakly superrotating) and one
strongly superrotating. The open circles in Fig. 4 show
how U changes with the forcing. As the forcing in-
creases from zero, the zonal wind increases, abruptly
transitioning to strong superrotation at F0 5 9.2 3 1027

m s22. When the forcing is subsequently decreased, the
model remains strongly superrotating until the forcing
is reduced to 7.6 3 1027 m s22. The results can be
classified into four regions of different behavior de-
pending on the magnitude of the forcing at the equator,
F0.

1) For small forcing, there is only one stable solution,
with a small zonal velocity at the equator. The zonal
wind and layer thickness approximately agree with
the simple analytical Hadley cell model; near the
equator, angular momentum is approximately con-
served. At the equator, the thickness relaxation term

[Eq. (7)] in the zonal momentum equation [Eq. (2)]
increases with increasing F, and friction is weak. The
dashed lines in Fig. 5 show a sample steady solution
in this region.

2) For somewhat higher forcing, the system has two
steady solutions. The lower branch approximates the
Hadley cell model, while the upper branch has a very
weak Hadley circulation. The upper solution layer
thickness is close to the equilibrium thickness; the
zonal momentum is far from angular momentum
conservation; and the meridional wind is small. In
the lower branch, similar to region 1, equatorial re-
laxation toward radiative equilibrium always in-
creases in magnitude and dominates friction, while
in the upper branch, the magnitude of R decreases
so that it is similar to the frictional term. The dashed–
dotted lines in Fig. 5 show a sample steady lower
branch solution, while the dotted lines show a steady
upper branch solution in this region.

3) When the forcing is further increased, the system has
only one steady state, similar to the upper solution
of region 2. As the forcing increases, an equatorial
jet develops and strengthens. Generally u is above
u0eq, but h is always below heq. The Hadley cell is
weak but still present. The relaxation term always
decreases with increasing F, so the friction term
dominates by the high end of the region. The thin
solid lines in Fig. 5 show a sample steady solution
in this region.

4) For the highest values of the forcing, h0 is above
h0eq. This corresponds to a collapse of the Hadley
circulation, with sinking at the equator and rising
slightly poleward of the equator. Thus the only zonal
momentum tendency term that can balance the forc-

10K. M. Shell and I. M. Held (2004). J. Atmos. Sci.
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The Hadley cell feedback: theory10
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FIG. 4. Nondimensional zonal wind at the equator for a range of
equatorial forcing values. Circles correspond to full model results,
asterisks to stable solutions of the analytic model, and 3’s to unstable
solutions. Analytic solutions with U . 1 are not valid and are shown
for illustrative purposes only.

creasing in magnitude with increasing U, while the up-
per value (assuming it is valid) corresponds to the min-
imum strongly superrotating U, where the deceleration
terms begin increasing in magnitude with decreasing U.
When r/p . 1/3, U never jumps to a different branch
as the flow is too frictionally dominated.
Using the variable values listed in section 2, the non-

dimensional parameters are p 5 0.0772, r 5 0.008, and
q 5 13 333 3 F0. The asterisks and 3s in Fig. 4 show
the steady states in the simple model. The asterisks cor-
respond to stable solutions, while the 3s indicate un-
stable solutions. The maximum U on the lower branch
is 0.39, corresponding to an applied forcing of 10.1 3
1027 m s22. The minimum U on the upper branch is
0.94 (F0 5 5.83 1027 m s22). For this set of parameters,
there are valid upper branch solutions (i.e., where U ,
1) for a small range of applied forcing. However, most
of the upper branch solutions are invalid.
Thus, the simple model predicts an abrupt transition

from weak to strong superrotation. However, the model
does not always predict valid strongly superrotating
states since Held–Hou theory no longer applies. Fur-
thermore, the simple model unrealistically assumes that
the applied forcing affects the angular momentum bud-
get only at the equator. Finally, the statements concern-
ing the stability of the different equilibria in the ana-
lytical model ignore the time dependence associated
with the adjustment of the Hadley cell to these equatorial
conditions. To address these limitations, we explore the
behavior of an axisymmetric atmosphere using a com-
putational model.

4. Results from the full model

We next look for multiple equilibria in the full model
by integrating our shallow-water system to steady states
using different initial conditions and forcing magni-
tudes. We sampled the forcing in increments of 2 3
1028 m s22. There are two distinct branches of solutions,
one similar to the simple angular momentum conserving
Hadley cell model (weakly superrotating) and one
strongly superrotating. The open circles in Fig. 4 show
how U changes with the forcing. As the forcing in-
creases from zero, the zonal wind increases, abruptly
transitioning to strong superrotation at F0 5 9.2 3 1027

m s22. When the forcing is subsequently decreased, the
model remains strongly superrotating until the forcing
is reduced to 7.6 3 1027 m s22. The results can be
classified into four regions of different behavior de-
pending on the magnitude of the forcing at the equator,
F0.

1) For small forcing, there is only one stable solution,
with a small zonal velocity at the equator. The zonal
wind and layer thickness approximately agree with
the simple analytical Hadley cell model; near the
equator, angular momentum is approximately con-
served. At the equator, the thickness relaxation term

[Eq. (7)] in the zonal momentum equation [Eq. (2)]
increases with increasing F, and friction is weak. The
dashed lines in Fig. 5 show a sample steady solution
in this region.

2) For somewhat higher forcing, the system has two
steady solutions. The lower branch approximates the
Hadley cell model, while the upper branch has a very
weak Hadley circulation. The upper solution layer
thickness is close to the equilibrium thickness; the
zonal momentum is far from angular momentum
conservation; and the meridional wind is small. In
the lower branch, similar to region 1, equatorial re-
laxation toward radiative equilibrium always in-
creases in magnitude and dominates friction, while
in the upper branch, the magnitude of R decreases
so that it is similar to the frictional term. The dashed–
dotted lines in Fig. 5 show a sample steady lower
branch solution, while the dotted lines show a steady
upper branch solution in this region.

3) When the forcing is further increased, the system has
only one steady state, similar to the upper solution
of region 2. As the forcing increases, an equatorial
jet develops and strengthens. Generally u is above
u0eq, but h is always below heq. The Hadley cell is
weak but still present. The relaxation term always
decreases with increasing F, so the friction term
dominates by the high end of the region. The thin
solid lines in Fig. 5 show a sample steady solution
in this region.

4) For the highest values of the forcing, h0 is above
h0eq. This corresponds to a collapse of the Hadley
circulation, with sinking at the equator and rising
slightly poleward of the equator. Thus the only zonal
momentum tendency term that can balance the forc-

Can we obtain abrupt transitions
through the Hadley cell positive
feedback in a more complex model?

10K. M. Shell and I. M. Held (2004). J. Atmos. Sci.
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Hadley cell driven bistability: numerical simulations

Axisymmetric primitive equations with prescribed constant eddy forcing.
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I We observe hysteresis in a 2D model (Shell and Held was 1D).

I However, strong sensitivity to vertical resolution and viscosity
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Hadley cell driven bistability: numerical simulations

Axisymmetric primitive equations with prescribed constant eddy forcing.
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Wave-jet resonance feedback: theory

Linearized shallow-water equations on an equatorial beta plane :

∂tu − βyv + g∂xh = −εu, or Ẋ + LX = B − DX

∂tv + βyu + g∂yh = −εv , L† = −L,
∂th + H∂xu + H∂yv = Q − h/τ.

Matsuno-Gill response: X = (L + D)−1B.
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Wave-jet resonance feedback: theory

Linearized shallow-water equations on an equatorial beta plane with mean-flow
U:

∂tu+U∂xu − βyv + g∂xh = −εu, or Ẋ + LX+ikUX = B − DX

∂tv+U∂xu + βyu + g∂yh = −εv , L† = −L,
∂th+U∂xh + H∂xu + H∂yv = Q − h/τ.

Matsuno-Gill response: X = (L + D+ikUId)−1B =
∑

n,`

bn,`
ε+i(ωn,`+kū)

Xn,`(y).

Reynolds stress F = −∂yuv .
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Wave-jet resonance feedback: theory

Linearized shallow-water equations on an equatorial beta plane :

∂tu+U∂xu − βyv + g∂xh = −εu, or Ẋ + LX+ikUX = B − DX

∂tv+U∂xu + βyu + g∂yh = −εv , L† = −L,
∂th+U∂xh + H∂xu + H∂yv = Q − h/τ.

Matsuno-Gill response: X = (L + D+ikUId)−1B =
∑

n,`

bn,`
ε+i(ωn,`+kū)

Xn,`(y).

Reynolds stress F = −∂yuv .
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Wave-jet resonance feedback: theory

Linearized shallow-water equations on an equatorial beta plane :

∂tu+U∂xu − βyv + g∂xh = −εu, or Ẋ + LX+ikUX = B − DX

∂tv+U∂xu + βyu + g∂yh = −εv , L† = −L,
∂th+U∂xh + H∂xu + H∂yv = Q − h/τ.

Matsuno-Gill response: X = (L + D+ikUId)−1B =
∑

n,`

bn,`
ε+i(ωn,`+kū)

Xn,`(y).

Reynolds stress at the equator:

F =
Q2

0 εk
2(cK − cR)(2ū + cK − 3cR)

12[ε2 + k2(ū + cR)2][ε2 + k2(ū + cK )2]

Bistability condition: kcR/ε� 1.

I Small Rossby number

I Large Reynolds number
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Wave-jet resonance driven bistability: numerical simulations

Axisymmetric primitive equations with prescribed resonant eddy forcing.
Solved with Climt11, 91×45 grid points.
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Hysteresis experiments for different values of the resonance width ε.
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As expected from theory, we observe hysteresis for small ε, with a velocity jump
of order ∆U ≈ cR .

11J. M. Monteiro, J. McGibbon, and R. Caballero (2018). Geosci. Model Dev.
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Wave-jet resonance driven bistability: numerical simulations

Axisymmetric primitive equations with prescribed resonant eddy forcing.
Solved with Climt11, 91×45 grid points.
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The Hadley cell does not collapse in the superrotating state.

11J. M. Monteiro, J. McGibbon, and R. Caballero (2018). Geosci. Model Dev.
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Wave-jet resonance driven bistability: numerical simulations

Axisymmetric primitive equations with prescribed resonant eddy forcing.
Solved with Climt11, 91×45 grid points.
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Unlike Hadley cell driven bistability, abrupt transitions are robust to changes in
viscosity.
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Summary

I Well-defined theoretical framework for noise induced transitions in bistable
systems.

I Rare event algorithms allow to study rare transitions in high-dimensional
complex systems.

I We have characterized theoretically the range of parameters for bistability
and abrupt transitions to a superrotating state of the atmosphere.

I Those results have been verified in a 2D axisymmetric primitive equation
model.

I The Hadley-cell positive feedback by himself seems not robust and highly
dependent on the dissipation.

I The positive feedback of the Rossby wave-jet resonance leads to a broad
and robust bistability range.

I Superrotation without collapse of the Hadley cell is possible.

Perspectives

I Can these results be reproduced in a full GCM?

I Do they extend to other eddy momentum flux convergence mechanisms?
E.g. Kelvin-Rossby instability12

12S. Iga and Y. Matsuda (2005). J. Atmos. Sci. P. Wang and J. L. Mitchell (2014). Geophys. Res. Lett. P. Zurita-Gotor and
I. M. Held (2018). J. Atmos. Sci.
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Escape in stochastic saddle-node bifurcation13

dxt = (x2
t + t)dt +

√
2εdWt , τM = inf{t ≥ t0, xt ≥ M}
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13C. Herbert and F. Bouchet (2017). Phys. Rev. E.
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Return times: The TAMS algorithm14

Ensemble {x (0)
n (t)} of N independent trajectories, duration Ta, weight w0 = 1.

Selection-mutation steps, with score function ξ: at iteration j ≥ 1,
I Selection. trajectory n?j with the lowest score:

Q(j)
n?j

= min
1≤n≤N

Q(j)
n , with Q(j)

n = sup
0≤t≤Ta

ξ(t, x (j−1)
n (t)).

I Mutation. Resimulate the trajectory starting from the threshold Q(j)
n?j

.

Associate weight wj = (1− 1/N)wj−1 to the trajectories in the ensemble.

Iterate J times, or until all trajectories reach a fixed threshold amax. Yield
M = N + J trajectories with probabilities pm = wm/

∑
m wm.

14T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert, and F. Bouchet (2018). J. Stat. Mech.
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Jet Stream in the Southern Hemisphere15

March to September, this jet progressively shifts south-
ward to reach 55–60!S by the end of the austral winter.
During spring, the PFJ progressively returns to lower
latitudes.

4.3 Trend analysis

Some recent papers have found significant trends in the
SH circulation during the second half of the twentieth
century (Burnett and McNicoll 2000; Renwik 2004). The
changes have been mostly based on the analysis of
geopotential heights fields, either by computing anom-
alies over gridded data or by studying the time evolution

of closed isoheight contours. Our jet definition allows
the detection of a precise path for the circulation max-
ima related to the STJ and the PFJ, which are then
processed as independent and physically consistent
structures. Some annual statistics, as the jet frequency
(annual or seasonal number of jets detected), the average
latitude and the average velocity have been selected as
representative of the SH circulation. As a measure of the
meandering of the jet, a zonal index computed as the
difference between the maximum and minimum latitude
reached by each jet (i.e. the latitudinal amplitude of the
jet) has been defined. As it was stated in the introduc-
tion, the effects of the massive introduction of satellite
measures during 1979 must be considered when explor-

Fig. 3 Cumulative jet path during
January, April and July for 1958, 1979
and 2002. Parallels are drawn at every
20!

Fig. 4 Annual evolution of the 1958–2002
averaged SWD. Gray areas indicate 10,20,30,35,
40, and 45 m s!1 . Velocities above 35 m s!1 are
darker

Gallego et al.: A new look for the Southern Hemisphere jet stream 611
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The quasi-linear framework

The quasi-linear approximation works well for 2D turbulence16, barotropic jets17

or even full 3D GCMs18.

The ! plane we use is periodic in both x (longitude) and
y (latitude), with the domain of size 2"! 2". The motion
of the incompressible fluid is damped by a single friction #
and by small-scale dissipation that absorbs structures at the
finest scales. (Some models examined in Ref. [11] have
friction damping the fluctuations 10 times greater than that
slowing the zonal mean flow.) The fluid is driven by
random (stochastic) forcing $. This type of stochastic
forcing is widely used as a model of small-scale processes
that inject energy into the fluid, with the small and fast
scales acting as a random influence on the large and slow
scales [15–17]. The time evolution of the relative vorticity

% " ẑ # ð ~r! ~uÞ is given by, for example [18],

@t% þ Jðc ; %Þ þ !@xc ¼ (#% þ &r2% þ $; (1)

% ¼ r2c ; (2)

where Jða; bÞ ¼ @xa@yb( @ya@xb. Here c is the stream
function and the fluid velocity ~u ¼ ðu; vÞ ¼ ð(@yc ; @xc Þ;
we have set the deformation radius of the flow to be
infinite. The forcing is random with a short (but nonzero)
renewal time (0:1 ) rt ) 1) and concentrated in the spec-
tral band of wave numbers kmin ) jkxj, jkyj ) kmax (for
these runs kmin ¼ 7, kmax ¼ 10). The amplitude of the
forcing is chosen from a Gaussian distribution with stan-
dard deviation a$. This is a popular choice of forcing; a
detailed discussion of the role of forcing in DNS of such
problems is given in Ref. [14].

Rhines [19], who investigated the unforced system,
demonstrated how correlations between nonlinear Rossby
waves could lead to the generation of zonal flows and
identified the scale at which zonal flows become important
in mediating the dynamics of these waves (see, e.g.,
Ref. [20]). This ‘‘Rhines scale’’ is given by LR ¼
ð2U=!Þ1=2, where U is the rms velocity of the flow, and
occurs when the second and third terms of Eq. (1) are
comparable (and are comparable with the frictional term
[21]). There has been much research into the importance of
this length scale for the ultimate latitudinal scale of jets
(see, e.g., Ref. [22] and the references therein), but it is also
becoming clear that the dynamics of zonation is also
controlled by another length scale L" [23], which measures
the intensity of the forcing relative to the background
potential vorticity gradient. For the simple !-plane model
L" ¼ 0:5ð"=!3Þ1=5, where " is the energy input rate of the
stochastic forcing $.

The ratio of these two length scales has been proposed,
for models with small-scale forcing, to play a critical role
in determining the strength and stability of jets [18,24],
for cases where the same damping is applied to the mean
flows and the turbulent fluctuations. This local measure,
termed the zonostrophy index, is given by R! " LR=L" ¼
U1=2!1=10=21=2"1=5. In general, if the zonostrophy index is
large, then strong stable jets are found, while for small R!

the jets are weaker, meander more, and no staircase is
formed [14]. The zonostrophy index is therefore a measure
of how far the system is driven out of equilibrium. Note
that R! can also be written (on balancing the energy input
with the dissipation via friction "* #U2) in terms of the
ratio of an advective time on the Rhines scale to a dis-

sipative time scale (F! ¼ #LR=U), i.e., R! ¼ F(1=5
! .

Hence the quasiequilibrium limit is given by R! ! 1.
Recent estimates have put R! between 5 and 6 for flows
on the surface of Jupiter [25], while R! * 2 for oceanic jets
[18]. We note that the zonostrophy index might not be the
only parameter controlling the dynamics of the jets. It has
been shown that if the forcing length scale remains impor-
tant, then the dynamics is controlled by two nondimen-
sional parameters separately [6], and there is a regime
given by a chain inequality for which R! is the only
important nondimensional parameter [18]. Nonetheless,
even in this regime R! does give a measure of lack of
equilibrium.
DNS is performed using a pseudospectral scheme opti-

mized for parallel machines [26]. For these simulations we
utilize resolutions of up to 20482. The forcing is applied at
moderate scale (with rta

2
$ ¼ 0:01 for all calculations) and

the system is evolved from rest until a statistically steady
state is reached. Figure 1 shows a snapshot of the vorticity
and zonally averaged vorticity for a state with 3 zonal jets.
For this calculation R! ¼ 2:12 and the jet is well removed
from the quasiequilibrium limit. We note that this limit is
difficult to simulate in DNS, requiring long integrations.
Nonetheless, the Hovmöller diagram in Fig. 2(a) of the
(t, y) dependence of the mean flow together with a running
time average calculated from the midpoint of the calcula-
tion shows that the zonal flows do not meander too much in
space and well-defined averages can be obtained—though
we note that lengthy integrations of the dynamics are
required for meaningful flow statistics. Figure 2(b) shows

FIG. 1 (color online). Snapshot density plot of vorticity to-
gether with zonal mean vorticity profile of jets found by DNS.
The parameters are # ¼ 10(3, & ¼ 10(4, ! ¼ 16. For these
parameters, R! ¼ 2:12.
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S. M. Tobias and J. B. Marston
(2013). Phys. Rev. Lett.

predicts the structure of the finite amplitude jets that
result from equilibration of the initial jet formation in-
stability. These finite-amplitude jets correspond to fixed
points of the S3T dynamics. An example for IRFn
strongly forced with «5 100«c and with damping r5 0.01
is shown inFig. 4. This example demonstrates the essential
similarity among the jets in NL, QL, and S3T simulations.
Under strong turbulence forcing, the initial S3T jet

formation instability typically reaches final equilibrium
as a finite-amplitude jet at a wavenumber smaller than
that of the initial instability. An example is the case of
IRFn at «5 100«c shown in Fig. 4. In this example, the
jets emerge in S3T initially with n 5 10, which is in
agreement with the prediction of the S3T instability of
the homogeneous equilibrium, but eventually equilibrate
at n 5 3 following a series of jet mergers, as seen in the
Hovm€oller diagram. Similar dynamics are evident in the
NL and QL simulations. This behavior can be rational-
ized by noting that if the wavenumber of the jet remains
fixed, then as jet amplitude continues to increase under
strong turbulence forcing, violation of the Rayleigh–Kuo
stability criterionwould necessarily occur. By transitioning

to a lower wavenumber, the flow is able to forestall this
occurrence of inflectional instability. However, detailed
analysis of the S3T stability of the finite-amplitude equi-
libria near the point of jet merger reveals that these
mergers coincide with the inception of a structural in-
stability associated with eddy–mean flow interaction,
which precedes the occurrence of hydrodynamic in-
stability of the jet (Farrell and Ioannou 2003, 2007).2

FIG. 7. Hovm€oller diagrams ofU(y, t) comparing (a) jet emergence and equilibration in anNL simulation under IRFn
with (b) an S3T simulation under S3Tb forcing. (c) The corresponding time-mean jets, which show that the S3Tb
modification of the forcing spectrumsuffices to obtain agreementwithNL. Parameters are «5 10«c,b5 10, and r5 0.01.

2 Jet mergers occur in the Ginzburg–Landau equations that
govern the dynamics of the S3T instability of the homogeneous
equilibrium state for parameter values for which the system is close
to marginal stability (Parker and Krommes 2014). However, these
mergers in the Ginzburg–Landau equations are associated with
equilibration of the Eckhaus instability rather than equilibration of
the inflectional instability associated with violation of the Rayleigh–
Kuo criterion, as is the case for mergers of finite-amplitude jets
(cf. Fig. 5). Characteristic of this difference is that in the case of the
Ginzburg–Landau equations, both the prograde and retrograde
jets merge, while in the case of the finite-amplitude jets, only the
prograde jets merge. The same phenomenology as in the Ginzburg–
Landau equations occurs in the case of the Cahn–Hilliard equations
that govern the dynamics of marginally stable jets in the modula-
tional instability study of Manfroi and Young (1999).
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N. C. Constantinou, B. F. Farrell, and P. J. Ioannou
(2014). J. Atmos. Sci.

16J. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev (2014). Phys. Rev. Lett. G. Falkovich (2016). Proc. R. Soc. A;
I. V. Kolokolov and V. Lebedev (2016). Phys. Rev. E; A. Frishman (2017). Phys. Fluids.

17B. F. Farrell and P. J. Ioannou (2003). J. Atmos. Sci. J. B. Marston, E Conover, and T. Schneider (2008). J. Atmos. Sci.
K. Srinivasan and W. R. Young (2012). J. Atmos. Sci. F. Bouchet, C. Nardini, and T. Tangarife (2013). J. Stat. Phys.

18T. Schneider and C. C. Walker (2006). J. Atmos. Sci. P. A. O’Gorman and T. Schneider (2007). Geophys. Res. Lett. F. Ait-Chaalal,
T. Schneider, B. Meyer, and J. B. Marston (2016). New J. Phys.
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The quasi-linear framework

The quasi-linear approximation works well for 2D turbulence, barotropic jets or
even full 3D GCMs.

∂t ū − v(ξ + βy) = −∂yu′v ′ − εū,
∂tu
′ + ū · ∇u′+v ′∂y ū = βyv ′ − g∂xh

′ − εu′,
∂tv
′ + ū · ∇v ′+v ′∂y v̄ = −βyu′ − g∂yh

′ − εv ′,
∂th
′ + ū · ∇h′+h′∂y v̄ + h̄∇ · u′ + v ′∂y h̄ = Q ′ − h′/τ.

It remains extremely difficult to compute the mean flow profile and Reynolds
stress tensor in generala.

aJ. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev (2014). Phys. Rev. Lett. E. Woillez and F. Bouchet (2017). EPL;
A. Frishman and C. Herbert (2018). Phys. Rev. Lett. E. Woillez and F. Bouchet (2019). J. Fluid Mech.
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The quasi-linear framework

The quasi-linear approximation works well for 2D turbulence, barotropic jets or
even full 3D GCMs.

∂t ū − v(ξ + βy) = −∂yu′v ′ − εū,
∂tu
′ + ū · ∇u′+v ′∂y ū = βyv ′ − g∂xh

′ − εu′,
∂tv
′ + ū · ∇v ′+v ′∂y v̄ = −βyu′ − g∂yh

′ − εv ′,
∂th
′ + ū · ∇h′+h′∂y v̄ + h̄∇ · u′ + v ′∂y h̄ = Q ′ − h′/τ.

It remains extremely difficult to compute the mean flow profile and Reynolds
stress tensor in generala.
Let us assume there is no meridional shear.

aJ. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev (2014). Phys. Rev. Lett. E. Woillez and F. Bouchet (2017). EPL;
A. Frishman and C. Herbert (2018). Phys. Rev. Lett. E. Woillez and F. Bouchet (2019). J. Fluid Mech.
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