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Random dynamical systems theory
for nonlinear stochastic phenomena

r	=	28,	s	=	10,	b	=	8/3	,	σ =	0.3
Wt:	Wiener	process

Stochastic	Lorenz	equation

xn+1 = axn(1� xn) + �n

Random	 logistic	map

a = 3.83

[�,��]
ε

[M.	Chekroun,	E.	Simonnet,	M.	Ghil,	2011
YS,	M.	Chekroun,	M.	Ghil,	in	preparation]

[G.	Mayer-Kress	and	H.	Haken,	1981
YS,	T-S	Doan,	M,	Rasmussen,	 J.	Lamb,	submitting]
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1.	Random	dynamical	systems	and	noise-
induced	phenomena
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Deterministic	 chaos
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Stochastic	noise

Extracting dynamics from data



Extracting dynamics from data

Logistic	map	[May,	1976]



• Attractor	reconstruction

Delay	coordinate	plot	and	embedding

Rossler attractor



Chaos	in	dripping	faucet	[Shaw,	et.	al.	1984]

Return plot of experimental data



Return plot of experimental data

Nonlienar laser	with	feedback	[Arrecci,	et.	al.,	
1986]



Belousov-Zhabotinskii chemical	reaction	[R.	H.	
Simoyi,	et.	al.,	1982]

Return plot for experimental data



Chaotic	dynamics

Chaos	in	dripping	faucet

[R.	Shaw,	1984]



Dynamical	system	model

Chaos	in	dripping	faucet

xn+1 = f(xn)



Stochastic	process

Chaos	in	dripping	faucet

�n+1 = P�n



Random	dynamical	system	model

Chaos	in	dripping	faucet



Non-autonomous	dynamical	system	
model

Chaos	in	dripping	faucet

…

xn+1 = fn(xn)



Dynamical	systems	with	a	large	
degrees	of	freedom

Intrinsic	noise

Extrinsic
noise

Stochastic	term

xn+1 = fn(xn)or

Non-autonomous	 term



Random	dynamics	from	time	series	of	rotating	fluid

Slow	motion	of	
surface	height
〜 1D	dynamics

Fast	motion	
of	rotating	fluid
〜 Noise

ξn: White	Gaussian	 noise	random	return	map

[M. Iima, et.al, (2006)]

[YS,	et.	al.,	2010]



Stochastic	chaos	in	a	turbulent	swirling	flow
Collective	motion	in	Karman	flow

t

f1.f2

[B.	Saint-Michel,	 et.al,	2013]
θm

θm+1

θm+2

Time	series	embedding	

[D.	Faranda,	YS,	B.	Saint-Michel,	C.	Wiertel,	V.	Padilla,	B.	Dubrulle,	F.	Daviaud.,	PRL,	2017]

Stochastic	Duffing	equation
Lyapunov spectrum



One-dimensional maps with presence 
of noise

ξn:	Noise



One-dimensional	random	maps

Noise-induced	 chaos
in	logistic	map

Noise-induced	 order
in	BZ	map

+ +

― ―

Noise	 amplitude Noise	 amplitude

Lyapunov
exponent

Orbit

xn+1 = f(xn) + �n xn+1 = f(xn) + �n

[S.	Galatolo,	et.	al.,		
https://arxiv.org/abs/1702.07024]

[YS,	T-S	Doan,	M,	Rasmussen,
J.	Lamb,	submitting]



“Is	period	3	logistic	map	in	window	region	
potentially	chaotic	under	noisy	measurements?”
Model: (a=1.755,	ξ∈[-1,1]:	noise)xn+1 = a� x2

n + ��n

a-ε a						a+ε

Noise-induced	chaos



Small	additive	noise	to	period	3	window	region	
makes	non-attracting	chaotic	set	observable.	

Invariant	
densities

Fluctuation	 size

orbit

With	noise

Without	noise

[Crutchfield	et.al.,	1982]

(a=1.755,	ξ∈[-1,1]:	noise)xn+1 = a� x2
n + ��n

Noise-induced	chaos



Power spectra

Mayer-Kress and Haken (1981) 

Noise-induced chaos

Bifurcation

Lyapunov exponents



Noise-induced	order
• Small	additive	noise	to	chaotic	region	of	BZ	maps	induces	a	

peak	of	power	spectrum.	

Power
Spectra

Orbits

Without noise

With noise

[Matsumoto,	Tsuda,	1983]



Matsumoto and Tsuda (1983) 

Noise-induced order

Power spectra
Bifurcation

Lyapunov exponents

0.00001

0.001

0.0236 0.0233

0.023288



Both	Noise-induced	chaos	(NIC)	and	noise-induced	
order	(NIO)	are	observed	increasing	noise	amplitude.	

― ― ―

+ +

Noise	 amplitude

Lyapunov
exponent

Orbit

[YS,	2009]	

NIO NICNIC NIO

xn+1 = f(xn) + �n

f(x)

BZ	map	+	uniform	noise

Multiple	noise-induced	transition



Both	NIC	and	NIO	are	observed	
with	different	 noise	amplitude.	
[Sato,	2009]	

Power spectra

Lyapunov exponents

Chaotic

Chaotic



Noise-induced	phenomena
• Stochastic	resonance	

[Benzi et.	al.,	1982]
– Gradient	dynamics
– Potential	barriers	interact	with	noise

• Noise-induced	synchronization	 [Teramae-
[Teramae and	Tanaka,	2004]
– Oscillatory	dynamics
– Stagnation	points	in	phase	interact	with	noise

• Noise-induced	chaos	
[G.	Mayer-Kress	and	H.	Haken,	1981]
– Chaotic	dynamics
– Chaotic	saddles,	UPOs,	…	,	interact	with	noise	noise



Ω× X

Random	dynamical	systems

A	random	dynamical	system	is	the	combination	
of	two	systems	(θ,	φ).

or

Ω:{ω=(…,ω0,	ω1,	ω2,	…)}

State	space

X

ωn:	noisexn+1 = f(xn) + �n

Model	of	noise θ Model	of	dynamics φ

Random	influence

(�n, xn) = (�n�0, �(n, �n�0)x0)



I	× X

Non-autonomous	dynamical	systems

A	non-autonomous	dynamical	system	is	the	
combination	of	two	systems	(ψ,	φ).

I:	{i=(…,i0,	i1,	i2,	…)}

State	space

X

{I_n}:	arbitrary	input

Model	of	environment	ψ Model	of	dynamics φ

Influence

xn+1 = f(xn) + In



Random	attractor	and	its	stability

Random	attractor:		A(ω)

Random	Lyapunov exponent:	λ(ω)	

lim
n��

d(�(n, �n�)B,A(�)) = 0

for	a	bounded	set	B⊂X.

An	invariant	random	set	of	

satisfies

xn+1 = f(xn) + �n = �(n, �)x0

�(�, x) = lim
n��

1
n

log |��(n, �)x
�x

| (x � A(�))

We	may	use	<λ>	to	measure	average	stability



Example:	random	point	attractor

Langevin	equation	for	Ornstein-Uhlenbeck process

𝑑𝑥 = −𝜆𝑥𝑑𝑡 + 𝜎𝑑𝑊*		 𝜆, 𝜎 > 0,	𝑊* :𝑊𝑖𝑒𝑛𝑒𝑟	𝑝𝑟𝑜𝑐𝑒𝑠𝑠

Random	point	attractor:					𝑥 𝜔

Invariant	density:														ρ 𝑥 𝜔 ~ 𝜆/𝜋𝜎= exp − ABC

DC

Lyapunov exponent:														−𝜆



Example:	random	strange	attractor

r	=	28,	s	=	10,	b	=	8/3 r	=	28,	s	=	10,	b	=	8/3	,	
σ =	0.3,	Wt:	Wiener	process

Lorenz	system Stochastic	Lorenz	system



Example:	Random	strange	attractor

r	=	28,	s	=	10,	b	=	8/3 r	=	28,	s	=	10,	b	=	8/3	,	
σ =	0.3,	Wt:	Wiener	process



Example:	Random	strange	attractor

r	=	28,	s	=	10,	b	=	8/3 r	=	28,	s	=	10,	b	=	8/3	,	
σ =	0.3,	Wt:	Wiener	process



Example:	Random	strange	attractor

r	=	28,	s	=	10,	b	=	8/3 r	=	28,	s	=	10,	b	=	8/3	,	
σ =	0.3,	Wt:	Wiener	process



Noise-induced	phenomena	in	
random	dynamical	systems

Noise-induced	phenomena	in	orbits
– Noise-induced	chaos,	noise-induced	order,	noise-
induced	synchronization,	…

Noise-induced	phenomena	in	densities
– Stochastic	resonance,	stochastic	stability,	
statistical	periodicity,	…

Noise-induced	phenomena	in	basins
– Noise-induced	riddling,	noise-induced	
reproducibility,…



Stochastic	coupled	oscillators

I(t):	White Gaussian

Video	by	K.	Lin

Random	point	attractor	and	noise-induced	synchronization

[K.	Lin,	L-S.	Young,	2008]



Stochastic	coupled	oscillators

I(t):	White Gaussian

Video	by	K.	Lin

Random	strange	attractor	and	stochastic	chaos
(noise-induced	filamentation).

[K.	Lin,	L-S.	Young,	2008]



Random dynamical systems analysis for 
noise-induced phenomena

Noise-induced	
phenomena

Stationary	state Topological
bifurcation

Top Lyapunov exponent	
λ vs	noise	amplitude	σ

Noise-induced	
synchronization	

random	point	
attractor Yes	

Stochastic	resonance	 random	
periodic	
attractor

No

Noise-induced	 chaos random	strange	
attractor Yes

Noise-induced	 order “window	
phenomena” No

Noise-induced	
intermittency

non-stationary	
(infinite	ergodic)

Not at	onset	
of	topological	
bifurcation

σ=σ＊,	λ=0

[A.	Cherubini,	 YS, M.	Rasmussen,	 J.	Lamb,	2017]	
[YS,	T-S	Doan,	M,	Rasmussen,	 J.	Lamb,	to	be	submitted] [YS,	R.	Klages,	to	be	submitted]



Noise-induced	transition
in	open	dynamics

�
�

2Dt Noise

Diffusion Localization

Anomalous	diffusion	in	random	dynamical	systems
[Collaboration	with	Rainer	Klages
at	Queen	Mary	University	of	London,	UK]



2.	Deterministic	diffusion



Deterministic	diffusion

Chaotic	scattering

Gaspard–Rice	scattering



Deterministic	diffusion

Periodic	Lorenz	gas

Open	billiard



Deterministic	diffusion

Lorenz	gas

Open	billiard



Bernoulli	map	and	coin tossing

Ba(x) = ax (mod1)
a=2

0 1

Coin	tossing“Coarse-grained”	 chaotic	dynamics



Open	Bernoulli	map

Ba(x) = ax (mod1) a>2

xn+1 = axn

xn+1 = a(xn � 1) + 1

Cf.	Open	billiard	(schematic	 view)



Open	Bernoulli	map
xn+1 = a(xn � 1) + 1

xn+1 = a(xn + 1)� 1

xn+1 = axn

Ba(x) = ax (mod1) a>2
Cf.	Chain	of	open	billiard



Open	Bernoulli	map	and	random	walk

Ba(x) = ax (mod1) a>2



Open	Bernoulli	map	and	random	walk

Dynamics	of	open	Bernoulli	map Random	walk

[Figures	from	Klages 95]



Open	Bernoulli	map	and	diffusion
xn+1 = a(xn � 1) + 1

xn+1 = a(xn + 1)� 1

xn+1 = axn

Ba(x) = ax (mod1) a>2
Cf.	Chain	of	open	stadium	billiard
with	multiple	 particles



Open	Bernoulli	map	and	diffusion

Ba(x) = ax (mod1) a>2

�
�

2Dt

Equation	of	motion	of	sample	measure	
〜 Diffusion	equation

�P

�t
= D

�2P

�x2
� u

�P

�x



Mean	square	displacement

�x(t)2� D = lim
t��

�x(t)2�
2t

= 0

�x(t)2� � t



Diffusion coefficient and expansion rate

D = lim
t��

�x(t)2�
2t

[Klages 95]



Climbing	sine	map	and	diffusion

a=0.95

n

X_n

MSD



Climbing	sine	map	and	diffusion

a=1.01

n

X_n

Ballistic



Climbing	sine	map	and	diffusion

a=1.5

n

X_n

Localization



Pomeau-Manneville map



Open	Pomeau-Mannevillemap	
and	sub-diffusion

a=6,	z=3
F (x + 1) = F (x) + 1

[Geisel	 et.al.,	1984]

n

X_n

Sub-diffusion

MSD



Open	Pomeau-Mannevillemap
and	super-diffusion

a=6,	z=5/3
F (x + 1) = F (x) + 1

[Geisel	 et.al.,	1985]

n

X_n

Super-diffusion

MSD



Deterministic	anomalous	diffusion

α=2					:	Ballistic
1<α<2	:	Super-diffusion
α=1					:	Normal	diffusion
0<α<1	:	Sub-duffusion
α=0					:	Localization

D = lim
t��

�x(t)2�
2t

�x(t)2� � t�



3.	Anomalous	diffusion	in	random	dynamical	
systems



Summary
1.	Climbing	sine	map	may	show	noise-induced	
anomalous	sub-diffusion.

2.	Universality	of	intermittency	in	1D	random	dynamical	
systems	is	different	from	those	in	deterministic	1D	
dynamical	systems.	]

3.	Weak	ergodicity	breaking	caused	by	noise-induced	
synchronization.



Application:	Spatially	extended	RDS	model	
for	locomotion	of	microorganisms

Environment:	1d	tube.
Tetrahymena

[YS,	T.	Nakagaki,	in	preparation]



Application:	Coupled	RDS	model	for	
atmospheric jet stream

[	Our	on-going	research	project	at	LSCE!	]

Creation	and	annihilation	of	blocking	phenomena

Jet	 latitude	 dynamics
at	rocky	mountains



Thank	you


