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Random dynamical systems approaches to 
nonlinear stochastic phenomena

r	=	28,	s	=	10,	b	=	8/3	,	σ =	0.3
Wt:	Wiener	process

Stochastic	Lorenz	equation

xn+1 = axn(1� xn) + �n

Random	logistic	map

a = 3.83

[�,��]
ε

[M.	Chekroun,	E.	Simonnet,	M.	Ghil,	2011]	[YS,	M.	Chekroun,	M.	Ghil,	in	prep.]

[G.	Mayer-Kress	and	H.	Haken,	1981]	[YS,	T-S	Doan,	M,	Rasmussen,	 J.	Lamb,	in	prep.]



Outline

1.	Random	dynamical	systems	and	stochastic	chaos

2.	Stochastic	bifurcation	in	random	logistic	maps

3.	Application:	time	series	analysis	for	experimental	data

4.	Summary



Ω× X

Random	dynamical	systems

A	random	dynamical	system	is	the	combination	
of	two	systems	(θ,	φ).

or

Ω:{ω=(…,ω0,	ω1,	ω2,	…)}

State	space

X

ωn:	noisexn+1 = f(xn) + �n

Model	of	noise θ Model	of	dynamics φ

Random	influence

(�n, xn) = (�n�0, �(n, �n�0)x0)

e.g.



Random	attractor	and	its	stability

Random	attractor:		A(ω)

Random	Lyapunov exponent:	λ(ω)	

lim
n��

d(�(n, �n�)B,A(�)) = 0

for	a	bounded	set	B.

An	invariant	random	set	of	

satisfies

xn+1 = f(xn) + �n = �(n, �)x0

�(�, x) = lim
n��

1
n

log |��(n, �)x
�x

| (x � A(�))



Example:	random	point	attractor

Langevin	equation	for	Ornstein-Uhlenbeck process

𝑑𝑥 = −𝜆𝑥𝑑𝑡 + 𝜎𝑑𝑊*		 𝜆, 𝜎 > 0,	𝑊* :𝑊𝑖𝑒𝑛𝑒𝑟	𝑝𝑟𝑜𝑐𝑒𝑠𝑠

Random	point	attractor:					𝑥 𝜔

Invariant	density:														ρ 𝑥 𝜔 ~ 𝜆/𝜋𝜎= exp − ABC

DC

Lyapunov exponent:														−𝜆



Example:	random	strange	attractor

r	=	28,	s	=	10,	b	=	8/3 r	=	28,	s	=	10,	b	=	8/3	,	
σ =	0.3,	Wt:	Wiener	process

Lorenz	system Stochastic	Lorenz	system

Random	strange	attractor	A(ω):	
1. Stable	attractor
2. Stationary	distribution
3. Positive	top	Lyapunov exponent

Strange	attractor	A:	
1. Stable	attractor
2. Stationary	distribution
3. Positive	top	Lyapunov exponent



Stochastic	chaos	in	a	turbulent	swirling	flow
Collective	motion	in	Karman	flow

t

f1.f2

[B.	Saint-Michel,	 et.al,	2013]
θm

θm+1

θm+2

Time	series	embedding	

[D.	Faranda,	YS,	B.	Saint-Michel,	C.	Wiertel,	V.	Padilla,	B.	Dubrulle,	F.	Daviaud.,	PRL,	2017]

Model:		Stochastic	Duffing	equation
Lyapunov spectrum



Noise-induced	phenomena

• Stochastic	resonance	[R.	Benzi et.	al.,	1982]
– Gradient	dynamics
– Potential	barriers	 interact	with	noise
– [A.	Cherubini,	 J.	Lamb,	M.	Rasmussen,	 and YS,	2017]

• Noise-induced	synchronization	[A.	Pikovsky et.	al.,	1984]
– Oscillatory	dynamics
– Stagnation	points	in	phase	 interact	with	noise
– [YS,	and	T.S.	Doan,	submitted]

• Noise-induced	chaos	[G.	Mayer-Kress	et.	al.,	1981]
– Chaotic	dynamics
– Chaotic	saddles,	 UPOs,	interact	with	noise
– [YS,	M.	Rasmussen,	 T.S.	Doan,	J.	Lamb,	to	be	submitted]



Random dynamical systems theory for 
noise-induced phenoma

Noise-induced	
phenomena

Stationary	state Topological
bifurcation

Top Lyapunov exponent	
λ vs	noise	amplitude	σ

Noise-induced	
synchronization	

random	point	
attractor Yes	

Stochastic	resonance	 random	periodic	
attractor	 No

Noise-induced	 chaos random	strange	
attractor Yes

Noise-induced	 order “window	
phenomena”
weakly	stationary

No

Noise-induced	
intermittency

non-stationary	
Intermittency
(infinite	density)

Not at	onset	
of	topological	
bifurcation

λ=0

[A	Cherubini,	 YS, M.	Rasmussen,	 J.	Lamb,	2017]	[YS,	R.	Klages,	submitted.]
[YS,	T-S	Doan,	M,	Rasmussen,	 J.	Lamb,	submitting]	 [YS,	T.S.	Doan,	submitted]



Noise-induced	chaos

Is	period	3	logistic	map	in	window	region	
potentially	chaotic	in	physical	measurement?
Model:	 (a=1.755,	ξ∈[-1,1]:	noise)xn+1 = a� x2

n + ��n

a-ε a						a+ε



Noise-induced	chaos
Small	additive	noise	to	period	3	window	region	
makes	non-attracting	chaotic	set	observable.	

Invariant	
densities

Fluctuation	 size

orbit

With	noise

Without	noise

[Crutchfield	et.al.,	1982]

(a=1.755,	ξ∈[-1,1]:	noise)xn+1 = a� x2
n + ��n



Noise-induced	chaos

Stable	limit	cycle

Chaotic	transient



Noise-induced	chaos

ε=0.0008 ε=0.0012 ε=0.002

xn+1 = axn(1� xn) + �n

a = 3.83

ε

Lyapunov
exponent

x

[�,��]



Dichotomy	spectrum

K>0,	α>0

Dichotomy	spectrum	 is	given	by		

for	all	n,	for	almost	all	ω

Finite	time	Lyapunov exponent

(N	à∞)

(N	à∞)

Density	of	FTLE:

0
I

[M.	Callaway,	T.	S.	Doan,	J.	S.	Lamb,	and	M.	Rasmussen,	 2016]



Lyapunov exponent	and	dichotomy	spectrum

�n � [��, �]

�D �L

:	Topological	bifurcation	point

:	Transition	point	of	stability	
of	random	attractor

�D

�L

N

N



Distribution	of	finite	time	Lyapunov exponents

N

N

�D �L



A	route	to	stochastic	chaos

λ<0,	supΣ<0 λ<0,	supΣ>0 λ>0,	supΣ>0

�n � [��, �]

�D �L

[YS,	M.	Rasmussen,	 T.S.	Doan,	
J.	Lamb,	to	be	submitted]

Random	periodic
attractor

Random	point
attractor

Random	strange
attractor

à à

(Noised	 limit	cycle) (Partially	chaotic) (Stochastic chaos)

N

N

y

x



Summary
1. Zero-crossing	point	of	Lyapunov exponent

determines	transition	point	of	stability	of																																										
random	attractors.	(most	likely	asymptotic	behaviour)

2. Zero-crossing	point	of	supremum	of	dichotomy																								
spectrum determines	topological	bifurcation																																	
points.		(all	possible	asymptotic	behaviour)	



Application:	blocking	phenomena	in	
atmospheric jet dynamics

[with	D.	Faranda,	G.	Messori,	N.	Moloney,	Y.	Pascal,	to	be	submitted.]

Generation	and	annihilation	of	kink	and	anti-kinks	
(Blocking	phenomena)	

Atmospheric	 jet dynamics
at	Rocky	Mountains	 for	3	
years	observed	by	day mid-latitude	 jet	dynamics

x

t



The	model for	global	dynamics

Mid-latitude	 jet	dynamics



The	model	for	global	dynamics

ν


