Anomalous diffusion and intermittency in random dynamical systems

Yuzuru Sato

RIES/Department of Mathematics Hokkaido University, Japan and London Mathematical Laboratory, UK

23 November, 2017@LSCE, CNRS, Saclay

Random dynamical systems theory for nonlinear stochastic phenomena

Random logistic map

$$\begin{aligned} x_{n+1} &= a x_n (1-x_n) + \xi_n \\ a &= 3.83 \\ \xi_n : \text{ bounded uniform noise in } [\epsilon, -\epsilon] \end{aligned} \qquad \mathbf{x}_{\ast} \overset{\mathbf{x}_{\ast}}{\overset{\mathbf{x}_{$$

[G. Mayer-Kress and H. Haken, 1981 YS, T-S Doan, M, Rasmussen, J. Lamb, submitting]

Stochastic Lorenz equation

 $\begin{cases} dx = s(y - x)dt + \sigma x \, dW_t, \\ dy = (rx - y - xz)dt + \sigma y \, dW_t, \\ dz = (-bz + xy)dt + \sigma z \, dW_t. \end{cases}$

r = 28, s = 10, b = 8/3 , σ = 0.3 Wt: Wiener process

[M. Chekroun, E. Simonnet, M. Ghil, 2011 YS, M. Chekroun, M. Ghil, in preparation]

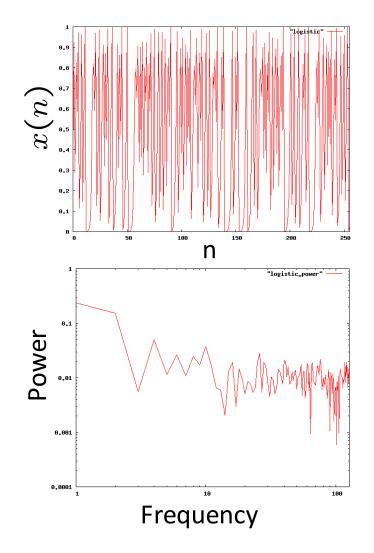
Outline

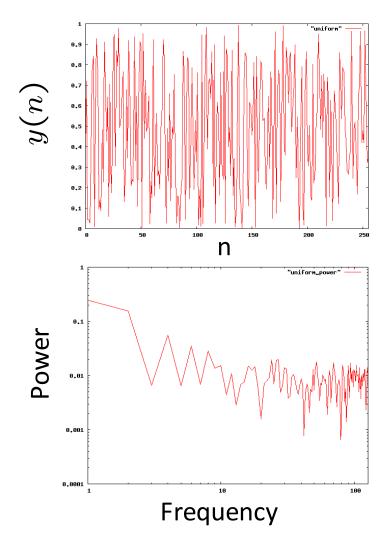
1. Random dynamical systems and noise-induced phenonema

- 2. Deterministic diffusion
- 3. Anomalous diffusion in random dynamical systems
- 4. Summary and future projects

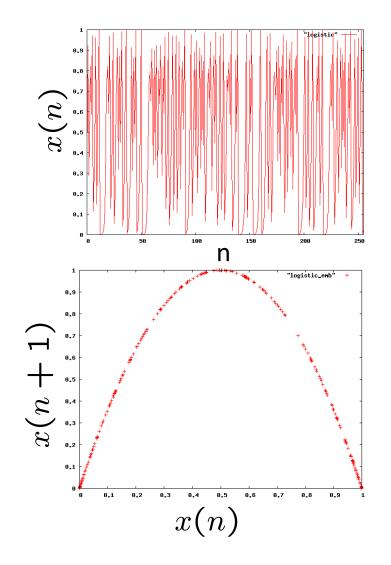
1. Random dynamical systems and noiseinduced phenomena

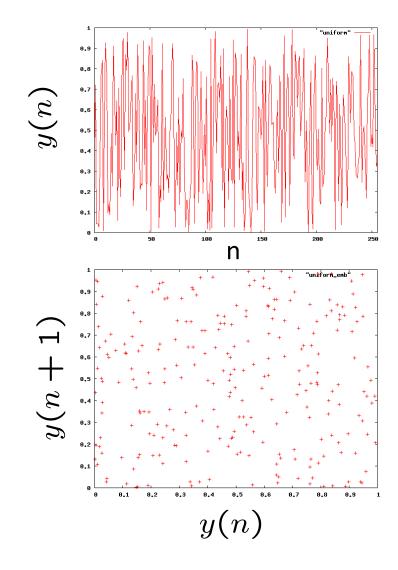
Irregular time series



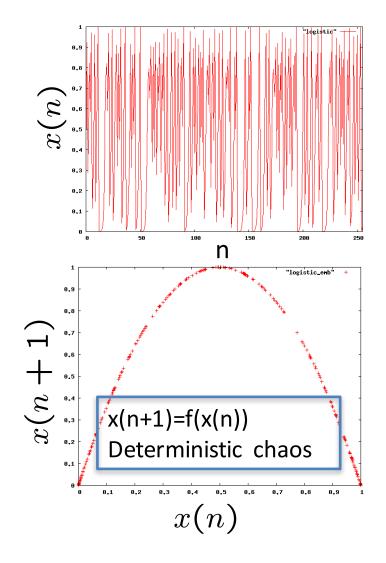


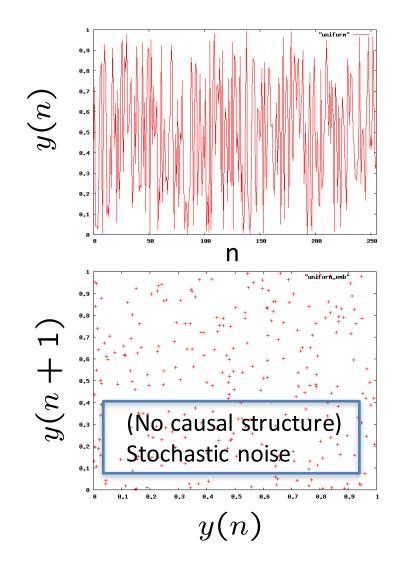
First return plot



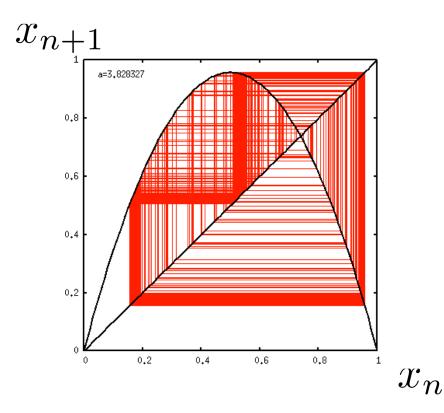


Extracting dynamics from data



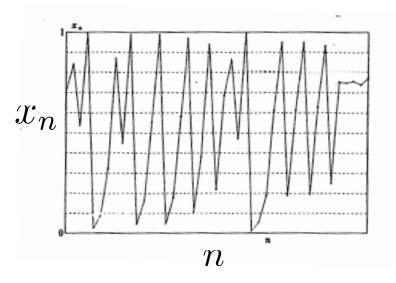


Extracting dynamics from data



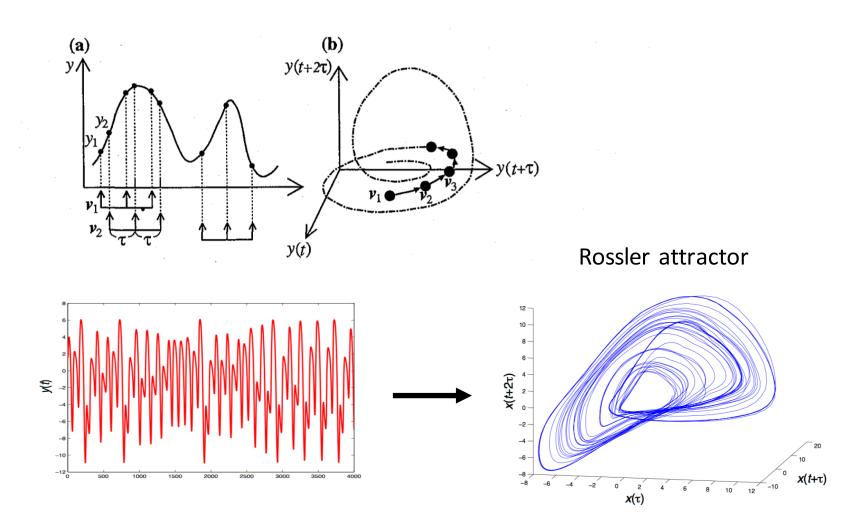
Logistic map [May, 1976]

$$x_{n+1} = ax_n(1 - x_n)$$



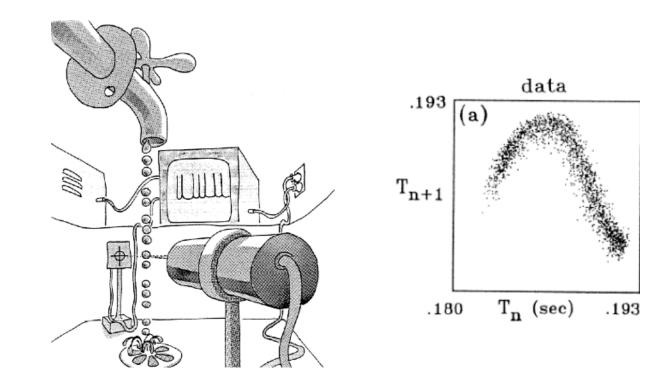
Delay coordinate plot and embedding

• Attractor reconstruction



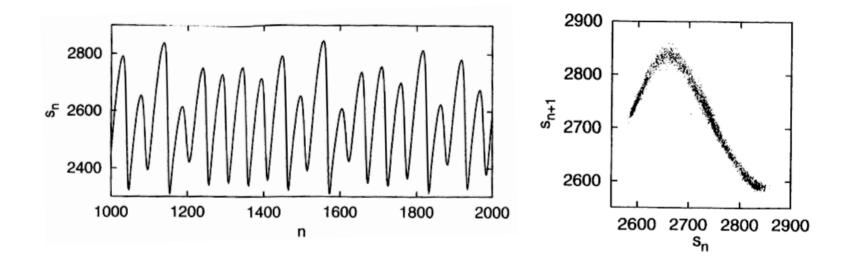
Return plot of experimental data

Chaos in dripping faucet [Shaw, et. al. 1984]



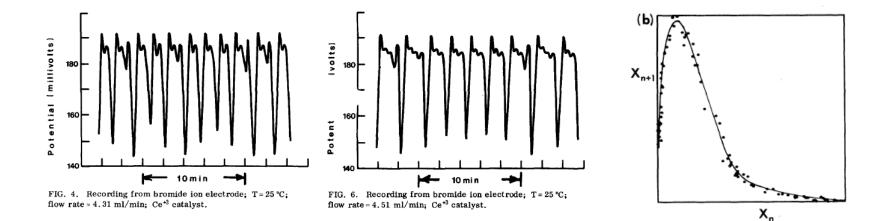
Return plot of experimental data

Nonlienar laser with feedback [Arrecci, et. al., 1986]

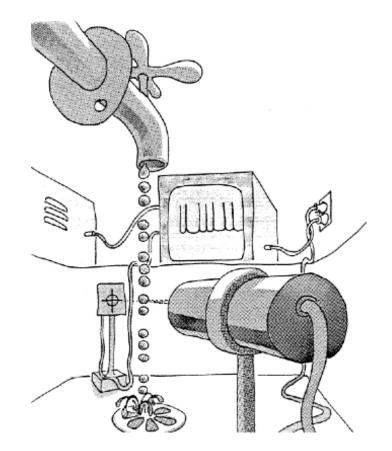


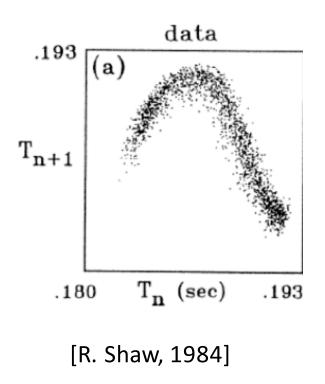
Return plot for experimental data

Belousov-Zhabotinskii chemical reaction [R. H. Simoyi, et. al., 1982]

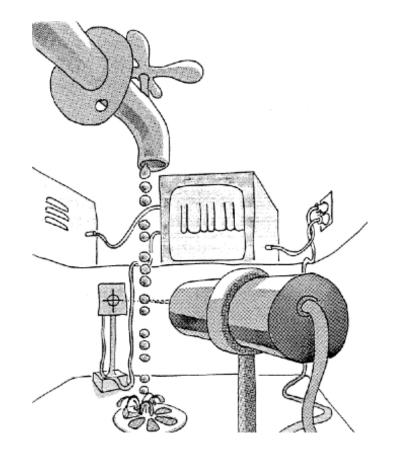


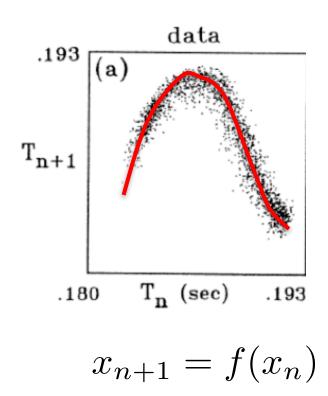
Chaotic dynamics



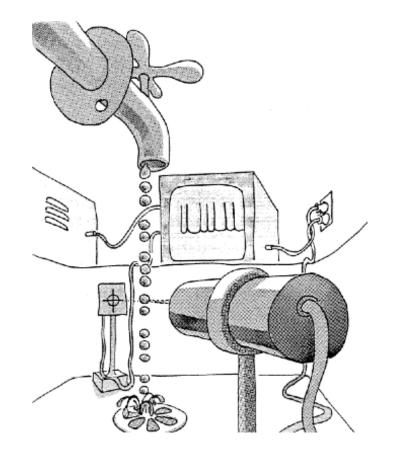


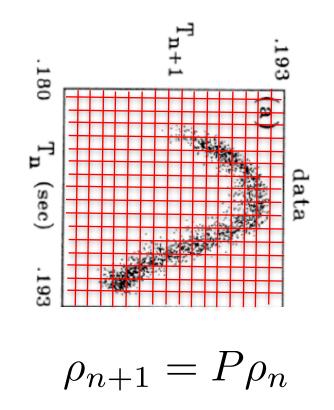
Dynamical system model





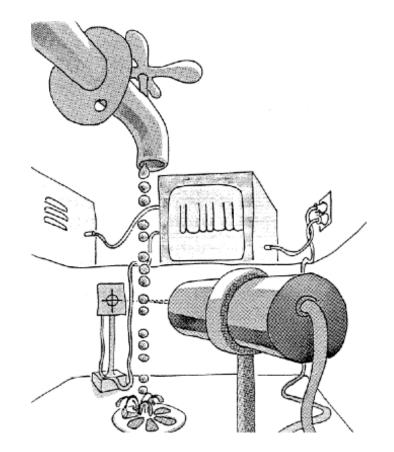
Stochastic process

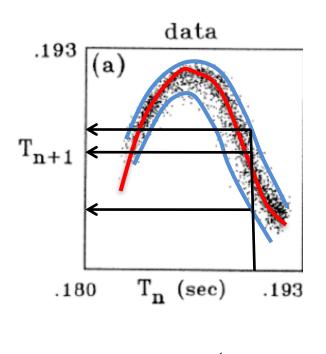




Random dynamical system model

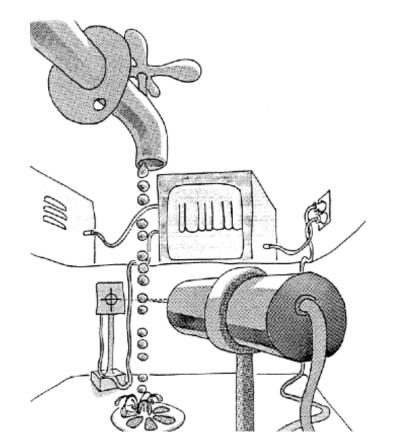
Chaos in dripping faucet

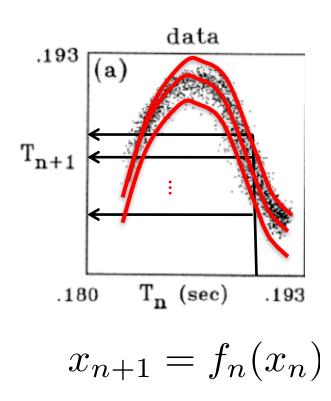




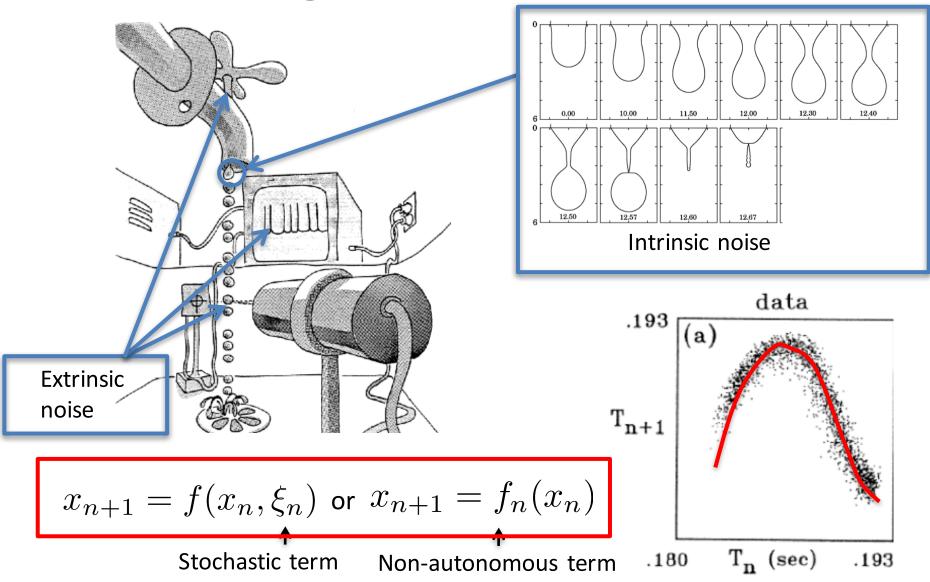
 $x_{n+1} = f(x_n, \xi_n)$

Non-autonomous dynamical system model

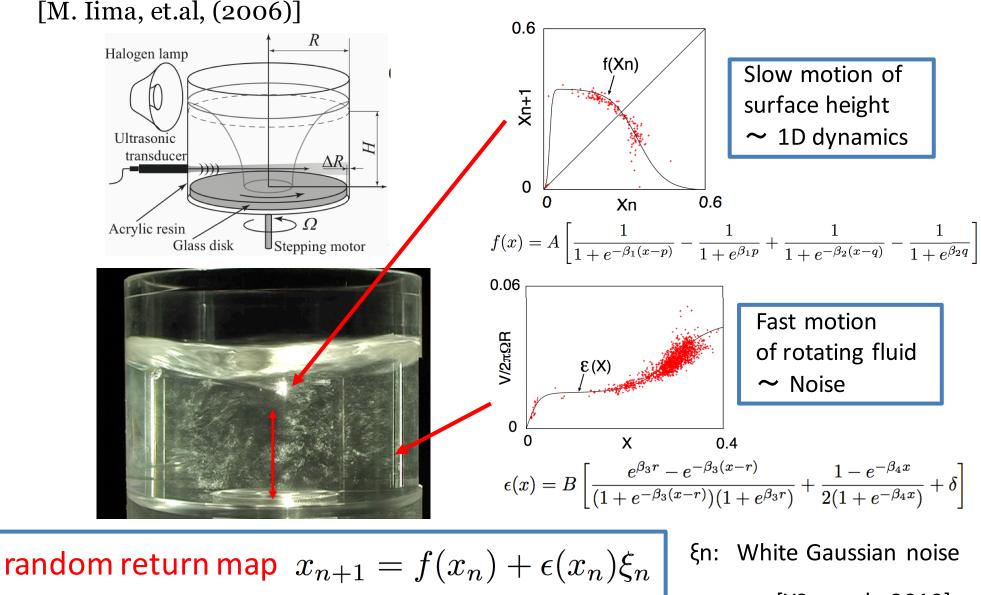




Dynamical systems with a large degrees of freedom



Random dynamics from time series of rotating fluid



[YS, et. al., 2010]

Stochastic chaos in a turbulent swirling flow

 θ_{m+2}

0.3 0.25 0.2 0.15 0.1 0.05

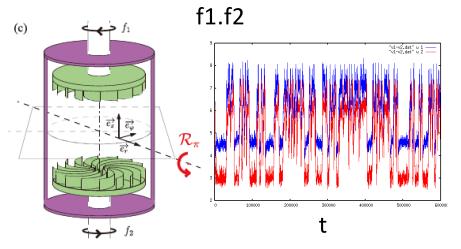
 $\hat{\theta}_{m+1}^{5}$

θຶ_m

Collective motion in Karman flow

Time series embedding

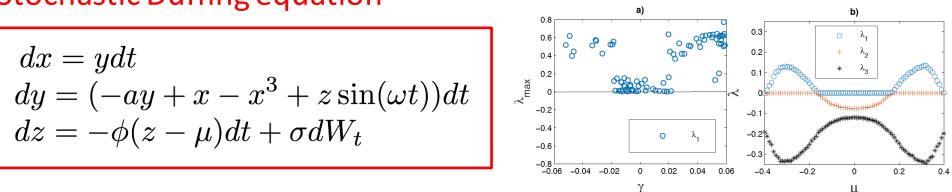
 $\theta = (f_1 - f_2)/(f_1 + f_2)$



[B. Saint-Michel, et.al, 2013]

Stochastic Duffing equation

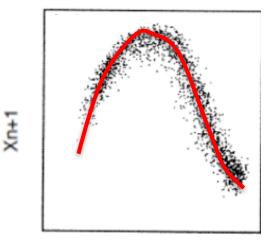
Lyapunov spectrum



[D. Faranda, YS, B. Saint-Michel, C. Wiertel, V. Padilla, B. Dubrulle, F. Daviaud., PRL, 2017]

One-dimensional maps with presence of noise

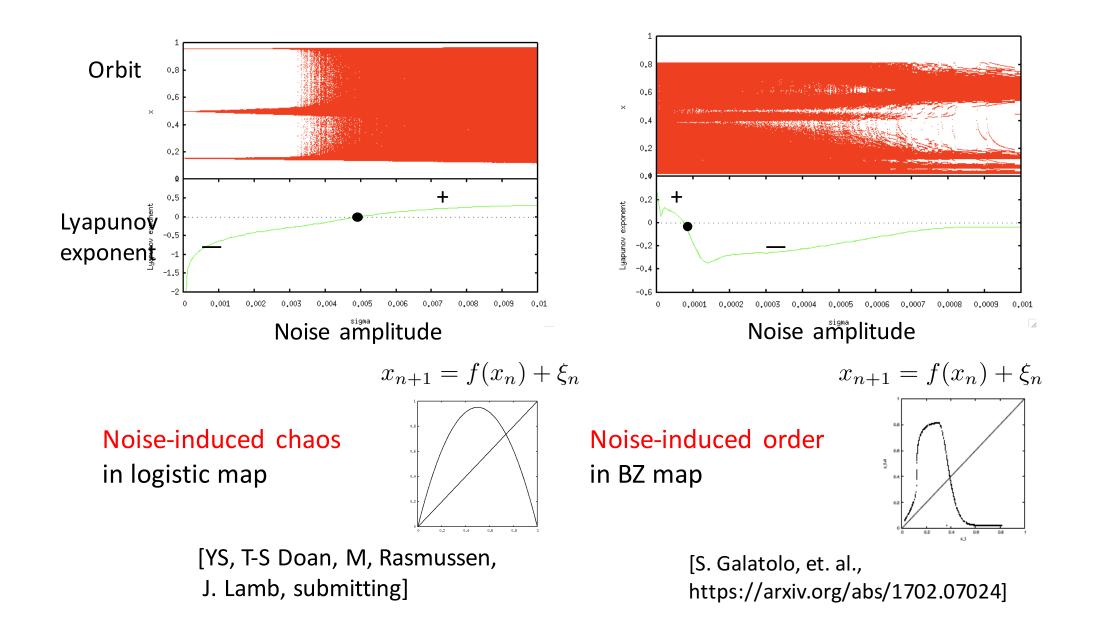
$$x_{n+1} = f(x_n) + \xi_n$$



ξn: Noise

Xn

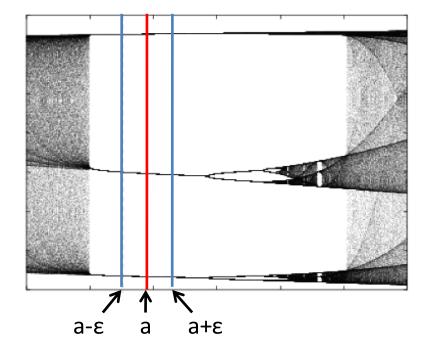
One-dimensional random maps



Noise-induced chaos

"Is period 3 logistic map in window region potentially chaotic under noisy measurements?"

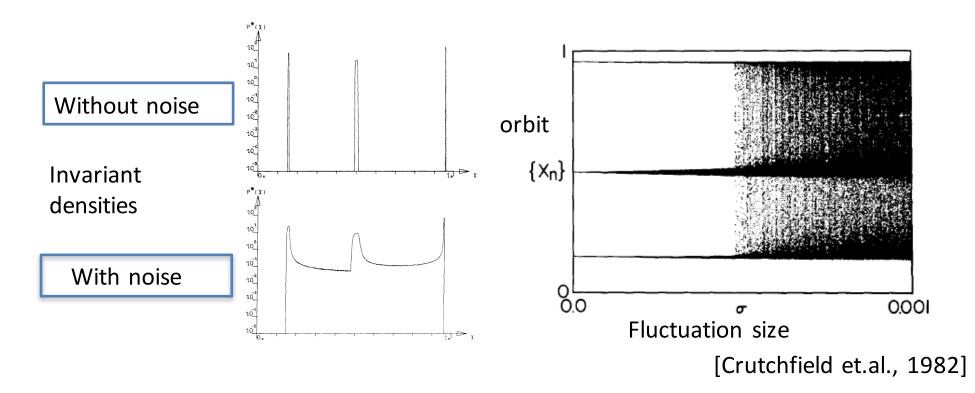
Model: $x_{n+1} = a - x_n^2 + \epsilon \xi_n$ (a=1.755, $\xi \in [-1,1]$: noise)

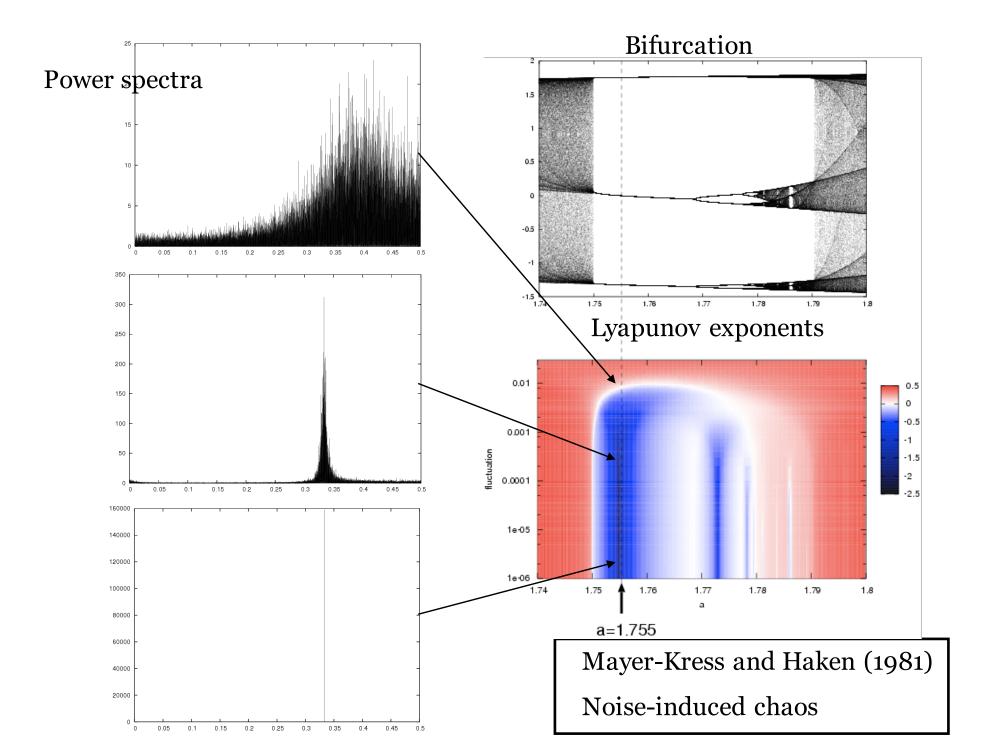


Noise-induced chaos

Small additive noise to period 3 window region makes non-attracting chaotic set observable.

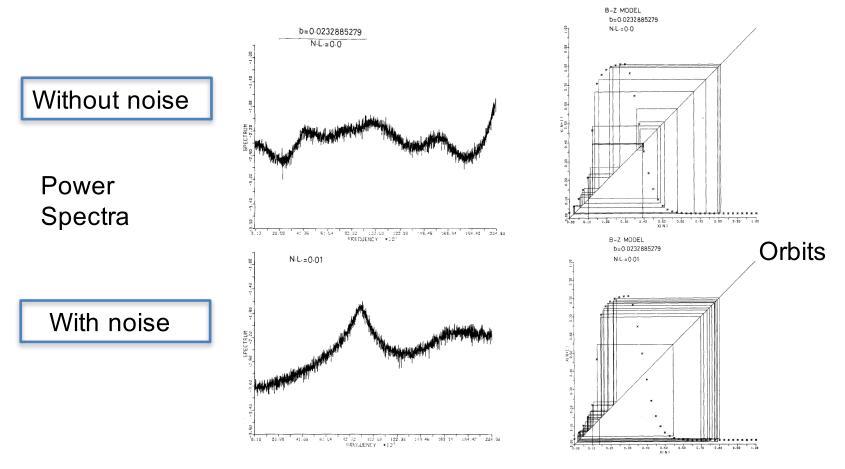
 $x_{n+1} = a - x_n^2 + \epsilon \xi_n$ (a=1.755, $\xi \in [-1, 1]$: noise)



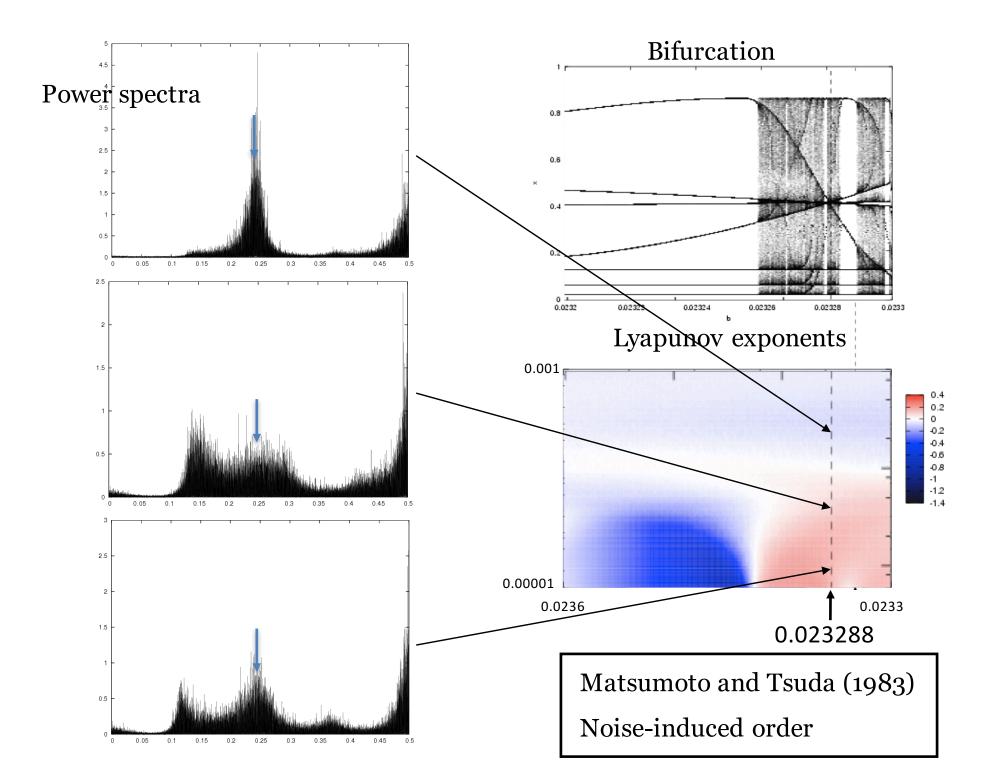


Noise-induced order

• Small additive noise to chaotic region of BZ maps induces a peak of power spectrum.

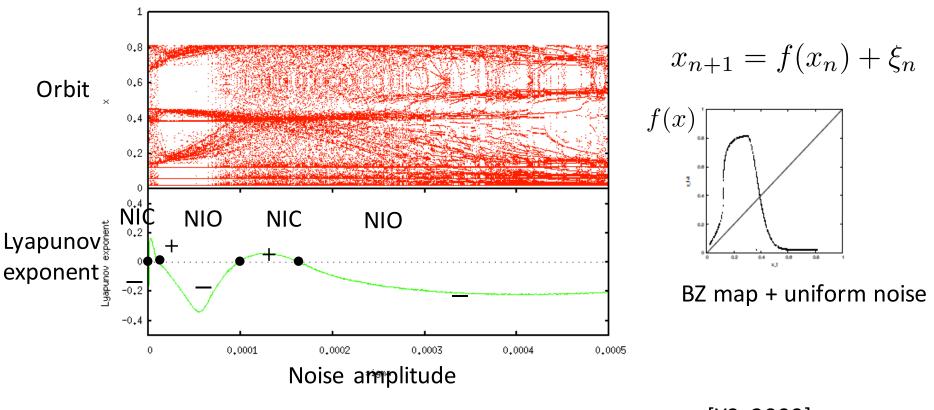


[Matsumoto, Tsuda, 1983]



Multiple noise-induced transition

Both Noise-induced chaos (NIC) and noise-induced order (NIO) are observed increasing noise amplitude.

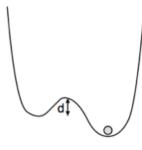


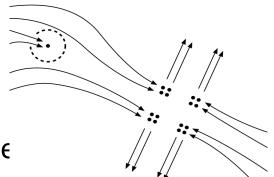
[YS, 2009]



Noise-induced phenomena

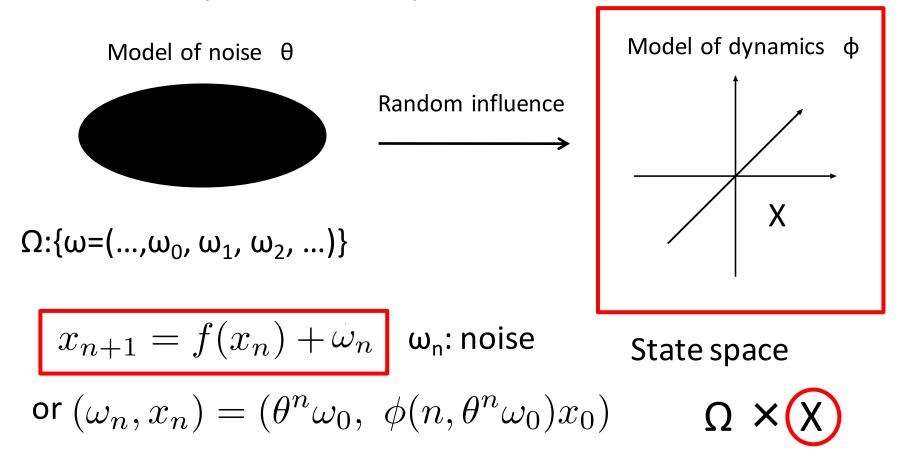
- Stochastic resonance [Benzi et. al., 1982]
 - Gradient dynamics
 - Potential barriers interact with noise
- Noise-induced synchronization [Teramae and Tanaka, 2004]
 - Oscillatory dynamics
 - Stagnation points in phase interact with noise
- Noise-induced chaos
 - [G. Mayer-Kress and H. Haken, 1981]
 - Chaotic dynamics
 - Chaotic saddles, UPOs, ..., interact with nois€





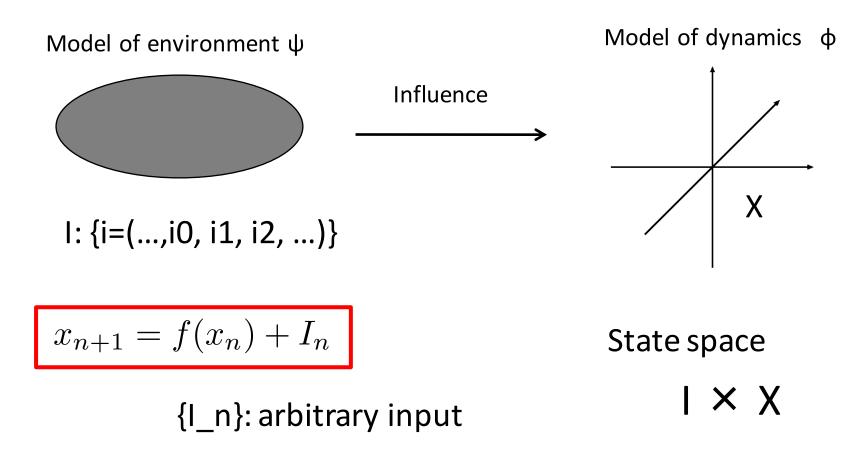
Random dynamical systems

A random dynamical system is the combination of two systems (θ , ϕ).



Non-autonomous dynamical systems

A non-autonomous dynamical system is the combination of two systems (ψ , ϕ).



Random attractor and its stability

Random attractor: $A(\omega)$

An invariant random set of $x_{n+1} = f(x_n) + \xi_n = \phi(n, \omega) x_0$

satisfies
$$\lim_{n \to \infty} d(\phi(n, \theta^n \omega) B, A(\omega)) = 0$$

for a bounded set $B \subseteq X$.

Random Lyapunov exponent: $\lambda(\omega)$

$$\lambda(\omega, x) = \lim_{n \to \infty} \frac{1}{n} \log \left| \frac{\partial \phi(n, \omega) x}{\partial x} \right| \quad (x \in A(\omega))$$

We may use $\langle \lambda \rangle$ to measure average stability

Example: random point attractor

Langevin equation for Ornstein-Uhlenbeck process

 $dx = -\lambda x dt + \sigma dW_t$ ($\lambda, \sigma > 0, W_t$: Wiener process)

Random point attractor: $x(\omega)$

Invariant density: $\rho(x(\omega)) \sim \sqrt{\lambda/\pi\sigma^2} \exp\left(-\frac{\lambda x^2}{\sigma^2}\right)$

Lyapunov exponent: $-\lambda$

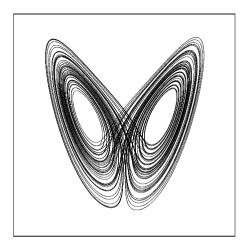
Example: random strange attractor

Lorenz system

$$dx/dt = s(y-x)$$

 $dy/dt = rx - y - xz$
 $dz/dt = -bz + xy$

r = 28, s = 10, b = 8/3



Stochastic Lorenz system

$$dx = s(y - x)dt + \sigma x dW_t$$

 $dy = (rx - y - xz)dt + \sigma y dW_t$
 $dz = (-bz + xy)dt + \sigma dW_t$

r = 28, s = 10, b = 8/3 , σ = 0.3, Wt: Wiener process

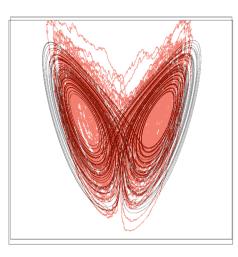


Example: Random strange attractor

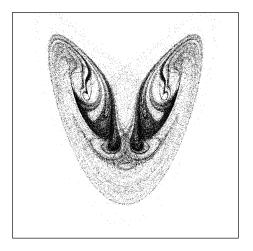
$$dx/dt = s(y - x)$$

 $dy/dt = rx - y - xz$
 $dz/dt = -bz + xy$

r = 28, s = 10, b = 8/3



- $dx = s(y x)dt + \sigma x dW_t$ $dy = (rx - y - xz)dt + \sigma y dW_t$ $dz = (-bz + xy)dt + \sigma dW_t$
 - r = 28, s = 10, b = 8/3 , σ = 0.3, Wt: Wiener process

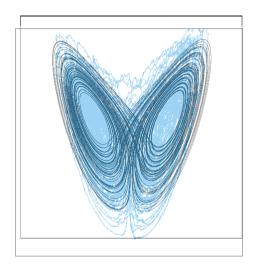


Example: Random strange attractor

$$dx/dt = s(y - x)$$

 $dy/dt = rx - y - xz$
 $dz/dt = -bz + xy$

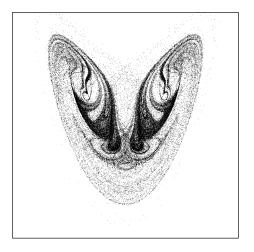
r = 28, s = 10, b = 8/3



$$dx = s(y - x)dt + \sigma x dW_t$$

 $dy = (rx - y - xz)dt + \sigma y dW_t$
 $dz = (-bz + xy)dt + \sigma dW_t$

r = 28, s = 10, b = 8/3 , σ = 0.3, Wt: Wiener process



Example: Random strange attractor

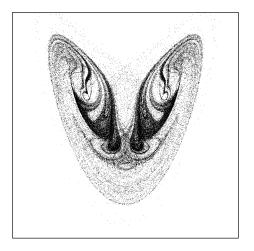
$$dx/dt = s(y - x)$$

 $dy/dt = rx - y - xz$
 $dz/dt = -bz + xy$

r = 28, s = 10, b = 8/3

 $dx = s(y - x)dt + \sigma x dW_t$ $dy = (rx - y - xz)dt + \sigma y dW_t$ $dz = (-bz + xy)dt + \sigma dW_t$

r = 28, s = 10, b = 8/3 , σ = 0.3, Wt: Wiener process



Noise-induced phenomena in random dynamical systems

Noise-induced phenomena in orbits

 Noise-induced chaos, noise-induced order, noiseinduced synchronization, ...

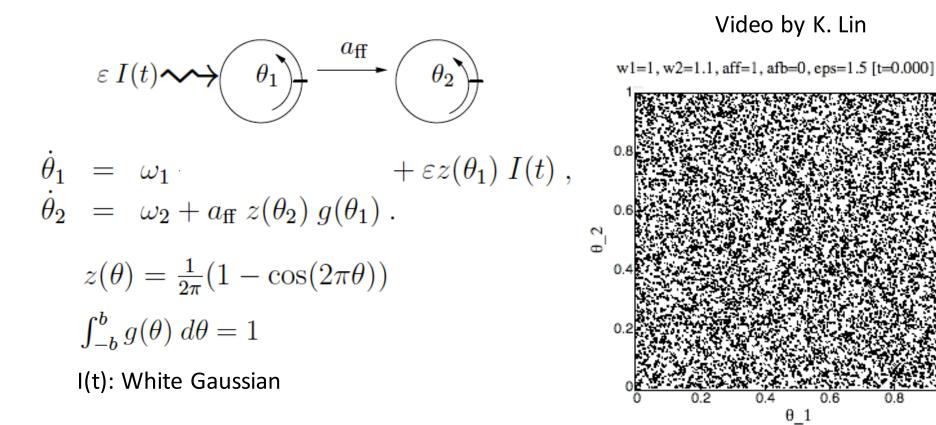
Noise-induced phenomena in densities

 Stochastic resonance, stochastic stability, statistical periodicity, ...

Noise-induced phenomena in basins

Noise-induced riddling, noise-induced reproducibility,...

Stochastic coupled oscillators



Random point attractor and noise-induced synchronization

[K. Lin, L-S. Young, 2008]

Stochastic coupled oscillators

$$\varepsilon I(t) \longrightarrow \underbrace{\theta_1}_{e_{1b}} \underbrace{a_{ff}}_{e_{2b}} \underbrace{\theta_2}_{e_{2b}}$$

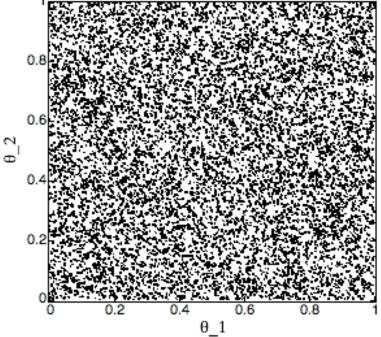
$$\dot{\theta}_1 = \omega_1 + a_{fb} z(\theta_1) g(\theta_2) + \varepsilon z(\theta_1) I(t) ,$$

$$\dot{\theta}_2 = \omega_2 + a_{ff} z(\theta_2) g(\theta_1) .$$

$$z(\theta) = \frac{1}{2\pi} (1 - \cos(2\pi\theta))$$

$$\int_{-b}^{b} g(\theta) d\theta = 1$$
I(t): White Gaussian

Video by K. Lin w1=1, w2=1.1, aff=1, afb=1.5, eps=1.5 [t=0.000]



Random strange attractor and stochastic chaos (noise-induced filamentation).

[K. Lin, L-S. Young, 2008]

Random dynamical systems analysis for noise-induced phenomena

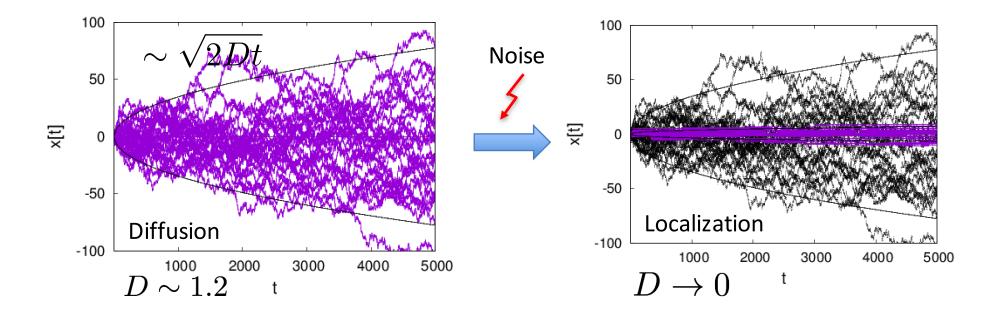
Noise-induced phenomena	Stationary state	Topological bifurcation	Top Lyapunov exponent λ vs noise amplitude σ
Noise-induced synchronization	random point attractor	Yes	
Stochastic resonance	random periodic attractor	No	
Noise-induced chaos	random strange attractor	Yes	
Noise-induced order	"window phenomena"	No	λ
Noise-induced intermittency	non-stationary (infinite ergodic)	Not at onset of topological bifurcation	σ=σ*, λ=O

[A. Cherubini, YS, M. Rasmussen, J. Lamb, 2017]

[YS, T-S Doan, M, Rasmussen, J. Lamb, to be submitted] [YS, R. Klages, to be submitted]

Noise-induced transition in open dynamics

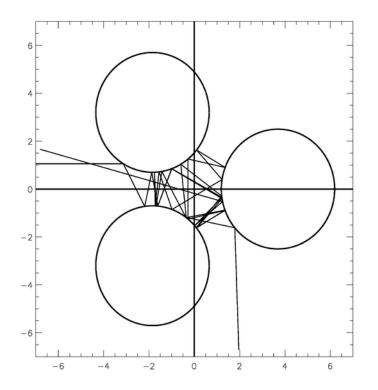
Anomalous diffusion in random dynamical systems [Collaboration with Rainer Klages at Queen Mary University of London, UK]



2. Deterministic diffusion

Deterministic diffusion

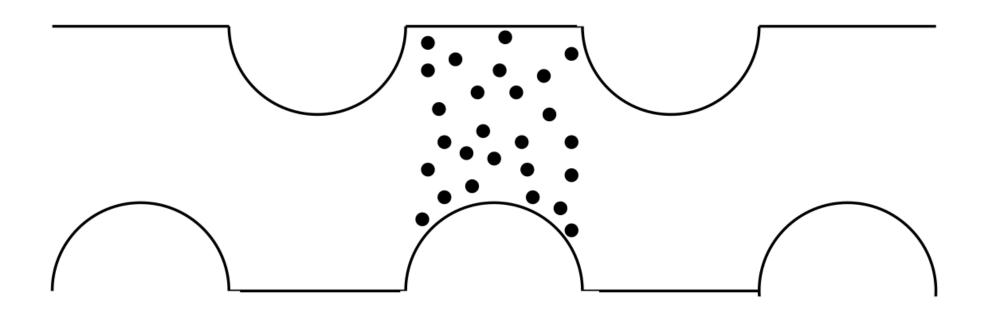
Chaotic scattering



Gaspard–Rice scattering

Deterministic diffusion

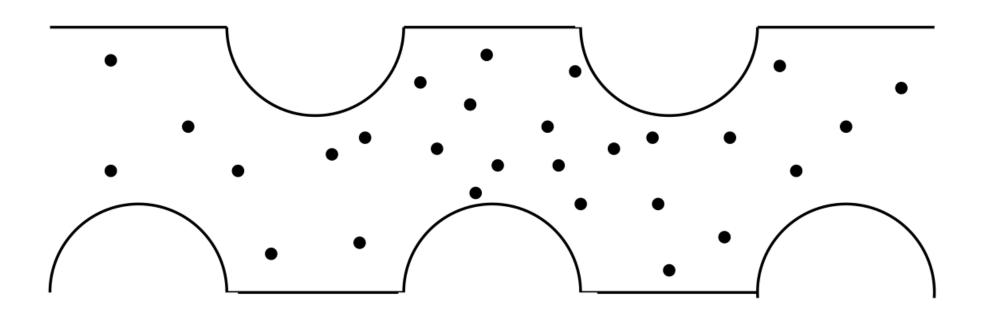
Open billiard



Periodic Lorenz gas

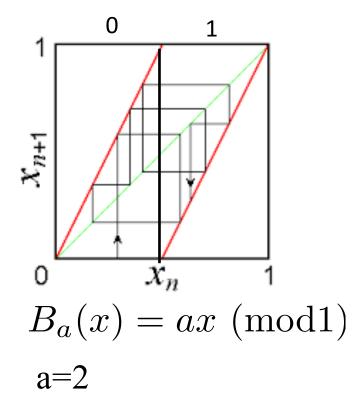
Deterministic diffusion

Open billiard



Lorenz gas

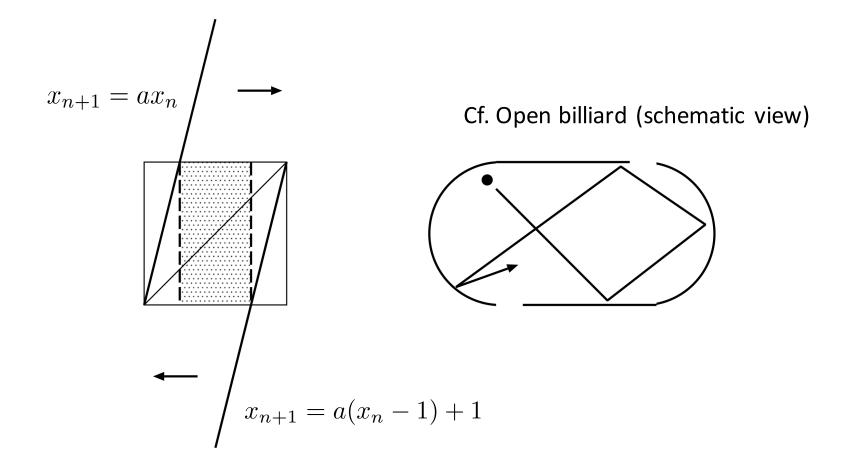
Bernoulli map and coin tossing



"Coarse-grained" chaotic dynamics

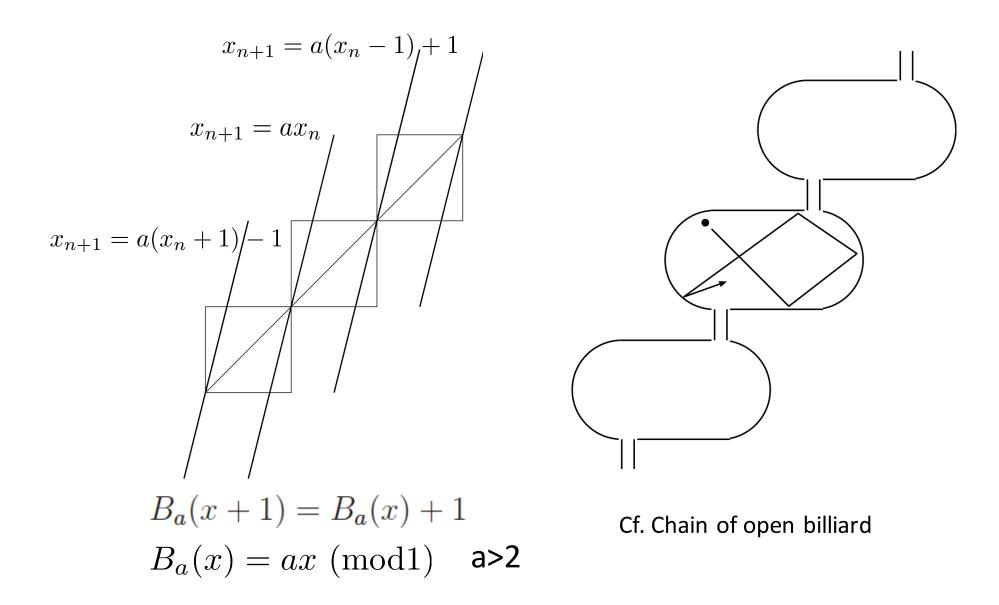
Coin tossing

Open Bernoulli map

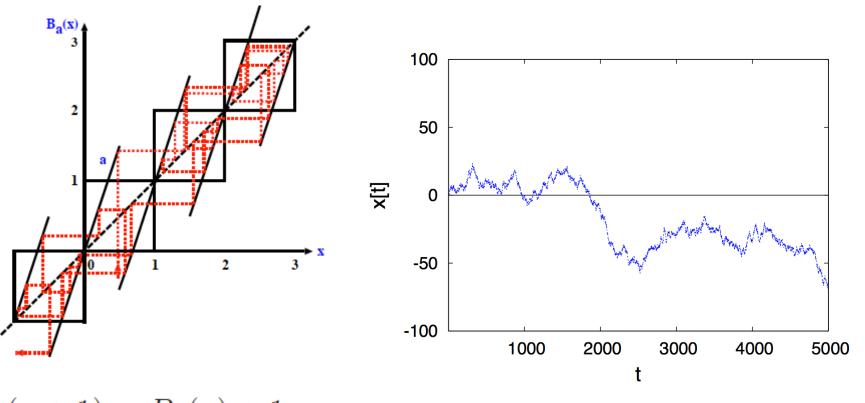


$$B_a(x) = ax \pmod{1}$$
 a>2

Open Bernoulli map

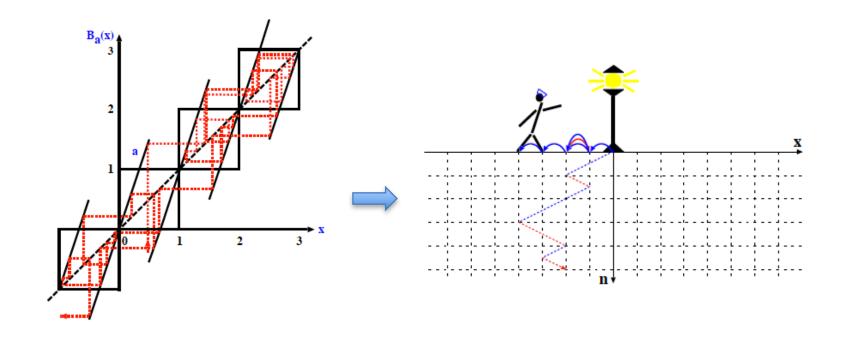


Open Bernoulli map and random walk



 $B_a(x+1) = B_a(x) + 1$ $B_a(x) = ax \pmod{1} \quad a>2$

Open Bernoulli map and random walk

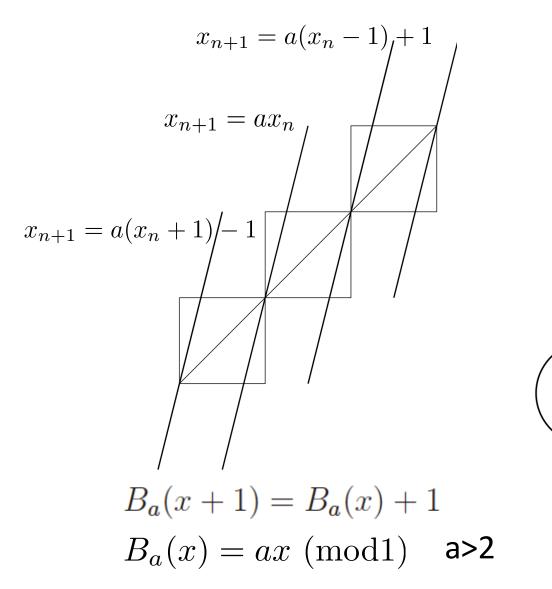


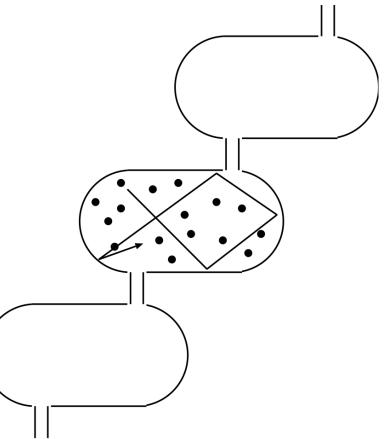
Dynamics of open Bernoulli map

Random walk

[Figures from Klages 95]

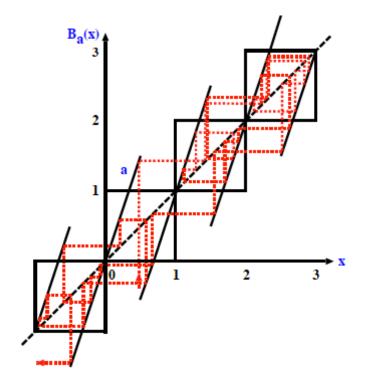
Open Bernoulli map and diffusion



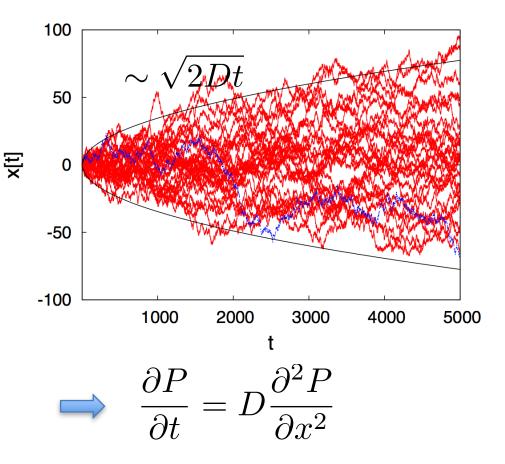


Cf. Chain of open stadium billiard with multiple particles

Open Bernoulli map and diffusion

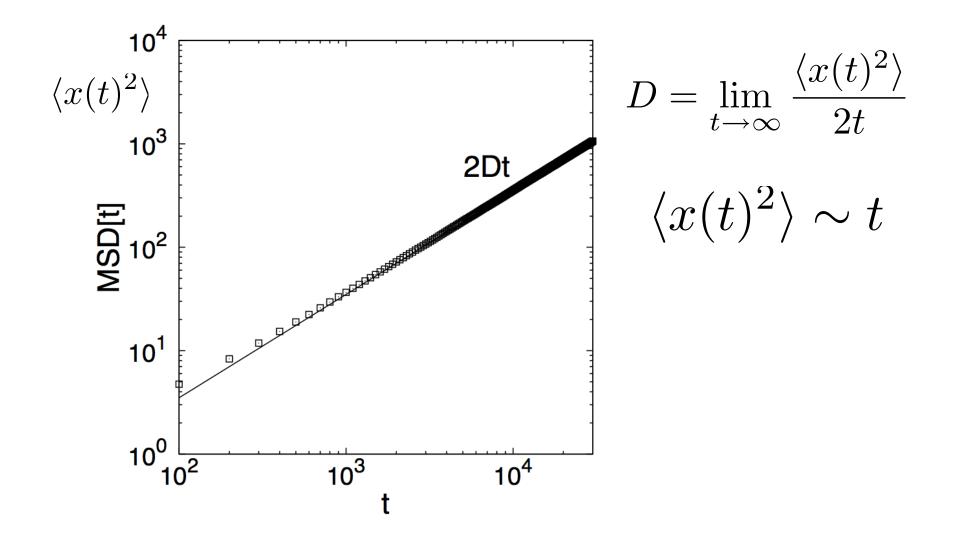


 $B_a(x+1) = B_a(x) + 1$ $B_a(x) = ax \pmod{1} \quad a{>}2$

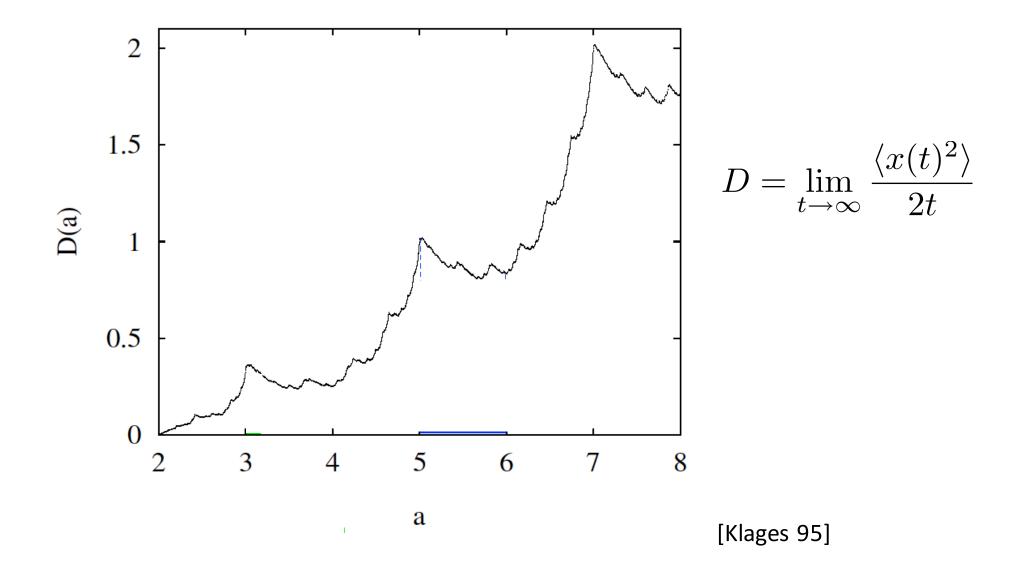


Equation of motion of sample measure Diffusion equation

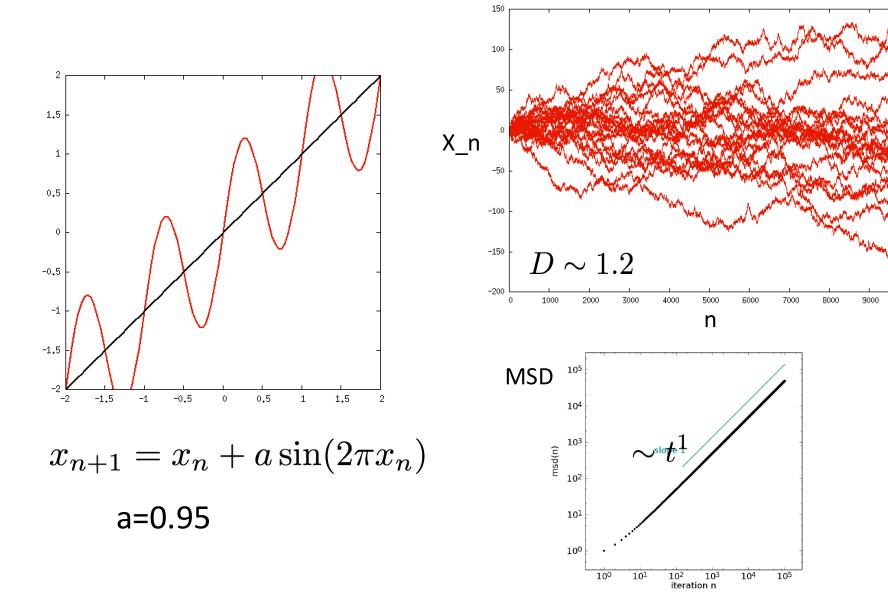
Mean square displacement



Diffusion coefficient and expansion rate

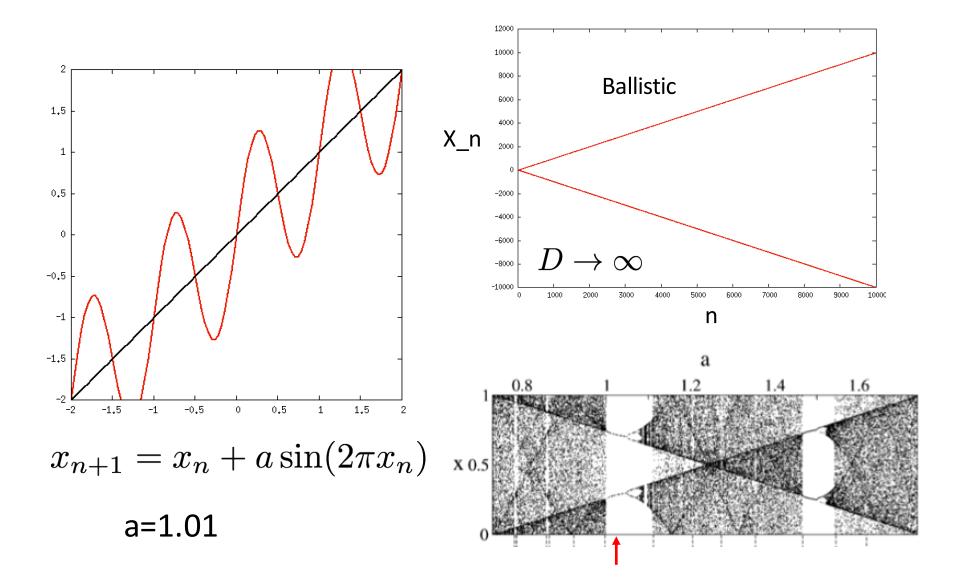


Climbing sine map and diffusion

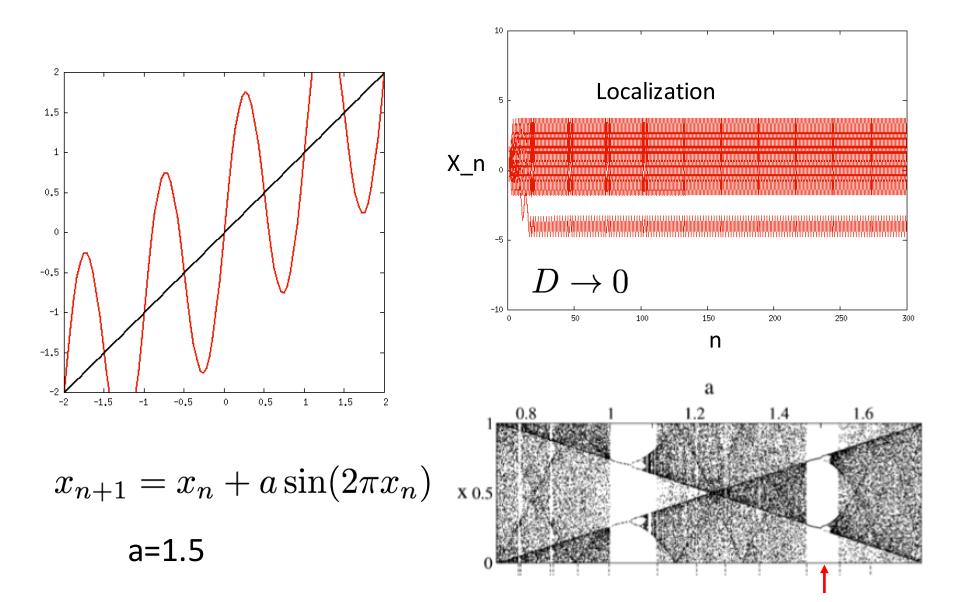


10000

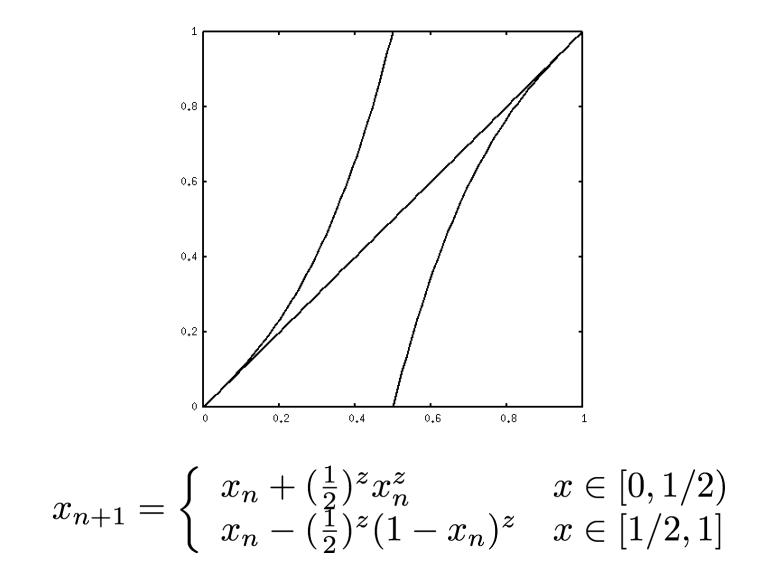
Climbing sine map and diffusion



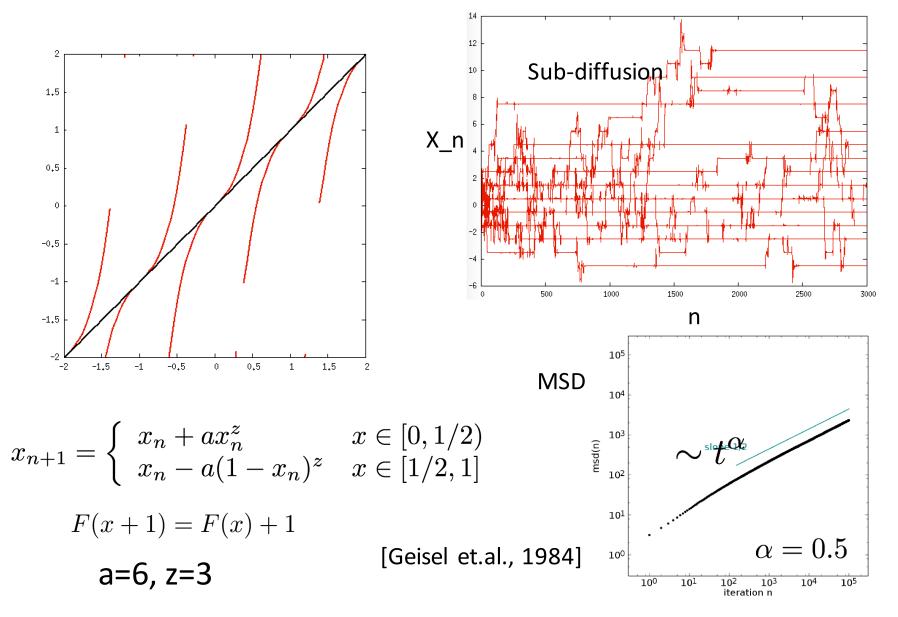
Climbing sine map and diffusion



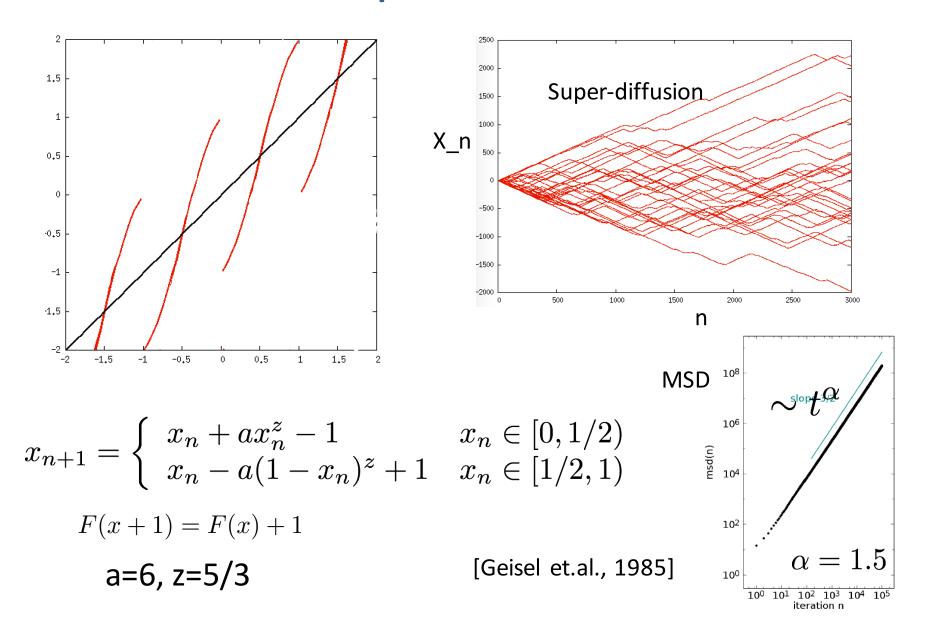
Pomeau-Manneville map



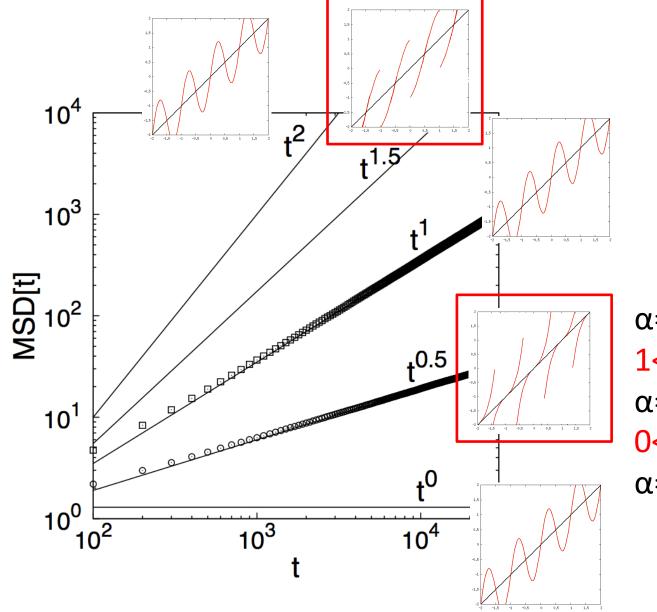
Open Pomeau-Manneville map and sub-diffusion

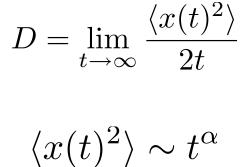


Open Pomeau-Manneville map and super-diffusion



Deterministic anomalous diffusion





 $\alpha = 2$: Ballistic $1 < \alpha < 2$: Super-diffusion $\alpha = 1$: Normal diffusion $0 < \alpha < 1$: Sub-duffusion

 α =0 : Localization

3. Anomalous diffusion in random dynamical systems

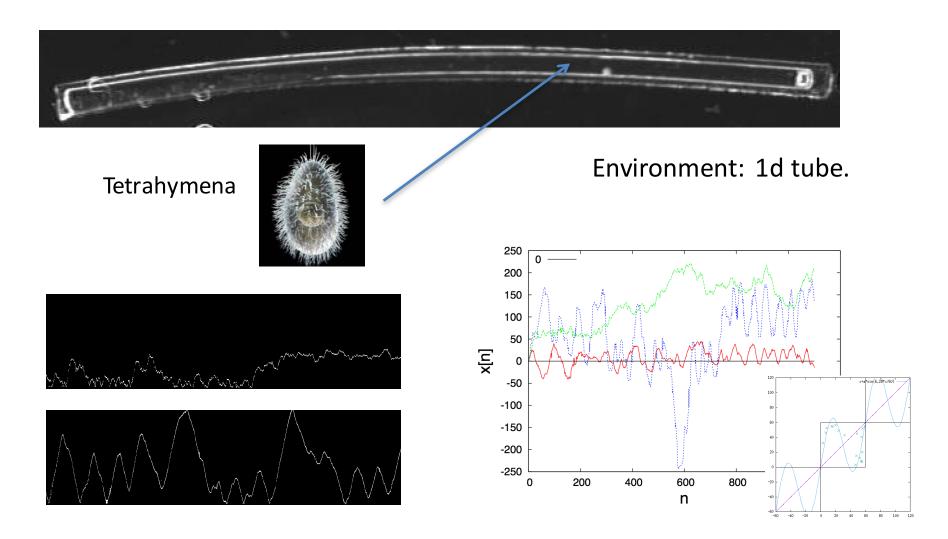
Summary

1. Climbing sine map may show noise-induced anomalous sub-diffusion.

2. Universality of intermittency in 1D random dynamical systems is different from those in deterministic 1D dynamical systems.]

3. Weak ergodicity breaking caused by noise-induced synchronization.

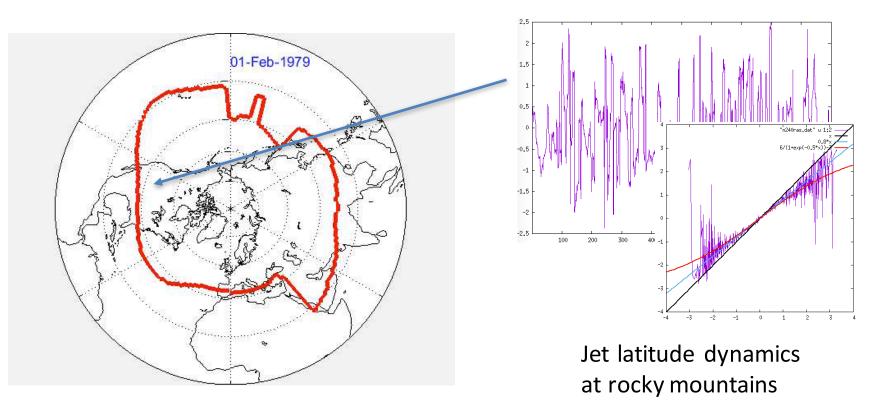
Application: Spatially extended RDS model for locomotion of microorganisms



[YS, T. Nakagaki, in preparation]

Application: Coupled RDS model for atmospheric jet stream

Creation and annihilation of blocking phenomena



[Our on-going research project at LSCE!]

Thank you