Stochastic bifurcation in random dynamical systems and its application to modeling atmospheric jet dynamics

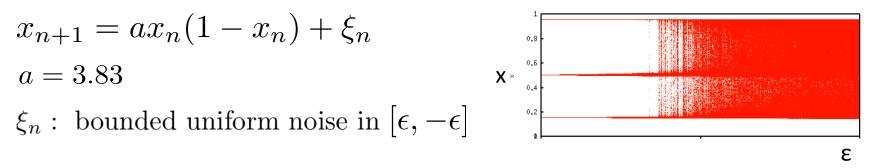
Yuzuru Sato

RIES / Department of Mathematics Hokkaido University, Japan and London Mathematical Laboratory, UK

8 October, 2018@LSCE, Saclay

Random dynamical systems approaches to nonlinear stochastic phenomena

Random logistic map



[G. Mayer-Kress and H. Haken, 1981] [YS, T-S Doan, M, Rasmussen, J. Lamb, in prep.]

Stochastic Lorenz equation $\begin{cases} dx = s(y - x)dt + \sigma x \, dW_t, \\ dy = (rx - y - xz)dt + \sigma y \, dW_t, \\ dz = (-bz + xy)dt + \sigma z \, dW_t. \\ r = 28, s = 10, b = 8/3, \sigma = 0.3 \end{cases}$

Wt: Wiener process

[M. Chekroun, E. Simonnet, M. Ghil, 2011] [YS, M. Chekroun, M. Ghil, in prep.]

Outline

1. Random dynamical systems and stochastic chaos

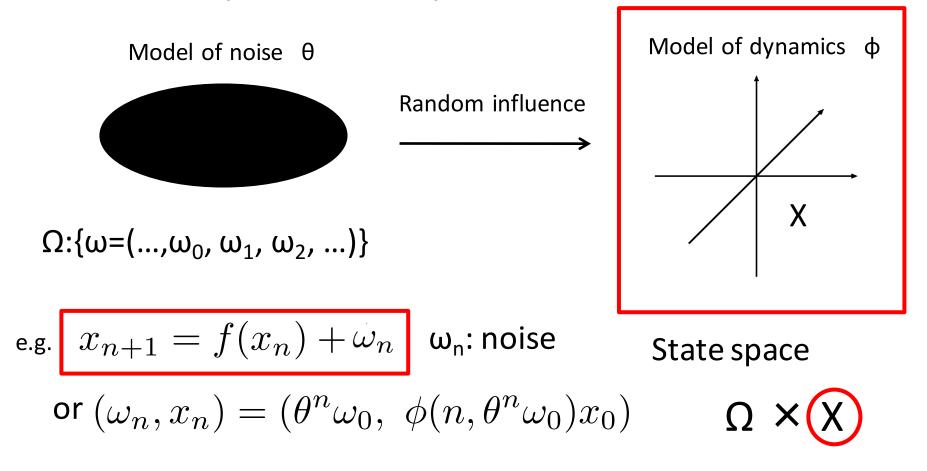
2. Stochastic bifurcation in random logistic maps

3. Application: time series analysis for experimental data

4. Summary

Random dynamical systems

A random dynamical system is the combination of two systems (θ , ϕ).



Random attractor and its stability

Random attractor: $A(\omega)$

An invariant random set of $x_{n+1} = f(x_n) + \xi_n = \phi(n, \omega) x_0$

satisfies
$$\lim_{n \to \infty} d(\phi(n, \theta^n \omega) B, A(\omega)) = 0$$

for a bounded set B.

Random Lyapunov exponent: $\lambda(\omega)$

$$\lambda(\omega, x) = \lim_{n \to \infty} \frac{1}{n} \log \left| \frac{\partial \phi(n, \omega) x}{\partial x} \right| \quad (x \in A(\omega))$$

Example: random point attractor

Langevin equation for Ornstein-Uhlenbeck process

 $dx = -\lambda x dt + \sigma dW_t$ ($\lambda, \sigma > 0, W_t$: Wiener process)

Random point attractor: $x(\omega)$

Invariant density: $\rho(x(\omega)) \sim \sqrt{\lambda/\pi\sigma^2} \exp\left(-\frac{\lambda x^2}{\sigma^2}\right)$

Lyapunov exponent: $-\lambda$

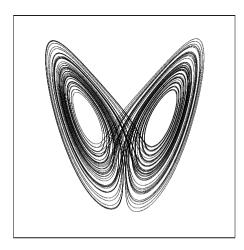
Example: random strange attractor

Lorenz system

$$dx/dt = s(y - x)$$

 $dy/dt = rx - y - xz$
 $dz/dt = -bz + xy$

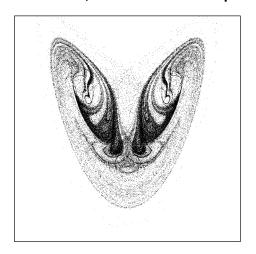
r = 28, s = 10, b = 8/3



Strange attractor A:

- 1. Stable attractor
- 2. Stationary distribution
- 3. Positive top Lyapunov exponent

Stochastic Lorenz system $dx = s(y - x)dt + \sigma x dW_t$ $dy = (rx - y - xz)dt + \sigma y dW_t$ $dz = (-bz + xy)dt + \sigma z dW_t$ r = 28, s = 10, b = 8/3, $\sigma = 0.3, Wt: Wiener \text{ process}$



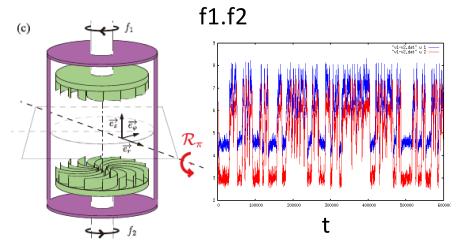
Random strange attractor $A(\omega)$:

- 1. Stable attractor
- 2. Stationary distribution
- 3. Positive top Lyapunov exponent

Stochastic chaos in a turbulent swirling flow

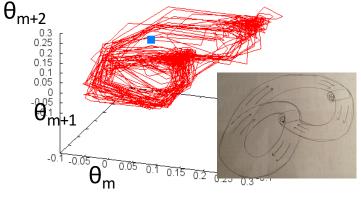
Collective motion in Karman flow

Time series embedding



[B. Saint-Michel, et.al, 2013]

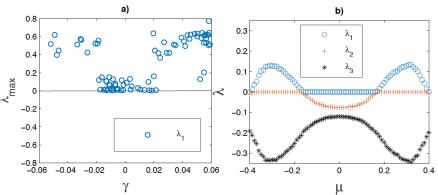
$$\theta = (f_1 - f_2)/(f_1 + f_2)$$



Model: Stochastic Duffing equation

dx = ydt $dy = (-ay + x - x^3 + z\sin(\omega t))dt$ $dz = -\phi(z-\mu)dt + \sigma dW_t$

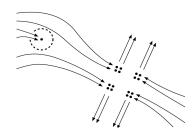
Lyapunov spectrum

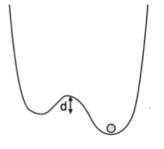


[D. Faranda, YS, B. Saint-Michel, C. Wiertel, V. Padilla, B. Dubrulle, F. Daviaud., PRL, 2017]

Noise-induced phenomena

- Stochastic resonance [R. Benzi et. al., 1982]
 - Gradient dynamics
 - Potential barriers interact with noise
 - [A. Cherubini, J. Lamb, M. Rasmussen, and YS, 2017]
- Noise-induced synchronization [A. Pikovsky et. al., 1984]
 - Oscillatory dynamics
 - Stagnation points in phase interact with noise
 - [YS, and T.S. Doan, submitted]
- Noise-induced chaos [G. Mayer-Kress et. al., 1981]
 - Chaotic dynamics
 - Chaotic saddles, UPOs, interact with noise
 - [YS, M. Rasmussen, T.S. Doan, J. Lamb, to be submitted]



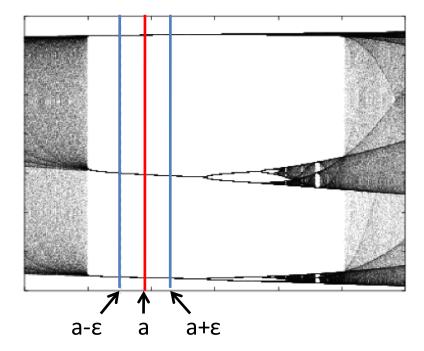


Random dynamical systems theory for noise-induced phenoma

Noise-induced phenomena	Stationary state	Topological bifurcation	Top Lyapunov exponent λ vs noise amplitude σ
Noise-induced synchronization	random point attractor	Yes	
Stochastic resonance	random periodic attractor	No	
Noise-induced chaos	random strange attractor	Yes	
Noise-induced order	"window phenomena" weakly stationary	No	σ
Noise-induced intermittency	non-stationary Intermittency (infinite density)	Not at onset of topological bifurcation	λ=0

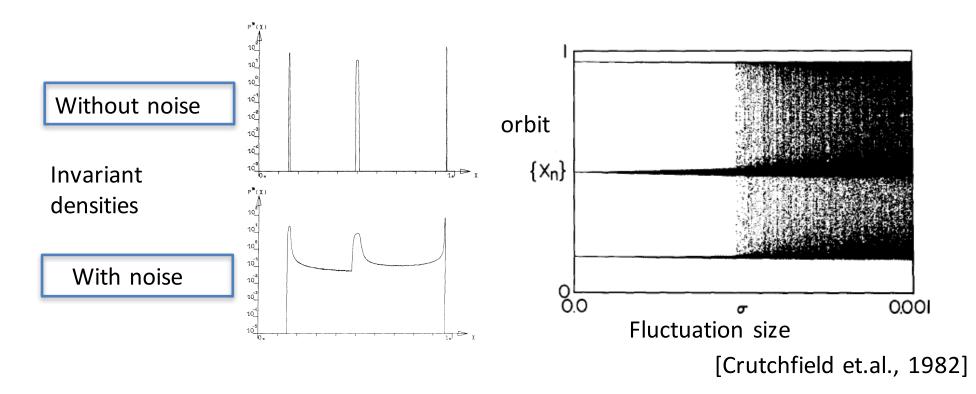
[A Cherubini, YS, M. Rasmussen, J. Lamb, 2017] [YS, R. Klages, submitted.] [YS, T-S Doan, M, Rasmussen, J. Lamb, submitting] [YS, T.S. Doan, submitted]

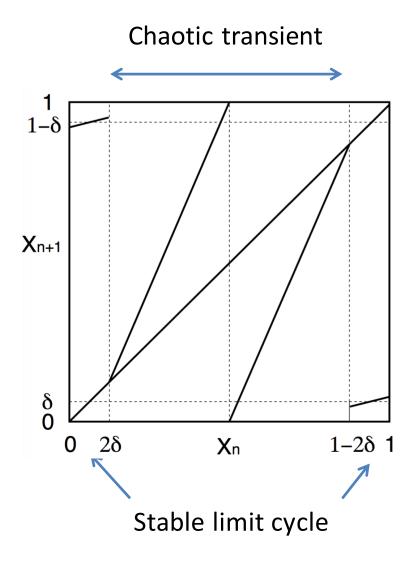
Is period 3 logistic map in window region potentially chaotic in physical measurement? Model: $x_{n+1} = a - x_n^2 + \epsilon \xi_n$ (a=1.755, $\xi \in [-1,1]$: noise)



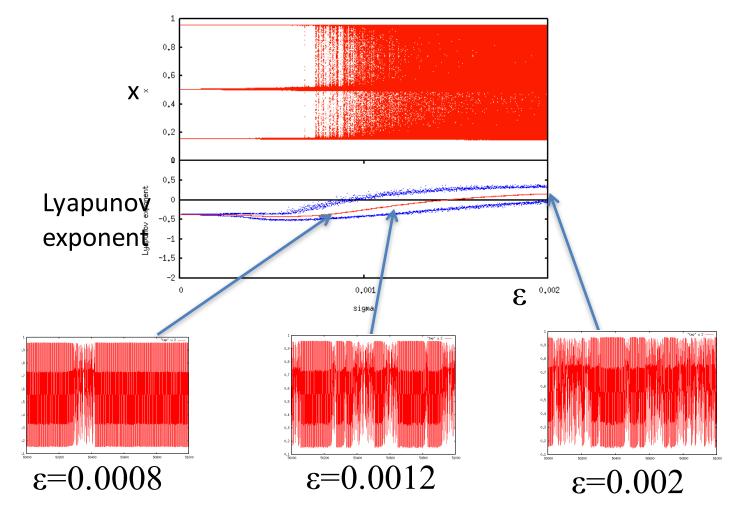
Small additive noise to period 3 window region makes non-attracting chaotic set observable.

 $x_{n+1} = a - x_n^2 + \epsilon \xi_n$ (a=1.755, $\xi \in$ [-1,1]: noise)



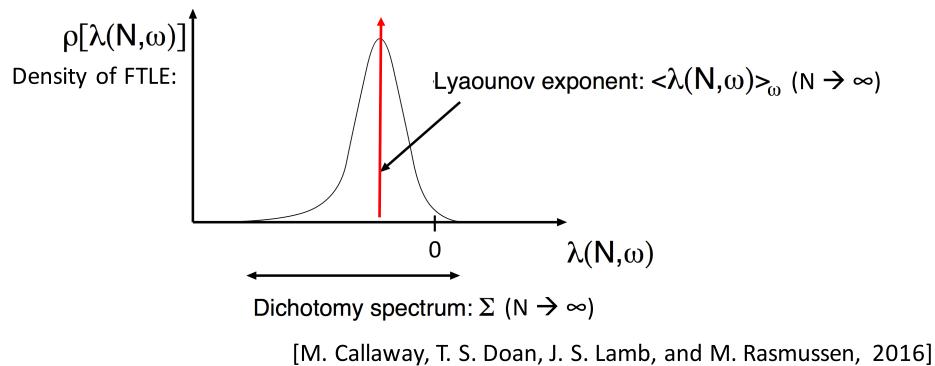


 $x_{n+1} = ax_n(1 - x_n) + \xi_n$ a = 3.83 ξ_n : bounded uniform noise in $[\epsilon, -\epsilon]$



Dichotomy spectrum

K>0,
$$\alpha>0$$
 $Ke^{-(\gamma+\alpha)n}|x| \leq |\frac{\partial\phi}{\partial x}(n,\omega,x)| \leq Ke^{(\gamma-\alpha)n}|x|$,for all n, for almost all ω Dichotomy spectrum is given by $\Sigma = \cup{\gamma}$ Finite time Lyapunov exponent $\lambda(N, \omega)$

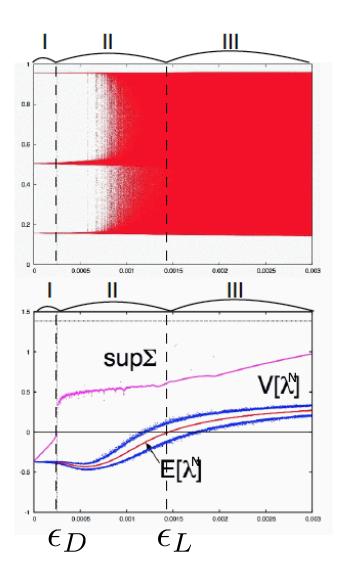


Lyapunov exponent and dichotomy spectrum

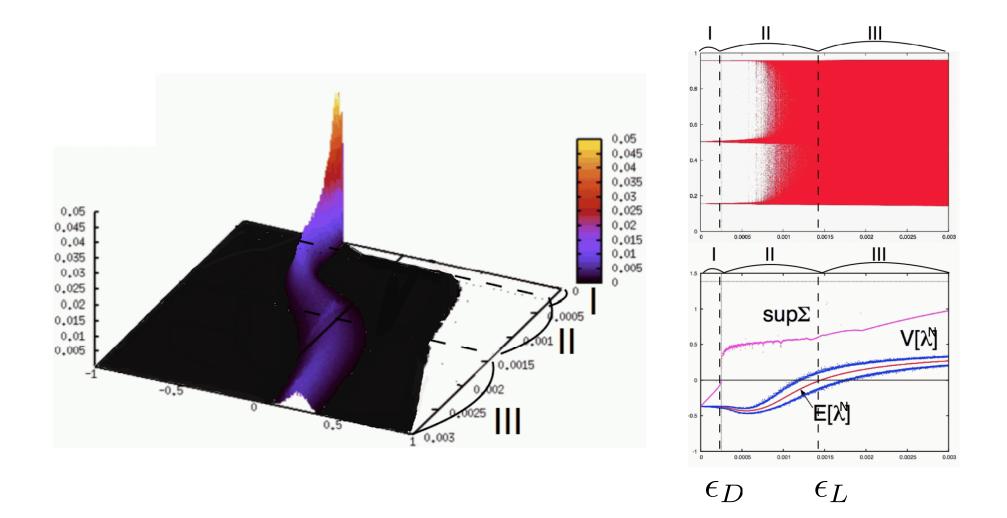
$$x_{n+1} = f_a(x_n) + \xi_n \quad \xi_n \in [-\epsilon, \epsilon]$$

 ϵ_D : Topological bifurcation point

 ϵ_L : Transition point of stability of random attractor



Distribution of finite time Lyapunov exponents



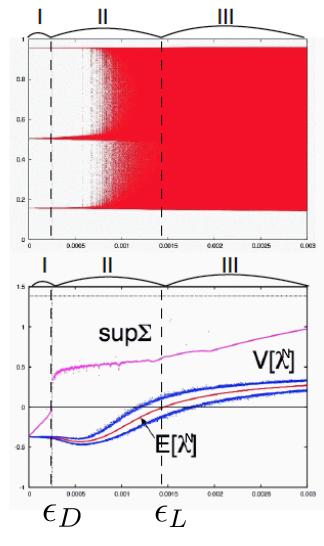
A route to stochastic chaos

$$x_{n+1} = f_a(x_n) + \xi_n$$

$$y_{n+1} = f_a(y_n) + \xi_n$$

$$\xi_n \in [-\epsilon, \epsilon]$$

Phase I Phase II Phase III (Stochastic chaos) (Noised limit cycle) (Partially chaotic) y 1,8 Х $\epsilon = 0.004$ $\epsilon = 0.0001$ $\epsilon = 0.001$ λ<0, supΣ<0 λ>0, supΣ>0 λ<0, supΣ>0 \rightarrow \rightarrow



Random periodic attractor

Random point attractor

Random strange attractor

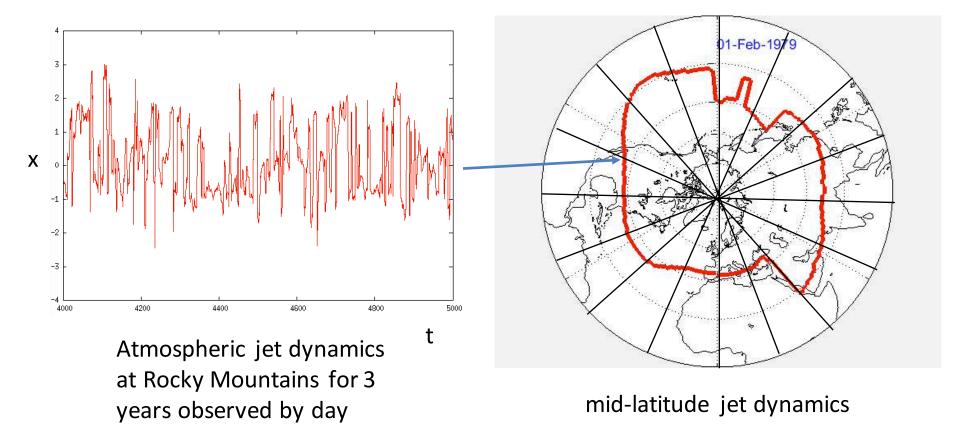
[YS, M. Rasmussen, T.S. Doan, J. Lamb, to be submitted]

Summary

- Zero-crossing point of Lyapunov exponent determines transition point of stability of random attractors. (most likely asymptotic behaviour)
- 2. Zero-crossing point of supremum of dichotomy spectrum determines topological bifurcation points. (all possible asymptotic behaviour)

Application: blocking phenomena in atmospheric jet dynamics

Generation and annihilation of kink and anti-kinks (Blocking phenomena)



[with D. Faranda, G. Messori, N. Moloney, Y. Pascal, to be submitted.]

The model for global dynamics

