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Introduction

῟Ων ἃ μὲν κατ΄ ἀνάγκην ἐστίν

ἃ δὲ ἀπὸ τύχης, ἃ δὲ παρ΄ ἡμᾶς,

διὰ τὸ τὴν μὲν ἀνάνγκην ἀνυπεύθυνον εἶναι,

τὴν δὲ τύχην ἄστατον ὁρᾶν,

τὸ δὲ παρ΄ ἡμᾶς ἀδέσποτον

Epicurus, letter to Meneceus 133,6-9

The early philosophers whose investigations heralded the dawn of scientific

thought, addressed themselves to the study of natural systems interrelations

in a speculative analysis. Their task was not to present a scientific account

of natural phenomena introducing principles and physical laws but rather

defending their ideas with deductions and philosophical speculations. Nev-

ertheless, the observation of nature suggested them the presence of regular

and chaotic motions such that many greek thinkers and writers based their

philosophy on the notion of order (κόσμος) and chaos (χάος). Let us cite

as example of these paired visions Democritus and Aristotle: the former

argued that atoms move about casually and chaotically, the latter believed

that things can be causes of one another and have ordered motions as the

heavenly element has perpetual circular motion.

Although ancient Greeks understood what is now a basis of dynamical

system theory, the thought of Aristotle both with the advent of Chris-

tianity influenced the scientific thinking till 19th century. The success of

a pure deterministic approach to physics suggested an indiscriminate use
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ii Introduction

of superposition principle. Thus, the successful formulation of Lagrangian

and analytical mechanics moved scientists away from looking at natural

phenomena which show chaotic behaviour. The apotheosis of this vision

of science was reached in the work of Laplace Essai philosophique sur les

probabilités in which he theorized an infinite predictability of motions once

known the present state of the universe.

In late 19th century, Poincaré became the first person to discover a chaotic

deterministic system. This laid the foundations of modern chaos theory

with his research on the three-body problem introducing important tool to

study dynamical systems such the Recurrence Theorem that will be widely

used in this work. Through the past century, this field of study drew the

attention of not only physicists but also many natural scientists: they un-

derstood that this theory could potentially explain biological or chemical

behaviours or help in understanding geophysical systems like atmospheric

and oceanic motions. In this reference frame the develop of powerful calcu-

lators helped to describe in detail the features of systems with an high num-

ber of components. This enhanced our ability to perform reliable weather

forecasts and lead to the fortuitous discover of sensitivity to initial condi-

tions by a meteorologist: Edward Norton Lorenz.

In the recent past many scientific works have introduced a great variety of

tools useful to characterize every kind of dynamical system. They have been

named dynamic indicators of stability due to the fundamental role that sta-

bility plays in determine chaotic or regular behaviours: unstable equilibria

are the starting point of irregular motion. On the other hand, one of the

most fascinating challenge in studying such type of systems is to understand

and possibly forecast unexpected and extreme events. Famines, powerful

tornados, major earthquakes, extreme floods played an important role in

human history. Nevertheless, the theory which models their behaviour was

formulated only in the past century by Gumbel and perfectioned with the
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work of Gnedenko. Surprisingly, Freitas et al. [2009] have demonstrated an

intimate linkage between this theory and Poincaré Recurrence theory. This

fact fosters the growth of knowledge of this theory.

In this work of thesis we try to give an unified vision of different indicators

of dynamic stability. Furthermore, we will attempt to use generalized ex-

treme value distribution as a tool to investigate properties of regular and

chaotic maps. The analysis will involve both mathematical maps and phys-

ical models. The existence of clear mathematical statement for prototypical

maps allow us to work in a strong theoretical framework that we can use to

investigate the behaviour of generalized extreme value theory parameters

even in stochastically perturbed case. Numerical simulations will accom-

pany analytical results when available.

This work is structured as follows: the first chapters are dedicated to con-

struct a brief theoretical background to subsequent investigations:

• in Chapter 1 we present extreme value theory explaining how to model

and measure events which occur with very small probability. An

important section is dedicated to the Kolmogorov-Smirnov confidence

test that is the hearth of numerical computations.

• in Chapters 2 and 3 it has been inserted a theoretical framework for

indicators of stability such as Recurrence and Hitting Time statistics,

Fidelity, Correlations decay and Reversibility Error.

The experimental part of this work of thesis is organized as follows:

• Chapter 4 is dedicated to the comparison between Extreme Value

Theory and Recurrences. Following the work of Freitas et al. [2009] we

describe their main results trying to extend them to the stochastically

perturbed case. Furthermore, an analytical and numerical study on

observable functions used to link the two theories has been performed.
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• in Chapter 5 different mathematical models have been analysed. We

choose well known maps presenting how dynamic indicators behave

both with deterministic and stochastic perturbations.

• in Chapter 6 we introduce different physical models of low dimension-

ality using the goodness of fit parameter obtained using generalized

extreme value distribution to highlight important properties of sys-

tems which show a mixed behaviour.

Positive results in using this kind of indicators may lead to different appli-

cations in models with a large number of degrees of freedom. In particular

we may think to use them in meteorological or climate models to under-

stand what parameters values cause unstable situation or to support fore-

cast quality control using these indicators as well as ensamble predictions.

In this kind of systems, forecasting and understanding extreme events is

important for their involvement in human activities but may also help the

scientists to put together the pieces of dynamical systems puzzle.
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Chapter 1

Extreme value theory and

modeling

The study of extreme events is of great interest in different disciplines. It

has been applied successfully to extreme floods [Sveinsson and Boes, 2002],

amounts of large insurance losses [Brodin and Kluppelberg, 2006], extreme

earthquake, meteorological and climate events [Felici et al., 2006] [Altmann

et al., 2006].

The extreme value theory originates to find up methods to model and

measure events which occur with very small probability. It deals with

the stochastic behaviour of the extremes of independent and identical dis-

tributed (hereinafter i.i.d.) variables. The tail of underlying distribution

determines the properties of maxima and minima distribution.

Under certain hypothesis we obtain an asymptotically justified probability

model and, using the sample data from rare events of a process, it’s possible

to make rational predictions about the likely levels of future extremes of

the process.

There are basicly two approaches to extreme value theory:

• Compute the distribution of a series of maxima (minima) which, un-

der certain conditions, converges to the so-called generalized extreme

value ( hereinafter GEV) distribution.

1
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• Compute the distribution of excess over a given threshold to model

the behaviour of the excess loss once a high threshold (loss) is reached

(Pareto distribution).

In this chapter we explain the theoretical basis for the study of extreme

events with emphasis on the GEV distribution. We widely point out the

methods used for the subsequent numerical analysis and the inference of

the GEV parameters from a set of data.

1.1 The three types of extreme value distri-

bution

Extreme value distribution includes the following three families:

• Gumbel cumulative distribution (type 1):

Pr[X ≤ x] = exp {−e−(x−µ)/σ} x ∈ R (1.1)

• Frechet cumulative distribution (type 2):







0 x ≤ µ

Pr[X ≤ x] = exp
{

−
(

x−µ
σ

)−ξ
}

x > µ
(1.2)

• Weibull cumulative distribution (type 3):











Pr[X ≤ x] = exp

{

−
(

− (x−µ)
σ

)ξ
}

x < µ

0 x ≥ µ

(1.3)

where µ, σ > 0, ξ > 0 are parameters.

It is possible to represent the three types distributions using a single family

of generalized distribution called Generalized Extreme Value distribution:
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G(x;µ, σ, ξ) =
1

σ

[

1 + ξ

(

x− µ

σ

)]−1/ξ−1

· exp
{

−
[

1 + ξ

(

x− µ

σ

)]−1/ξ
}

(1.4)

which holds for:

1 + ξ(x− µ)/σ > 0 (1.5)

and where:

• µ ∈ R is the location parameter

• σ > 0 the scale parameter

• ξ ∈ R the shape parameter. also called the tail index, indicates the

thickness of the tail of the distribution.

The cumulative distribution may be written as:

Pr[X ≤ x] = exp

{

−
[

1 + ξ

(

x− µ

σ

)]−1/ξ
}

(1.6)

When ξ → 0, the distribution G corresponds to a Gumbel type (eq 1.1) .

When the index is negative, it corresponds to a Weibull (eq 1.3); when the

index is positive, it corresponds to a Frechet (eq 1.2).

The leading idea in extreme value theory is analogous to the one used in

central limit theorem but here the shape parameter ξ unifies the possible

characterization of the extreme value distribution. The shape parameter is

also called tail index and, intuitively, the three distribution types represent

three possibilities for the tail decay of the density function (as detailed in

section 1.2).
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1.1.1 Obtaining the limiting distribution

LetX1, X2, Xn be i.i.d. variables with the same probability density function:

pXj
(x) = f(x), j = 1, 2, ...n (1.7)

and cumulative distribution:

F (x) = Pr[X ≤ x] =

∫ x

−∞

f(x)dt (1.8)

Define MX,n = max{X1, ..., Xn}.
For example, Xi can be a set of precipitation observations taken daily in the

ith year so that n maxima MX,n may be chosen over a period corresponding

to one year assuming that the block sizes are quite large and the maxima

in different blocks are independent realisations [Pauli and Coles, 2001].

For any finite value x , the maximum will exceed x as n increases, with

1−[F (x)]n tends to unit if F (x) < 1 or to zero if F (x) = 1. It is clear that we

obtain a degenerate distribution for [F (x)]n as n→ ∞. If it exists, we must

find the limiting distribution introducing some sequence of transformed and

reduced values such (anMx,n + bn) where an and bn depend on n. Denoting

G(x) this reduced distribution, it follows [Fisher and Tippett, 1928] that

G(x) must satisfy this equation:

[G(x)]n = G(anx+ bn) (1.9)

Using condition 1.9 it is possible to obtain Gumbel distribution by taking

an = 1. We report the proof in the case of type 1. Since an = 1 equation

1.9 becomes:

[G(x)]n = g(x+ bn) (1.10)

the latter equation must satisfy equation 1.9 so that:

[G(x)]n·m = [G(x+ bn)]
m = G(x+ bn + bm) (1.11)

[G(x)]n·m = G(x+ bn,m) (1.12)
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Using the equations 1.11 and 1.12 we can see that:

bn,m = bn + bm (1.13)

so that:

bn = σ log(n), with σ a constant (1.14)

Taking logarithms of 1.11 twice we have:

log n+ log{− logG(x)} = log{− logG(x+ bn)} (1.15)

inserting the equation 1.14 in the latter we write:

log n+ log{− logG(x)} = log{− logG(x+ σ log n)} (1.16)

Let us introduce:

h(x) = log{− logG(x)} (1.17)

then:

h(x) = h(0)− x

σ
(1.18)

Now, since h(x) decreases as x increases, σ is positive:

− logG(x) = exp

[

−x− σh(0)

σ

]

(1.19)

denoting µ = σ log(− logG(0)):

− logG(x) = exp

(

−x− µ

σ

)

(1.20)

which demonstrates our statement since it is the logarithm of the type 1

distribution in equation 1.1.

Types 2 and 3 can be obtained by taking an 6= 1. In this case

x = anx = bn if x = bn(1− an)
−1 (1.21)

See De Haan and Ferreira [2006] for a complete proof.
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1.1.2 Gnedenko’s results

There is a more immediate way to obtain some conditions that can be easily

used to establish the linkages between parent and GEV distribution. Here

we study the convergence of probabilities of the form P{an(Mn − bn) ≤ x}
which may be rewritten as P{Mn ≤ un} = F n(un) = {1 − (1 − F (un))}n

where un = un(x) = x/an + bn. Such types of normalized sequences con-

verge to one of the three types of distribution described in equations 1.1-1.3

(where µ = 0 and σ = 1 1) if one of the following necessary and sufficient

conditions established by Gnedenko [1943] is satisfied:

Let us define the right endpoint xF of a distribution function F (x) as:

xF = sup{x : F (x) < 1} (1.22)

Theorem (Gnedenko): Necessary and sufficient conditions for the dis-

tribution function F of the random variables of the i.i.d. sequence {ξn} to

belong to each of the three types are:

• For the Frechet (type 2) distribution, xF = ∞:

lim
t→∞

1− F (tx)

1− F (t)
= x−α, α > 0, ∀x > 0. (1.23)

• For the Weibull (type 3) distribution, xF <∞:

lim
h→0

1− F (xF − xh)

1− F (xF − h)
= xα, α > 0, ∀x > 0 (1.24)

• For the Gumbel (type 1) distribution, there exists some positive func-

tion G(t) such that:

lim
t→XF

1− F (t+ xG(t))

1− F (t)
= e−x, ∀x ∈ R (1.25)

It may in fact be shown that
∫∞

0
(1−F (u))du <∞ when a type 1 limit

holds, and one appropriate choice of g is given by

G(t) =

∫ xF

t

1− F (u)

1− F (t)
du, t < xF

1We subsequently will show the linkages between µ, σ, an and bn.
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Using this conditions is possible to obtain different limiting distribution

for maxima and minima corresponding to the same parent distribution.

Gnedenko [1943] shown that these conditions are necessary and sufficient.

For example if the parent distribution is normal or exponential, it satis-

fies 1.25 and the limiting distribution is type 1. Condition 1.23 is satisfied

by Cauchy parent distribution and 1.24 by a nondegenerate distributions

bounded above. Besides the theorem, a corollary is also important to de-

termine the normalizing sequences an and bn:

Corollary (Gnedenko): The normalizing sequences an and bn in the con-

vergence of normalized maxima P{an(Mn− bn) ≤ x} → G(x) may be taken

as:

• Type 2: an = γ−1
n , bn = 0;

• Type 3: an = (xF − γn)
−1, bn = xF ;

• Type 1: an = [g(γn)]
−1, bn = γn;

with γn = F−1(1− 1/n) = inf{x;F (x) ≥ 1− 1/n}.

The complete proof of both the theorem and the corollary can be found in

Leadbetter et al. [1983]. Another line of development is the characterization

of convergence in terms of moments. It is possible to use the mean µ and

standard deviation σ of the distribution as scaling constants in place of

bn, and an [Pickands III, 1968]. We will use widely these properties in the

following chapters.

1.2 Properties of the GEV distribution

We first recall some properties of the GEV distribution omitting the deriva-

tion which can be found in Kotz and Nadarajah [2000].



8 1. Extreme value theory and modeling

The mean is computed as:

E(X) = µ− σ

ξ
+
σ

ξ
g1

while the relation for the variance is given by:

V ar(X) =
σ2

ξ2
(g2 − g21)

The skewness of the GEV distribution is obtained using:

Skewness(X) =
g3 − 3g1g2 + 2g31

(g2 − g21)
3/2

where gk = Γ(1− kξ), k=1,2,3 and Γ(t) is Gamma function.

Detailing the behaviour of the three different types of GEV distribution

obtained with various values of the shape parameter ξ, in the following

paragraphs we point out the linkages between the tail decay of the parent

distribution and the resulting tail index.

1.2.1 The Gumbel distribution (type 1)

Using equation 1.4, we obtain the Gumbel distribution (equation 1.1) when

ξ → 0. The Gumbel pdf has a shape skewed to the left, and a location

parameter µ which is equal to the mode but it differs from median and

mean 2. As µ decreases, the pdf is shifted to the left. As σ increases, the

pdf spreads out and becomes shallower. Some example is reported in figure

1.1.

2Because of the distribution asymmetry about its µ
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Figure 1.1: Gumbel distribution for different parameters

According to the condition stated in equation 1.25, the Gumbel distribution

is likely to be useful if the distribution of the underlying sample data is of

the normal, lognormal, gamma or exponential type. Since the data of

flood, earthquake occurrences and other natural disaster have this kind of

parent distribution, the Gumbel pdf is useful to represent the distribution

of maxima related to this extreme events.

1.2.2 The Frechet distribution (type 2)

The Frechet distribution (equation 1.2) is related to a positive shape pa-

rameter ξ > 0; The parent distribution may be Cauchy, T-Student or any

fat-tailed distribution. A fat tailed distribution is so called when the tail

decays as a power . We can expect a fit to a Frechet distribution using

financial, precipitation or stream-flow data due to the power decay of cor-

relation between subsequent observations.
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In this distribution domain, ξ is strictly connected to the maximal order

moment. This means that moments of order r greater than ξ are infinite

and those less than ξ are finite. In figure 1.2 we present a fit to GEV

distribution of maxima computed over fixed length bins using T-student

distributed initial data . We can observe, as expected, a positive shape

parameter value ξ ≃ 0.19.

Figure 1.2: GEV fit for a set of maxima with T-student parent distribution.
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1.2.3 The Weibull distribution (type 3)

When the tail index is negative (ξ < 0) the GEV distribution is a type 3 of

Weibull. In this case the parent distribution has a thin tailed distribution

with a finite upper endpoint xup = µ+σ/(−ξ). The tail decays with a finite

tail index.

Figure 1.3: GEV fit for a set of minima with T-student parent distribution.

It is also called a "reversed" Weibull distributions pointing out that it was

first defined in a specular way with a finite lower endpoint. The Weibull

distribution is widely used to fit minima distribution, temperature, wind-

speed and sea-level data. In figure 1.3 we present a fit to GEV distribution
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of minima computed using the same data reported in figure 1.2. In this

case the shape parameter value is negative ξ ≃ −0.63. In the following

table we summarize the limiting Extreme Value distribution (where µ→ 0

and σ → 1) which is obtained starting from a different standardized initial

distribution.

Initial Dist. Lim. Dist.for Maxima Lim. Dist.for Minima

Exponential Gumbel (Type 1) Weibull (Type 3)

Gamma Gumbel (Type 1) Weibull (Type 3)

Normal Gumbel (Type 1) Gumbel (Type 1)

Log-normal Gumbel (Type 1) Gumbel (Type 1)

Uniform Weibull (Type 3) Weibull (Type 3)

Pareto Frechet (Type 2) Weibull (Type 3)

Cauchy Frechet (Type 2) Frechet (Type 2)

1.3 GEV inference criteria

We present some popular method to obtain GEV distribution parameters.

We focus our attention on the maximum likelihood criteria detailed in sec-

tion 1.3.3 since it has been applied to all our numerical investigation.

1.3.1 Limit of Bayesan Inference procedure

In Bayesan inference the evidence or observations are used to update or to

newly infer what is known about underlying parameters or hypotheses. The

name "Bayesian" comes from the use of Bayes’ theorem in the process. We

have to add some additional prior information to our parameters estima-

tion. This approach hides some conceptual problem due to the plausibility

of the a priori knowledge which is not guaranteed for extremal behaviour.

For example it has been shown that the shape parameter, in some hydro-

logical and meteorological application, has a Beta distribution defined on

the interval [-0.5, 0.5] [Martins and Stedinger]: in this case, this kind of

prior information can be used successfully in a fully Bayesian framework,
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leading to the estimation of GEV parameters with some constraint over the

tail index.

Generally The Bayesan approach is not suitable for our data since we have

no a priori information about the parameters affecting the extremal be-

haviour; in our subsequent numerical investigation only statistical methods

are used to infer the limiting distribution.

1.3.2 Method of Probability-Weighted Moments (PWM)

This method was proposed in 1979 by Landwehr and now it is widely used

in environmental sciences. It allow to estimate the parameters µ and σ

using probability-weighted moment defined as:

bk = E[X{1− F (X)}k] (1.26)

as bk unbiased estimator we can use:

b̂k =
1

n

n
∑

j=1

(

k
∏

l=1

j − l

n− l

)

Mi,n (1.27)

where (M1,n....Mn,n) represent the ordered GEV distributed sample so that

the i-th ordered maximum is equal to its ith-smallest value.

By making use of the expression b0 and b1, equating to respective estimators

and solving for the parameters µ and σ, the probability weighted moment

are obtained solving the following system of equations:



























b̂0 = µ̂− σ̂
ξ̂
(1− Γ(1− ξ̂))

2b̂1 − b̂0 =
σ̂
ξ̂
Γ(1− ξ̂)(2ξ̂ − 1)

3b̂2 − b̂0
2b̂1 − b̂0

= 3ξ̂ − 1

2ξ̂ − 1

(1.28)

This approach has been criticized because it assumes a priori that the

GEV shape parameter ξ is smaller than one (this equivalent to specify that

the distribution has finite mean) but recently this restriction seems to be

removed [Diebolt et al., 2008].
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1.3.3 Maximum Likelihood Estimation

As pointed out in section 4.2 we can construct a sequence of maxima (min-

ima) by subdividing the available data X into N bins of equal length L

and by extracting the maximum from each bin i: MN,i. The block length

is a critical parameter to choice fairly between bias and variance in the

parametric estimates.

To infer GEV, we choose the maximum likelihood estimator since it shows

a great sensitivity to changes of model as detailed in Felici et al. [2006].

It is useful to maximize the log likelihood function:

l(µ, σ, ξ) =
L
∏

i=1

ln(G′(MN,i;µ, σ, ξ)) (1.29)

where G′(x;µ, σ, ξ)) is the derivative of G(x;µ, σ, ξ)). Now, using the equa-

tion 1.4, we can rewrite the log likelihood function as:

−m ln(σ)−
(

1 +
1

ξ

) L
∑

i=1

{

ln

[

1 + ξ

(

MN,i − µ

σ

)]

−
[

1 + ξ

(

MN,i − µ

σ

)]− 1
ξ

}

(1.30)

if ξ 6= 0, and as:

−m ln(σ)−
L
∑

i=1

{(

MN,i − µ

σ

)

− exp

[

−
(

MN,i − µ

σ

)]}

(1.31)

if ξ = 0. We can obtain a profile likelihood of µ, ξ or σ by setting the

other two parameters to their maximum likelihood estimates µ̃, ξ̃, σ̃ in the

equation 1.30 or 1.31. For example, to compute the profile likelihood for

the parameter ξ, we can construct the graph:

(x, y) = (ξ, l(µ̃, σ̃, ξ)) (1.32)

giving a section of the likelihood surface as viewed from the axis. The

intersections of the horizontal line with the profile likelihood graph allow

to compute a confidence interval:
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y = ξ̃ − 0.5q0.95 (1.33)

where q0.95 is the 95% quantile of the χ2 distribution with 1 degree of

freedom. In our subsequent numerical analysis we have used the Matlab

function gevpdf and gevcdf which return 95% confidence intervals for the

parameter estimates.

1.4 Goodness of fit

There exist many methods to check the goodness of fit to GEV distribu-

tion. In our numerical investigation we choose the Kolmogorov-Smirnov

test because it avoids the discretization of the null hypothesis unlike what

happens for the χ2 test. In the latter test we should group the data and

consider a weaker discretized null hypothesis.

1.4.1 The Kolmogorov-Smirnov test

We start with a sample of variable X1, ..., Xn belonging to some distribution

P and we would like to test the hypothesis that P is equal to a particular

distribution P0 obtained, for example, by a fit of data. There are two

possible hypotheses:

H0 : P = P0 H1 : P 6= P0 (1.34)

Let us denote, as usual, by F (x) the true underlying cumulative distribution

function (hereinafter cdf) of data. While F (x) is defined by equation 1.8,

we can also define an empirical cdf by:

Fn(x) = Pn(X ≤ x) =
1

n

n
∑

i=1

I(Xi ≤ x) (1.35)

that counts the proportion of the data Xi whose value is less than x. The

Kolmogorov-Smirnov test uses a law of large numbers result which implies
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that:

Fn(x) =
1

n

n
∑

i=1

I(Xi ≤ x) → P(X1 ≤ x) = F (x) (1.36)

It can be shown that this approximation holds uniformly over all x ∈ R:

sup
x∈R

|Fn(x)− F (x)| → 0 (1.37)

To use the Kolmogorov-Smirnov test, we will need another weaker result

which we formulate using the central limit theorem:

√
n(Fn(x)− F (x)) →dist N (0, F (x)(1− F (x))) (1.38)

where N is the Normal distribution, →dist denotes the convergence in dis-

tribution and F (X)(1 − F (x)) is the variance of I(X1 ≤ x). This key

observation allow us to enunciate the following result:

P(
√

(n) sup
x∈R

|Fn(x)− F (x)| ≤ t) → H(t) = 1− 2
∞
∑

i=1

(−1)i−1e−2i2t (1.39)

where H(t) is the cdf of Kolmogorov-Smirnov distribution.

We can reformulate the hypotheses 1.34 in terms of cdf:

H0 : F = F0 H1 : F 6= F0 (1.40)

where F0 is the cdf of P0.

Let us introduce the statistic:

Dn =
√
n sup
x∈R

|Fn(x)− F0(x)| (1.41)

Using equation 1.34, if the null hypothesis is true, the Dn distribution can

be tabulated as it will depend only on n and it is approximated by H

if n → ∞. If the null hypothesis fails, Fn will converge but it will not

approximate F0:

sup
x

|Fn(x)− F0(x)| > δ (1.42)
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with a small δ ∈ R. If we now multiply by
√
n:

Dn =
√
n sup
x∈R

|Fn(x)− F0(x)| >
√
nδ (1.43)

if H0 fails then Dn >
√
nδ → ∞ as n→ ∞.

It is possible to use the following decision rule:

δ =







H0 : Dn ≤ c

H1 : Dn > c
(1.44)

c is a threshold tabulated under H0. The level of significance α can be

related to c by:

α = P(δ 6= H0|H0) = P(Dn ≥ c|H0) (1.45)

and if n is large the we can use the H distribution to compute c since:

α = P(Dn ≥ c|H0) ≈ 1−H(c) (1.46)

Figure 1.4: Kolmogorov-Smirnov test Example.
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To illustrate the idea and how the Kolmogorov-Smirnov test works we

present a graphical example. In figure 1.4 are plotted both the empirical

and theoretical cumulative distribution. We obtain the parameter Dmax by

calculating the maximum distance between the two cdf. Dmax is compared

with the threshold to decide if the null hypothesis is rejected.

1.5 Limitations and problems using extreme

value theory

The first thing to note is that a priori we cannot state any assumption about

the convergence of the normed maxima to a stable distribution treating tails

of empirical distributions. The key observation is that the sample size may

be determine a completely different underlying distribution [Green, 1976].

In other words the maxima of random variables governed by the tails of

distribution do not have to necessary approach some stable limiting distri-

bution.

Another thing to note is that the selection procedure for the maxima elimi-

nates a part of tail which can be useful to determine accurately the limiting

distribution. This problem will be study in detail in the following section

introducing the advantages of the Generalized Pareto Distribution.

1.6 The case of dependent variable

Let us define a mixing sequence for which the type 1 Gumbel distribution

remain valid. In a mixing sequence:

1. The various terms in the sequence are weakly dependent when their

separation is large:

P (X1 < x,X2 < x,Xk < x) → P (X1 < x,X2 < x) ·P (Xk < x) (1.47)

as k → ∞
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2. The right tail asymptotic indipendence:

P (Xi+k ≥ r|Xi ≥ r) → 0 as x→ ∞ for every k 6= 0 (1.48)

Note that the limiting distribution of maxima may not coincide with the

Gumbel distribution for sequences such that the events {X1 < x1, ..., Xj <

xj} and {Xj+k < xj+k, ..., Xn < xn} are dependent for k = 1 and are

independent for k > 1.

For m-dependent sequences (where the events are independent if separated

by m units) the asymptotic Gumbel distribution may be also not valid

[Kotz and Nadarajah, 2000].

1.7 Hints to the threshold model: The Gen-

eralized Pareto Distribution

We want to characterize the Generalized Pareto Distribution (GPD) which

is intimately linked to the GEV distribution. Rewriting the equation 1.4

with µ→ 0 and σ → 1, we obtain the expression:

G(x, ξ) = exp(−(1 + ξx)−1/ξ), −∞ < ξ < +∞, 1 + ξx > 0 (1.49)

The Gnedenko-Pickands-Balkema-de Haan (hereinafter GPBH) theorem

states that the distribution of large events conditioned to be larger than

some threshold may be characterized by the GPD.

The GPD is derived from the GEV distribution in equation 1.49 by taking

the G(x, ξ) of the largest value given by the equation:

H(x/ξ, s) = 1 + ln(G(x/s, ξ)) = 1− (1 + ξx/s)−1/ξ (1.50)

showing the link with the Extreme Value Theory.

If the distribution function is unlimited, xF can be considered to be infinite

as in many practical applications. In order to state the GPBH theorem we

introduce the excess distribution Fu(x):

Fu(x) = P{X − u < x|X > u}, x ≥ 0 (1.51)
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Gnedenko-Pickands-Balkema-de Haan theorem

Let F (x) be a distribution function with excess distribution Fu(x), u > 0.

Then, for −∞ < ξ < +∞, F (x) ∈ D(x, ξ) maximum domain of attraction

of G(x, ξ) if and only if there exists a positive function s(u) such that:

lim
u→xF

sup
0≤x≤xF−u

|F̄u(x)− H̄(x/ξ, s(u))| = 0 (1.52)

Further on, F̄ (x) indicates the complementary cumulative of the distribtu-

ion F (x):

F̄ (x) = 1− F (x) (1.53)

The importance of the GPBH theorem resides in the statement which is not

only valid for the largest value of a data set, as in the case of the Extreme

Value Theory, but also to constraint the shape of the tail to the limiting

distribution making a full use of all data presents in the tail.

The Extreme Value Theory uses only a part of the parent distribution tail

discarding a significant slice of data [Embrechts et al., 1997].

MLE for GPD parameters

Let us denote by Nu the number of observation above a threshold u and

as y1, ..., yNu
the observations such that:

u : yi = xj(i) − u so that xj(i) > u (1.54)

The GPBH theorem yields an approximation to the tail F̄ (x) using the

Pareto distribution as estimator:

F̄ (x+ u) ≃ H̄(x/ξ̂, ŝ)× (Nu/N) (1.55)

As for the GEV distribution we can infer the estimates of the two param-

eters ξ̂, ŝ through the Maximum Likelihood Estimation (MLE). Here the

log-likelihood l must equals:
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l = −Nu ln s− (1 + 1/ξ)
Nu
∑

1

ln(1 + ξyi/s) (1.56)

The equation 1.56 is a little bit complicated when µ 6= 0 and σ 6= 0 and can

be maximized numerically. The limit standard deviation can be obtained

computing the limit N → ∞, then:

σξ = (1 + ξ)
√

Nu

σs = s
√

2(1 + ξ)/Nu

(1.57)

The q-quantile estimator xq, which denotes the value of the random variable

not overpassed with probability q, can be written as:

xq = u+ (ŝ/ξ̂)(N/Nu(1− q)−ξ̂ − 1) (1.58)

While the scale parameter s = s(u) depends on the threshold value u, the

shape parameter ξ is, in theory, independent on the threshold value and

uniquely determined by the distribution function F (x) of the dataset. For

this reason, when possible, it is useful to take a sufficiently high threshold.

It is also possible to vary dynamically the threshold, adjusting it when an

extreme event overcomes the value of the threshold barrier [Altmann et al.,

2006].

The shape parameter ξ is greater than zero when x becomes large. In this

case the GPD complementary cumulative approaches a power function:

H̄(x/ξ, s) = (ξx/s)−1/ξ (1.59)

and the exponent 1/ξ corresponds asymptotically to the exponent of the

Pareto law showing that GPD is asymptotically invariant [Pisarenko and

Sornette, 2003].

In figure 1.5 is reported the GPD for different shape parameters. Notice

that for ξ < 0, the GPD has zero probability above an upper limit of −(1/ξ).
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For k ≥ 0, the GPD has no upper limit. Also, the GPD is often used in

conjunction with a third, threshold parameter that shifts the lower limit

away from zero.

Figure 1.5: Generalized Pareto Distribution examples.



Chapter 2

Poincaré Recurrence statistics

In this chapter we present the basic theory of Return Time Statistics (also

known as Poincaré recurrences) showing the well known results obtained

for a wide class of dynamical systems. In the past years both strong nu-

merical evidences and theoretical results indicate that this theory is deeply

connected with diffusion processes, correlation and fidelity decay not only

for mixing dynamical systems but also for integrable maps [Rossi et al.,

2005], [Hu et al., 2004], [Artuso, 1999]. Eventually, numerical studies sug-

gest that these results may be connected to understand the behaviour of

area-preserving maps in the mixed regions where integrable structures and

chaotic components coexist.

2.1 Poincaré Recurrence Theorem

In the late XIX century, Poincaré’s memoir on the three body problem

was published in the journal Acta Mathematica. Poincaré’s works has been

lauded as milestones in the study of celestial mechanics and dynamics. In

his work "Sur le problème des trois corps et les équations de la dynamique"

[Poincaré, 1890] he stated that: "...Dans ce cas, si on laisse de côté cer-

taines trajectoires exceptionnelles, dont la réalisation est infiniment peu

23
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probable, on peut démontrer que le système repassera une infinité de fois

aussi près que l’on voudra de sa position initiale." introducing the basis of

return times theory.

Theorem (Poincaré). Let us consider a standard probability space (Ω,F , µ):

1. Ω is a sample space, the set of all possible outcomes.

2. F is a σ-algebra, the collection of all events which characterize groups

of outcomes.

3. µ is a standard probability measure.

and let f : Ω → Ω be a measure preserving map:

µ(f−1A) = µ(A), ∀A ∈ F (2.1)

Then, for any A ∈ F , the set of those points x of A such that fn(x) /∈ A

for all n > 0 has zero measure, that is almost every point returns infinitely

often. i.e

µ{x ∈ A : fnx ∈ A, for some n > 0} = µ(A) (2.2)

Proof: Let us introduce An = ∪∞
k=nf

−kA Then, A ⊂ A0 and Ai ⊂ Aj

when j ≤ i. Also, Ai = f j−iAj, so that µ(Ai) = µ(Aj) for all i, j ≥ 0, by

the f -invariance of µ. Now for any n > 0 we have A − An ⊂ A0 − An, so

that

µ(A− An) ≤ µ(A0 − An) = µ(A0)− µ(An) = 0.

Hence µ(A−An) = 0 for all n > 0, so that µ(A−∩∞
n=1An) = µ(∪∞

n=1A−An) =
0. But A − ∩∞

n=1An is precisely the set of those x ∈ A such that for some

n and for all k > n we have fk(x) /∈ A [Furstenberg, 1981]. A proof of

theorem which follows the original Poincaré formulation can be found in

Barrow-Green [1997]. 2
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2.2 First Visiting Time and Kac’s Theorem

In the following we will assume that µ is ergodic for f :

6 ∃A ∈ F , 0 < µ(A) < 1, such that µ(A∆f−1A) = 0 (2.3)

where △ denotes the symmetric difference. This is equivalent to say that µ-

almost every point in the whole space visits A; using the ergodicity we can

introduce the concept of visiting time to a fixed set A of positive measure

for µ-almost every point in Ω [Coelho, 2000].

Let us fix A ∈ F with µ(A) > 0, we define τ : Ω → N as:

τ = inf{n > 0 : fnx ∈ A} (2.4)

first visiting time of A (note that τ(x) <∞ almost everywhere).

If the set is quite small we have to wait more time in order to observe a

return in A. This result is stated formally by the following theorem:

Theorem (Kac). Let (Ω,F , µ, f) be an ergodic dynamical system and let

A ∈ F be a set of positive measure, then

EA(τ) =
1

µ(A)

∫

A

τ(x)dµ =
1

µ(A)
(2.5)

In accordance with this theorem one then looks at the return times which

are normalized by the measure of the return set.

To proof both the Kac’s Theorem we follow Coelho [2000], Pollicott and

Yuri [1998] and Marie [2009].

First we introduce Rokhlin Tower definition :

Rokhlin Tower. In a dynamical system (Ω,F , µ, f) we define Rokhlin

Tower a finite family of measurable sets:

Ψ = (B, fB, ..., fh−1B) (2.6)
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where f jB are two-by-two disjoint sets. The set B represents the tower

base, f jB is a floor and h is the height.

It is possible to partition the set A as follows. Let us define

Ai = {x ∈ A : τ(x) = i} i ≥ 1 (2.7)

then:

µ(A) = µ

(

⋃

i≥1

Ai

)

. A =
∞
⋃

i=1

Ai (2.8)

and we may consider the Rokhlin Tower of height k:

(Ak, fAk, ..., f
k−1Ak) (2.9)

Eventually, we introduce a lemma which is useful to prove Kac’s Theorem:

Rokhlin’s Lemmma. Let (Ω,F , µ, f) be an aperiodic dynamical system.

Then ∀ǫ > 0, ∀n ∈ N, ∃B measurable such that:

• f iB, 0 ≤ i ≤ n are two-by-two disjoint

• µ(
⋃n−1
i=0 f

iB) > 1− ǫ

Proof (Kac’s Theorem). µ is ergodic and µ(A) > 0 then:

µ

(

⋃

n≥0

fnA

)

= 1 (2.10)

We have seen that A is a disjoint union of Ak and then
⋃

n≥0 f
nA is

composed by the whole f jAk in a separate way: on the one hand for

the Ak definition, on the other, by the injectivity of T , we know that:

fAj, f
2Aj, ..., f

j−1Aj can’t join fAk, f
2Ak, ..., f

k−1Aj with k 6= j, then:

+∞
∑

k=0

k−1
∑

j=0

µ(f jAk) = 1 (2.11)
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and with the invariance measure we obtain:

+∞
∑

k=0

kµ(Ak) = 1 (2.12)

and
+∞
∑

k=0

kµ(Ak) =

∫

A

τ(x)dµ(x) (2.13)

which demonstrate Kac’s theorem 2.

2.3 Return Time Statistics

Kac’s theorem suggests that for every set B of positive measure, the ex-

pectation value of τ is equal to 1/µ(B). For a wide class of dynamical

systems an exponential behaviour of first return times is expected as well

as µ(B) → 0. We are interested in finding out which conditions are suit-

able in order to obtain this kind of distribution. Recently, many authors

have concentrated their attention to solve this problem obtaining specific

conditions depending on various definitions of mixing system [Abadi and

Galves, 2001]. To show the exponential decay of first return times we have

to introduce some useful definitions:

Conditional Measure: Let (Ω,F , µ) be an ergodic dynamical system.

We define conditional measure of the set A:

µA(B) =
µ(A ∩ B)

µ(A)
B ⊆ Ω (2.14)

Weak Convergence: We say a sequence of distribution functions

Fn n = 1, 2, ...

converges weakly to a function F (which might not be a distribution itself)

if F is non-strictly increasing, right continuous and satisfies:

lim
n→∞

Fn(t) = F (t) (2.15)
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at every point t of continuity of F .

Return times Spectrum: Let τA be the first return time over a set A

and E(τ) its expectation value, we define Return times Spectrum F̃A(t)

F̃A(t) = µA

(

x ∈ A :
τA(x)

τA
≤ t

)

(2.16)

Let us consider a neighbourhood sequence AK(x) of a point x ∈ Ω so that

µ(Ak(x)) → 0 as k → +∞, we define Limiting Spectrum or Return Time

Statistics F̃ (t):

F̃ (t) = lim
k→+∞

F̃Ak(x)(t) (2.17)

if the limit exists.

2.3.1 Mixing Systems

Here we introduce the notion of strong mixing based on dynamical system

and in the subsequent section a mathematical definitions to introduce a

more rigorous result.

Strong mixing system: Let (Ω, f, µ) be a dynamical system, µ an

invariant probability measure µ(f−1A) = µ(A). It is said to be strongly

mixing if ∀ϕ, ψ ∈ L2(Ω):

lim
k→∞

∫

Ω

ϕ(f−k(x))ψ(x)dµ =

∫

Ω

ϕ(x)dµ

∫

Ω

ψ(x)dµ (2.18)

For the special case when the observables are characteristic functions χA

and χB of sets A,B ∈ Ω (these functions have value 1 at points of A (B)

and 0 at points of Ω− A (Ω− B), this means:

lim
k→∞

∫

Ω

χA(f
−k(x))χB(x)dµ =

∫

Ω

χA(x)dµ

∫

Ω

χB(x)dµ (2.19)



2.3 Return Time Statistics 29

lim
k→∞

µ(f−kA ∪B) = µ(A)µ(B) (2.20)

and in the last passage we have used measure invariance.

Following Arnold, we present a simple physical example of mixing: the

Cuba libre: suppose that a glass initially contains 20% rum (the set A)

and 80% cola (the set B) in separate regions. After stirring the glass,

any region of the glass contains approximately 20% rum. Furthermore,

the stirred mixture is in a certain sense inseparable: no matter where one

looks, or how small a region one looks at, one will find 80% cola and 20%

rum [Arnold and Avez, 1968]. In physics, a dynamical system is said to be

mixing if the phase space has a coarse-graining structure. Every mixing

transformation is ergodic, but there are ergodic transformations which are

not mixing.

2.3.2 Heuristic proof for strong mixing systems

Let us consider the set A>t . It contains all the points which have a recur-

rence time greater than t · E(τA). Calling Ac the complementary set whit

respect to the relative measure, it is evident that ∀x ∈ A>t holds:

x ∈ A>T ⇐⇒ fk(x) ∈ Ac, k = τA, τA + 1, ..., t · E(τA) (2.21)

When µ(A) → 0 then τA ≫ 1. If we apply the strong mixing condition

(equation 2.18) and measure invariance, then:

µ
(

f−k(Ac) ∩ f−n(Ac)
)

= µ(f−kAc)µ(Ac) = µ(Ac)
2 (2.22)

which holds for n≫ 1. Now we can write:

µA(A>t) = µ
(

f−τA(Ac) ∩ f−τA−1(Ac) ∩ ... ∩ f−tE(τA)(Ac)
)

(2.23)

µA(A>t) = µ (Ac)
tE(τA)−τA (2.24)
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It follows that:

µA(A>t) = (1− µ(A))tE(τA)−τA (2.25)

µA(A>t) = exp [(tE(τA)− τA) log(1− µ(A))] (2.26)

Eventually, taking the limit µ(A) → 0, we obtain:

F̃ (t) = lim
µ(A)→0

µA (A>t) = e−t (2.27)

2.4 Hitting Time Statistics

We have just introduced the Return Time Statistics F̃ (t) but we may also

study the Hitting Time Statistics F (t) that differ by F̃ (t) since τA is defined

on the whole of Ω and not simply restricted to A:

FA(t) = µ

(

τA(x)

τA
≤ t

)

(2.28)

F (t) = lim
k→+∞

FAk(x)(t) (2.29)

To state rigorous results about Hitting Time Statistics, we focus our atten-

tion to the class of functions A and Ã which have the following properties

[Kupsa and Lacroix, 2005]:

• A = {F : R → [0, 1], F ≡ 0 on ]−∞, 0], F (non strictly) increasing,

continuous, concave on [0.+∞[, F (t) ≤ t for t ≥ 0}

• Ã = {F̃ : R → [0, 1], F ≡ 0 on ]−∞, 0], F (non strictly) increasing,

right-continuous,

∫ +∞

0

(1− F̃ (s))ds ≤ 1}
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2.4.1 Exponential Hitting time statistics

Following the work of Hirata et al. [1999] we introduce their mixing defini-

tions and then proof the exponential spectral decay of recurrence times:

We say that (Ω,F , µ, f) is, for all integers n ≥ 1 and l ≥ 0,

• γ-mixing (or uniform mixing) if

sup
B∈F{0,...,n},C∈F{n≥0}

∣

∣µ(B ∩ f−(n+l+1))− µ(B)µ(C)
∣

∣ = γ(l) (2.30)

• α-mixing if

sup
B∈F{0,...,n},C∈F{n≥0}

∣

∣µ(B ∩ f−(n+l+1))− µ(B)µ(C)
∣

∣

µ(B)
= α(l) (2.31)

• φ-mixing if

sup
B∈F{0,...,n},C∈F{n≥0}

∣

∣µ(B ∩ f−(n+l+1))− µ(B)µ(C)
∣

∣

µ(B)µ(C)
= φ(l) (2.32)

Following Hirata et al. [1999], we state a general implication verified by the

preceding types of mixing:

Remark: φ-mixing implies α-mixing which implies uniform mixing:

γ(n) ≤ α(n) ≤ φ(n) ∀n ∈ N

Theorem (Haydn-Lacroix-Vaienti) Let (Ω, f, µ) be an ergodic system

and consider a sequence {An ∈ Ω : n ≥ 1} a sequence of positive measure

measurable subsets. Then the sequence of functions F̃An
converges weakly if
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and only if the functions FAn
converge weakly. Moreover, if the convergence

holds, then:

F (t) =

∫ t

0

(1− F̃ (s))ds, t ≥ 0 (2.33)

where F̃ and F are the corresponding limiting (sub-probability) distributions

The only previous result in this direction was obtained by Hirata et al.

[1999] where it is shown that F̃ (An) → F̃ and F̃ (t) = 1 − e−t for t ≥ 0 if

and only if F (An)−F̃ (An) → 0 in the supremum norm on the real line. The

Haydn-Lacroix-Vaienti Theorem shows that the exponential distribution is

the only distribution which can be asymptotic to both return and hitting

times, as it is clearly the only fixed point of 2.33. Linking this two theorems

one can obtain:

F (t) =

∫ t

0

(1− F̃ (s))ds =

∫ t

0

(1− (1− e−s))ds = 1− e−t (2.34)

Proof: Let us note:

Bk = {x ∈ A : τA(x) = k}

Ak = {x ∈ Ω : τA(x) = k}

Then, a set of zero measure over Ω can be written as a disjoint union of:

k−1
⋃

j=0

f jBk, k = 1, 2, ...

On the other hand we can write:

Ak =
+∞
⋃

j=0

f jBk+j

which give considering thatµ is an invariant measure:

µ(Ak) =
+∞
∑

j=k

µ(Bk) (2.35)
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Eventually we can write:

FA(t) = µ





[t/µ(A)]
⋃

k=1

Ak



 =

[t/µ(A)]
∑

k=1

FA is the partition function of a discrete aleatory variable so that it is a

simple function : more exactly it is constant over the intervals

[kµ(A), (k + 1)µ(A)[

and its value is established by the precedent sum.

It has a jump discontinuity of height µ(Ak) at the point kµ(A).

Let us define F̄A the piecewise linear function which has the same values

of FA for all point kµ(A), and that is linear over the intervals [kµ(A), (k +

1)µ(A)]. Using equation 2.35, all the jump discontinuities of FA are de-

creasing which implies that F̄A is concave. On the other hand it is continue

and increasing and its right derivative for a point t ∈ [kµ(a), (k + 1)µ(A)[

can be written as:

F̃ ′
A(t) =

µ(Ak + 1)

µ(A)
(2.36)

in the same way, the return

F̃A(t) =
1

µ(A)

[t/µ(A)]
∑

k=1

µ(Bk) (2.37)

is constant over [kµ(a), (k+1)µ(A)[ and has a jump of height µ(Bk)
µ(A)

in kµ(A).

∀t ≥ 0 we can write:

F̄ ′
A(t) = 1− F̃A(t) (2.38)

By the definition of F̄A we get:

||FA − F̄A||∞ ≤ µ(A) (2.39)

Let (An)n a sequence of measurable sets so that µ(An) → 0 and F̃An
⇒ F̃

(in this case F̃ ∈ Ã). Since F̃ is increasing and ∈ [0.1] then F̃An
→ F̃ a.e.
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over [0,+∞[. Now, by applying the dominated convergence theorem over

[0, t] for t ≥ 0 and using equation 2.38 we have:

F̄An
(t) =

∫ t

0

(1− F̃An
(s))ds→

∫ t

0

(1− F̃ (s))ds =: F (t) (2.40)

Posing F (t) = 0 if t > 0, then F̃ ∈ Ã and F ∈ A. On the other hand, by

using equation 2.39, FAn
(t) → F (t), ∀t ∈ R. Eventually, if F̃An

⇒ F̃ then

FAn
⇒ F previously defined.

Corollary The Hitting times distribution is exponential if and only if the

Return times distribution is exponential



Chapter 3

Reversibility Error,

Correlations and Fidelity

decay

Important statistical properties of dynamical systems can be inferred also

studying the behaviour of correlation and fidelity functions and the Re-

versibility Error. In this chapter we present the theory used to describe

the asymptotic decay of correlations and fidelity for different dynamical

systems. This theory is strictly connected to recurrences statistics and ex-

treme value theory as we will show in the next chapters.

The decay of correlations plays a very important role in nonequilibrium

statistical mechanics. It is essential in the studies of relaxation to equilib-

rium. Correlations and autocorrelations functions are explicitly involved in

the formulas for transport coefficients, such as heat conductivity, electrical

resistance, viscosity, and the diffusion coefficient [Chernov, 2008].

On the other side, classical fidelity is the counterpart of quantum fidelity

which is a measure of the stability of quantum motion. The fidelity is a

function of the specific perturbation but, usually, the dependence on time

shows rather general features [Ruggiero et al., 2006].

35
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3.1 Reversibility Error

It is possible to introduce the reversibility error after n iteration of a map

f as:

∆n = dist(f−n(fn(~x)), ~x) (3.1)

Using this definition Marie et al. [2009] have investigated numerically the

role of numerical round-off. In a regular region ∆n is about of the same

order of magnitude of the machine precision 10−13− 10−16 while it is orders

of magnitude greater in chaotic regions.

For this reason, by using this indicator it is possible to distinguish chaotic

from regular region with a great detail [Franceschelli S., 2007]. In chapter

6 we present some examples of map with different kind of regions depicted

using reversibility error.

3.2 Correlations function

Let (Ω,F , µ, f) be a dynamical system and let us denote by fn the dynam-

ical evolution on the phase space Ω with ergodic measure µ, then, for any

choice of ϕ, ψ ∈ L2(Ω, µ), we want to study:

Cϕ,ψ(n) =

∫

Ω

ϕ(fnx)ψ(x)dµ(x)−
∫

Ω

ϕ(x)dµ(x) ·
∫

Ω

ψ(x)dµ(x) (3.2)

and we call it correlations function. We will see that sometimes the cor-

relations function Cϕ,ψ(n) decays exponentially with n for suitable ϕ, ψ, in

other cases we will observe a power law decay: we say that correlations:

• decay exponentially if |Cϕ,ψ(n)| < const · e−cn for some c > 0.

• decay polynomially if |Cϕ,ψ(n)| < const · n−α for some α > 0.

If the relevant invariant measure is unknown, it is necessary to compute

time averages instead of phase averages:
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Cϕ,ψ(n) = lim
T→∞

1

T

∫ T

0

ϕ(f t+τx0)ψ(f
τx0)− < ϕ > · < ψ > (3.3)

One way to obtain analytical results is to consider the Fourier transform of

the correlations function:

Ĉϕ,ψ(ω) =
∑

n∈Z

einωCϕ,ψ(n) (3.4)

By substituting einω with z in the expression above, we obtain an equation

in form of a power series in z. Regarding this series we know the first

n coefficients (that is up to the maximum correlation time). Following

Artuso [1999] and Baladi [1999] the exponential decay is associated to the

analyticity of Ĉϕ,ψ(ω): if it has a pole in ω∗ = α + iβ, this represents a

contribution

exp(−β · n+ iα · n)

to the correlations function. The analyticity of Ĉϕ,ψ(ω) regards a strip cen-

tred around the real axis: |ℑω| < η with η not dependent on the observables

ϕ, ψ for same function class.

3.3 Correlations and Recurrences

To show the linkages between correlations decay and Poincaré Recurrences,

we follow Young’s method for hyperbolic dynamical systems [Young, 1999].

We recall that hyperbolic dynamics is characterized by the presence of ex-

panding and contracting directions for the derivative. This stretching and

folding typically gives rise to complicated long-term behaviour in these sys-

tems (see Hasselblatt and Katok [2003] for a comprehensive description).

We describe the basic idea of Young’s method shown in Chernov and Zhang

[2005], skipping mathematical and technical details which can be found in

the original papers.
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Let f : Ω → Ω be an hyperbolic map acting on Ω and µ an absolute con-

tinue ergodic measure. We are looking for sufficient conditions under which

correlations for the map f decay. Young constructs a set ∆0 with a hyper-

bolic structure obtained by intersection of a family of unstable manifolds

with a family of stable manifolds similar to an ’horsehoe’. We iterate points

x ∈ ∆0 using the map f until they make return to ∆0.

We can now construct a tower, ∆, with base ∆0, where the induced map f∆

moves every points one floor up until it hits the ceiling, eventually falling

onto the base again. The tower ∆ is identified with Ω, and f∆ with f . Now,

we can introduce the first return time defined in equation 2.4 which in this

case, for x ∈ ∆, can be written as:

τ∆0(x) = inf{k > 0 : fk∆(x) ∈ ∆0} (3.5)

that is the first return time of the point X to the base of the tower ∆0.

Since the tower has infinitely many levels, τ is unbounded. As in equations

2.16 and 2.17, we can introduce the Hitting Times statistics:

F (x ∈ ∆ : τ∆0(x) > n).

Young proves both that if the Hitting Time Statistics is exponential (that is

exponentially small probability of long returns), then correlations function

decays exponentially and that correlations decay polynomially for systems

with slower mixing rates:

Theorem (Young) Let f : Ω → Ω be an hyperbolic map acting on Ω and

µ an absolute continue ergodic measure, if

• The Hitting Time Statistics shows an exponential decay:

F (x ∈ ∆ : τ∆0(x) > n) ≤ const · θn ∀n ≥ 1 (3.6)

where θ < 1 is a constant, then

|Cϕ,ψ(n)| < const · e−cn for some n > 0 (3.7)
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• The Hitting Time Statistics shows a power law decay:

F (x ∈ ∆ : τ∆0(x) > n) ≤ const · n−α ∀n ≥ 1 (3.8)

where α > 0 is a constant, then

|Cϕ,ψ(n)| < const · n−α (3.9)

To verify directly the tail bound in specific systems, we have to iterate the

map f and construct a ∆0, an approach that might be quite difficult.

To overpass this problem, we can use another approach, introduced by

Chernov and Markarian [2007],which allow us to avoid the computation of

Young’s tower. Imagine that one can localize, on the Ω manifold, a set

M ⊂ Ω having a strong hyperbolic behaviour. Consider the hitting time

statistics F :M →M , then there exists an horse-hoe ∆O ⊂M which return

times are exponentially bounded under the map f . If we suppose that:

F (x ∈ Ω : τM(x) > n) ≤ const · n−α ∀n ≥ 1 (3.10)

then, equivalentely, we may suppose that:

F (x ∈M : τM(x) > n) ≤ const · n−α−1 ∀n ≥ 1 (3.11)

Theorem (Markarian): Let f : Ω → Ω a non-uniformly hyperbolic

map. Suppose M ⊂ Ω is a subset such that the Hitting time statistic F :

M → M satisfies equation 3.6 for τ∆0(x) to a rectangle ∆0 ⊂ M . If the

return times τM(x) satisfies the bound of equation 3.10 or 3.11, then

|Cϕ,ψ(n)| < const · (lnn)α+1n−α (3.12)

and this bound differs from Young’s by the extra factor (lnn)α+1. A similar

argoument can be used to proof the bound for the power law decay.
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3.4 Classical Fidelity and Noise Perturbed

map

The fidelity was first introduced as a measure of the stability of quantum

motion considering the overlap of two states which, starting from the same

initial conditions, evolve under two slightly different Hamiltonians H0 and

Hǫ = H0 + ǫV where ǫ is a factor smaller than unit [Benenti et al., 2003].

For classic systems, introducing a classical fidelity may be also interesting

especially for chaotic systems. Following Liverani et al. [2007] we introduce

this quantity as:

̥
ǫ
ϕ,ψ(n) =

∫

Ω

ϕ(fnx)ψ(fnǫ x)dµ(x) (3.13)

where ǫ can be a generic perturbation. On the other hand, fidelity is useful

to study the errors: in fact, if we define the error as:

∆n(x) = fnx− fnǫ x

then its Fourier transform is just ̥ϕ,ψ(n) where ϕ(x) = eikx and ψ(x) =

e−ikx.

We can extend both the fidelity and correlations function definitions for

a stochastic perturbation [Marie et al., 2009] [Liverani et al., 2007]. Con-

sider a sequence of independent and identically distributed random vari-

ables (ξk)k∈N with value in the vector space Ωǫ and distribution θǫ. We

associate to each ξ ∈ Ωǫ a map fξ with f0 = f and the iteration of the map

f is replaced by a composition of maps chosen randomly close to it:

fnǫ (x) = (f + ǫξn) ◦ (f + ǫξn−1) ◦ ... ◦ (f + ǫξ1)(x)

To introduce a fidelity definition, following Liverani et al. [2007], we con-

sider a class of maps M with the following properties:
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1. M admits and invariant stationary measure µǫ defined by

lim
n→∞

∫

Ω

∫

ΩN
ǫ

∏

i

θǫ(ξi)dξiϕ(f
n
ǫ (x))dµ(x) =

∫

ϕdµǫ (3.14)

θǫ is chosen ensuring that µǫ is absolutely continuous with respect to µ

(that is Lebesgue measure) and furthermore we suppose the stochastic

stability:
∫

Ω

ϕdµǫ →
∫

Ω

ϕdµ when ǫ→ 0.

2. The correlations function Cϕ,ψ(n) decays exponentially as detailed in

equation 3.7 for the unperturbed map.

3. The correlations function Cϕ,ψ(n) of the perturbed map can be written

as

|Cǫ
ϕ,ψ(n)| =

∣

∣

∣

∣

∣

∫

Ω

∫

ΩN
ǫ

ϕ(fnǫ x)ψ(x)
∏

i

θ(xii)dξidµ(x)−
∫

Ω

ϕ(x)dµ(x) ·
∫

Ω

ψ(x)dµ(x)

∣

∣

∣

∣

∣

(3.15)

and we assume an exponential decay:

|Cǫ
ϕ,ψ(n)| ≤ const · e−cn for some n > 0.

If we now introduce the classical fidelity for a perturbed map as:

̥
ǫ
ϕ,ψ(n) =

∫

Ω

∫

ΩN
ǫ

ϕ(fnǫ x)ψ(f
nx)
∏

i

θ(xii)dξidµ(x) (3.16)

then it is possible to proof the following theorem for the fidelity decay

[Liverani et al., 2007].

Theorem (Liverani - Marie - Vaienti) For the class function M there

exists a constant C1 > 0 such that:

δ̥ǫ
ϕ,ψ(n) =

∣

∣

∣

∣

̥
ǫ
ϕ,ψ(n)−

∫

Ω

φdµ

∫

Ω

ψdµ

∣

∣

∣

∣

≤ C1ǫ
−kλ−n(||ψ||||ϕ||sup+||ϕ||||ψ||sup)

(3.17)
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where || · || is a suitable norm on the space of observables and || · ||sup is the

supremum norm on continuous functions.

For chaotic map the decay is more than exponential while for regular maps

is exponential.

3.5 Numerical investigation on Correlations

and Fidelity decay

Investigations on correlation and fidelity decay may be performed in a num-

ber of ways: the method used in this work consists in a Monte Carlo simula-

tions performed simply select a pair of observables and compute correlations

function involving a number of N sample points: this leads to a statistical

error of the order of 1/
√
N . To proof this claim, we briefly recall the basics

of Monte Carlo integration:

Consider an integral on the one-dimensional unit interval

I[f ] =

∫ 1

0

f(x)dx = f̄

Then consider a sequence (xn)n∈N sampled from the uniform distribution.

Then an empirical approximation to the expectation of the integral is:

IN [f ] =
1

N

N
∑

n=1

f(xn)

According to the Strong Law of Large Number:

lim
N→∞

IN [f ] → I[f ]

Once defined the Monte Carlo integration error as:

ǫN [f ] = I[f ]− IN [f ]
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the bias is E[ǫN [f ]] and the root mean square error is E[ǫN [f ]
2]1/2. For N

large ǫN [f ] ∼ σN−1/2ν where ν is a standard normal random variable and:

σ = σ[f ] =

(∫ 1

0

(f(x)− I[f ])2
)1/2

Define ξi = σ1(f(xi)− f̄) for xi uniformly distributed. Then:

E[ξi] = 0

E[ξ2i ] =

∫

σ−2(f(xi)− f̄)2dx = 1

E[ξiξj] = 0 if i 6= j

I we now consider the sum:

SN =
1

N

N
∑

1

ξi = σ−1ǫN

we eventually can calculate its variance:

E[S2
N ]

1/2 = E[N−2

(

N
∑

i=1

ξi

)2

]1/2

= N−1

{

E

[

N
∑

i=1

ξ2i

]

+ E

[

N
∑

i=1

∑

j 6=i

ξiξj

]}1/2

= N−1

{

N
∑

i=1

1 + 0

}1/2

= N−1/2

(3.18)

that is E[ǫ2N ] = σN−1/2.

In many cases it imposes severe limitations on the maximal time for which

correlations and fidelity may be computed. Quite rapidly the signal be-

comes of the same size of the statistical error data are dramatically spoilt,

and one just sees wild fluctuations around that level: for further discussion

and references see Artuso [1999].
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Chapter 4

Recurrences and EV Theory

In this chapter we explore the link between Extreme Value Laws presented

in the first chapter and First Time Statistics, widely described in chapter

two, following the recent paper of Freitas et al. [2009]. The main theorem

shows a deep connection between the two theories especially for dynamical

systems which exhibit an exponential return time statistics. This allow us to

explore with both theoretical an numerical arguments Poincaré Recurrence

by using Extreme Value Laws and vice versa.

This chapter is organized as follows: first we state some results useful to

deal with particular dependent variables. The main results obtained by

Freitas are presented recalling Lebesgue’s Differentiation Theorem which

has been used to obtain some evidence about the nature of the observables

used in the subsequent numerical investigation. Eventually, we describe

the sensitivity numerical studies of some parameters involved in this theory

which we have performed to clarify the behaviour of the observables widely

studied in the following chapters.

45
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4.1 Preliminaries

4.1.1 Uniform mixing conditions

We have introduced the statistics of maxima Mn = max{X0, ..., Xn−1} for

i.i.d variables X0, X1.. and we have already observed in 1.1.2 that exists a

limit distribution under certain conditions.

The same limit laws apply to stationary stochastic processes, under certain

conditions on the dependence structure, which allow the reduction to the

independent case. Freitas et al. [2009] associate to a given stochastic process

X0, X1, ... an i.i.d. sequence Y0, Y1, ... whose distribution function is the same

as that of X0, and whose partial maximum is defined as:

M̂n = max{Y0, ..., Yn−1}

In the dependent context, the general strategy is to prove that if X0, X1, ..

satisfies some conditions, then the same limit law for M̂n applies to Mn

with the same normalizing sequences an and bn. See Freitas and Freitas

[2008] for the complete proof.

Condition D2(un): We say that D2(un) holds for the sequence X0, X1, ...

if for any integers l, t and n

|µ({X0 > un}∩{max{Xy, ..., Xt+l−1}})−µ({X0 > un})µ({Ml ≤ un})| ≤ γ(n, t)

where γ(n, t) is non-increasing in t for each n.

Condition D
′(un): We say that D′(un) holds for the sequence X0, X1, ... if

lim
k→∞

lim sup
n→∞

n

[n/k]
∑

j=1

µ({X0 > un} ∩ {Xj > un}) = 0

The main result states that if D2(un) and D′(un) hold for the process
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X0, X1, ..., then the following limits exists:

lim
n→∞

µ(M̂n ≤ un) = lim
n→∞

µ(Mn ≤ un) (4.1)

4.1.2 Lebesgue’s Differentiation Theorem

Theorem (Lebesgue): Let us consider a Lebesgue integrable real or

complex-valued function f on Rn, the indefinite integral is a set function

which maps a measurable set A to the Lebesgue integral of f ·χA, where χA

denotes the characteristic function of the set A. We can write it as:

∫

A

f dµLeb

with µLeb the n-dimensional Lebesgue measure.

The derivative of this integral at x is defined to be

lim
B→x

1

|B|

∫

B

f dµLeb,

where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B cen-

tred at x, and B → x means that the diameter of B tends to zero. Then

this derivative exists and is equal to f(x) at almost every point x ∈ Rn.

The points x for which this equality holds are called Lebesgue points. Since

functions which are equal almost everywhere have the same integral over

any set, this result is the best possible in the sense of recovering the function

from integrals [Lebesgue, 1910].

4.2 Freitas’ Main Results

Let (Ω,F , µ, f) be a dynamical system where µ is absolute continuous in-

variant probability measure (that is µ(f−1(A)) = µ(A)) for all A ∈ Ω, a

d-dimensional Riemannian Manifold . We introduce:

• Bδ(ζ) = {x ∈ Ω : dist(x, ζ) < δ} is the ball of radius δ centered in ζ
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• µLeb is Lebesgue measure on Ω.

• ρ = dµ
dµLeb

is a measure density.

• ’dist’ a Riemannian metric on Ω.

Consider the stationary stochastic process X0, X1, ... which is given by:

Xn(x) = g(dist(fnx, ζ)) ∀n ∈ N (4.2)

Defining the partial maxima as:

Mn = max{X0, ...., Xn−1} (4.3)

As in section we are interested in knowing if there are normalizing sequences

{an}n∈N and {bn}n∈N such that:

µ({x : an(Mn − bn) ≤ y}) = µ({x :Mn ≤ un}) → G(y) (4.4)

where un = un(x) = x/an + bn.

4.2.1 Observable functions gi and normalizing sequences

Following Freitas we now describe the three types of observable functions

gi, i = 1, 2, 3. which are suitable to obtain a GEV distribution for nor-

malized maxima according the Gnedenko’s theorem stated in section 1.1.2:

Observation 4.1: Let ζ be a chosen point in the phase space Ω and

consider the function:

g(dist(x, ζ)) : Ω → R (4.5)

g is such that 0 is a global maximum. g : V → W is a strictly decreasing

bijection and it has one of the following behaviour:
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• Type 1: There exists some positive function p : W → R such that for

all y ∈ R

lim
s→g1(0)

g−1
1 (s+ yp(s))

g−1
1 (s)

= e−y (4.6)

• Type 2: g2(0) = +∞ and there exists β > 0 such that ∀y > 0

lim
s→+∞

g−1
2 (sy)

g−1(s)
= y−β (4.7)

• Type 3: g3(0) = D < +∞ and there exists γ > 0 such that for all

y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ (4.8)

gi conditions are just translations in terms of the shape of g−1 of the con-

ditions on the tail of F , since the distribution function F is given by:

F (u) = µ(X0 ≤ u)

Note that in this case the dynamic of the system is not introduced in F

definition.

1− F (u) = 1− µ(X0 ≤ u) (4.9)

It follows from X0 definition that:

1− F (u) = 1− µ(g(dist(x, ζ) ≤ u)) (4.10)

using Lebesgue Differentiation Theorem:

1− F (u) = 1− µ(dist(x, ζ) ≥ g−1(u)) (4.11)

If we observe that:

µ(dist(x, ζ) ≥ g−1(u)) = 1− ρ(ζ)|Bg−1(u)(ζ)|
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Figure 4.1: gi behaviour example.

Then we obtain:

1− F (u) ∼ ρ(ζ)|Bg−1(u)(ζ)|

From the figure 4.2.1 is also clear that:

dist(f jx, ζ) ≤ g−1(u) (4.12)

Once stated this conditions, it is also possible to apply the corollary in

section 1.1.2 in order to obtain the normalizing sequences an e bn:

Observation 4.2: Let {δn}n∈N be such that δn → 0 if n → ∞, for each

ζ ∈ Ω and define k ∈]0,∞[ such that |Bδn(ζ)| ∼ k · δdn, then:

• Type g1: y ∈ R un = g1((kρ(ζ)n)
−1/d) + p(g1((kρ(ζ)n)

−1/d))y
d

• Type g2: y > 0 un = g2((kρ(ζ)n)
−1/d)y

• Type g3: y < 0 un = D − (D − g3((kρ(ζ)n)
−1/d))(−y)
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4.2.2 Freitas’ Theorem

We are now ready to state the main result obtained by Freitas which links

extreme value laws with the hitting time statistics widely presented in sec-

tion 2.4.

Theorem (Freitas): Let (Ω,F , µ, f) be a dynamical system where µ is

an absolute continue invariant probability measure, and consider ζ ∈ Ω for

which Lebesgue’s Differentiation Theorem holds.

• If we have an exponential Hitting Time Statistics F (t) = e−t (defined

in equation 2.29) to balls centred on ζ ∈ Ω, then we have an Extreme

Value Law for Mn which applies to the observables gi (described in

Observation 4.1) achieving a maximum at ζ.

• If we have an exponential Hitting Time Statistics to balls at ζ ∈ Ω,

then we have an Extreme Value Law for Mn which coincides with that

of M̂n (meaning that equation 4.1 holds). In particular, this Extreme

Value Law must be one of the 3 classical types described in equation 1.1

for observables g1, in equation 1.2 for observables g2 and in equation

1.3 for observables g3 where, in all the cases considered, µ → 0 and

σ → 1 since normalizing sequences an and bn are used.

Proof: We describe the part of the proof which demonstrate the theorem

for the observable class g1. The complete proof can be found in Freitas

et al. [2009]. Let us note gi simply g.

• First Part: For n sufficiently large we have:

{x :Mn(x) ≤ un} =
n−1
⋂

j=0

{x : g(dist(f jx, ζ)) ≤ un} (4.13)

We now apply the Lebesgue Differentiation Theorem:
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n−1
⋂

j=0

{x : g(dist(f jx, ζ)) ≤ un} =
n−1
⋂

j=0

{x : dist(f jx, ζ) ≥ g−1(un)}

(4.14)

note the change in the inequality sign. The last equation allow us to

introduce the hitting time statistics over the ball Bg−1(un):

n−1
⋂

j=0

{x : dist(f jx, ζ) ≥ g−1(un)} = {x : τB
g−1(un)

(x) ≥ n} (4.15)

Equation 4.6 and Observation 4.2 allow us to write:

g−1(un) = g−1
[

g1((kρ(ζ)n)
−1/d) + p(g1((kρ(ζ)n)

−1/d))
y

d

]

∼ g−1
[

g1((kρ(ζ)n)
−1/d)

]

e−y/d =

(

e−y

kρ(ζ)n

)1/d (4.16)

Thus:

g−1(un) ∼
(

e−y

kρ(ζ)n

)1/d

(4.17)

As said before, since Lebesgue’s Differentiation Theorem holds for

ζ ∈ Ω, we have µ(Bδ(ζ)
|Bδ(ζ)|

→ ρ(ζ) as δ → 0. Consequently, since it is

obvious that g−1(un) → 0 as n→ ∞, then:

µ(Bg−1un)(ζ)) ∼ ρ(ζ)|Bg−1(un)(ζ)| ∼ ρ(ζ)k(g−1(un))
d (4.18)

and the last passage is clear by using the relation 4.12.

ρ(ζ)k(g−1(un))
d = ρ(ζ)k

e−y

kρ(ζ)n
=
e−y

n
(4.19)

We can now express n as:
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n ∼ e−y

µ(B
g−1(un)(ζ))

(4.20)

Now, by substituting 4.20 in the equation 4.15, taking the limit, we

have:

lim
n→∞

µ

({

x : τB
g−1(un)

(x) ≥ e−y

µ(B
g−1(un)(ζ))

})

= F (e−y) = e−e
−y

(4.21)

Eventually it is possible to write:

lim
n→∞

µ({x :Mn(x) ≤ un}) = e−e
−y

(4.22)

which is the equation 1.1 with µ = 0 and σ = 0 obtained using the

normalizing sequences as stated by Gnedenko (see section 1.1.2).

• Second Part: We use the exponential Hitting Time Statistics hy-

pothesis

F (t) = e−t (4.23)

to proof the second part. It follows by equation 4.22 and 4.1 that

also:

lim
n→∞

µ({x : M̂n(x) ≤ un}) = e−e
−y

(4.24)

which means that the Extreme Value Laws applies to Mn (rather than

M̂n). In the case of observable g1 which we have considered this is

true ∀y ∈ R.

4.3 Noise perturbed case

Let ξ be an aleatory variable with a uniform distribution, then we are

interested in studying:
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fn~ξ x = fξn ◦ ... ◦ fξ2 ◦ fξ1
We introduce:

X̄0(x) = g(dist(x, ζ))

X̄1(x) = g(dist(fξ1x, ζ))

X̄2(x) = g(dist((fξ2 ◦ fξ1)x, ζ))
...

(4.25)

Are these variables independent? If we suppose that uniform mixing con-

ditions stated in 4.1.1 are valid even in this case, then we can introduce an

analogue of Birkhoff’s theorem:

lim
N→∞

1

N

N−1
∑

n=0

ϕ(fn~ξ (x)) =

∫

ϕdµǫ (4.26)

Then X̄n(x) are independent for µǫ a.e. in respect to the initial state and

for almost all the realisations. Note that in this case µǫ is the stationary

measure defined in equation 3.14. We have to study the following statistics:

F̄ǫ(u) = µǫ(X0 ≤ u) = µǫ(g(dist(x, ζ) ≤ u) =

∫

{X0≤u}

dµǫ

There are two possibilities to investigate the behaviour of F̄ :

1. Studying the stationary measure µǫ, finding the density ρǫ =
dµǫ
dµLeb

and

then calculate the expression of un in order to obtain the statistics.

2. Using the results of Pickands III [1968] (cited in section 1.1.2) accord-

ing to which the mean and standard deviation of the distribution can

be taken as scaling constants in place of bn, and an. In this case we

have to compute the following Stieltjes integrals:

< u >=

∫

udF (u)

V ar(u) =< u2 > − < u >2
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4.4 Properties of observable functions gi

We want investigate the observable functions nature by studying them nu-

merically using the Arnold’s cat map which is suitable to obtain fair results

as it satisfies mixing conditions as detailed in section 5.4.

According to conditions 4.6, 4.7 and 4.8 the following are proper observ-

ables:

g1(x) = − log(dist(x, ζ)) (4.27)

g2(x) = dist(x, ζ)−1/α (4.28)

g3(x) = C − dist(x, ζ)1/α (4.29)

where C is a constant and α > 0 ∈ R.

4.4.1 Methodological notes and informatic tools

All the numerical analysis contained in this work have been performed us-

ing self-write MATLAB and C++ code. The results have been presented

by using MATLAB Statistics Toolbox function such as gevfit and gevcdf.

These functions returns maximum likelihood estimates of the parameters

for the generalized extreme value (GEV) distribution and 95% confidence

intervals for the parameter estimates [Martinez and Martinez, 2002].

We have also tried to use ROOT, developed by CERN, using the Maxi-

mum Likelihood criterion [Brun et al., 1997]. Even if the ROOT fit func-

tions works well in many cases, we have found different situations in which

MATLAB fit successfully the dataset while ROOT estimation of param-

eters doesn’t converge. This is the main reason why we have decided to

prefer MATLAB statistics toolbox to perform the analysis and C++ code

to quickly iterate the maps.
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In this work different pseudo-random number generators have been em-

ployed. In MATLAB it has been used the default function rand while in

C++ code our choice has fallen on Mersenne Twister (MT) generator since

it is faster than random or rand functions and has a long period of 219937−1

[Matsumoto and Nishimura, 1998].

The whole numerical work has produced thousands of GB which have re-

quested the use of a dozen processors to generate and analyse the data.

4.4.2 Relations between EV and GEV distribution

for the observable functions gi

Freitas et al. [2009] have introduced normalizing sequences an and bn in or-

der to proof the convergence of normalized maxima to Extreme Value (EV)

distribution (that is GEV distribution where µ = 0 and σ = 1.). Since in

the following numerical studies we fit our data to Generalized Extreme

Value Distribution, it is necessary to explain what is the linkage between

an, bn, µ and σ.

To accomplish this task we present a case of study which involves the com-

putation of an and bn for g1 = − log(dist(x, ζ)) observable function of a

mixing map (Arnold’s cat map detailed in section 5.4 ). Once fitted the

data to GEV distribution varying the number N of maxima, we look at µ

and σ behaviour with n→ ∞.

By the equation 4.9 we know that:

1− F (u) = 1− µ(g(dist(x, ζ)) ≤ u)

= 1− µ(− log(dist(x, ζ)) ≤ u)

= 1− µ(dist(x, ζ) ≥ e−u)

= µ(Be−u(ζ)) = Ωde
−ud

(4.30)

where d is the dimension of the space and Ωd is a constant. To use Gnedenko

condition 1.25 it is necessary to calculate uF
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uF = sup{u;F (u) < 1}

in this case uF = +∞. In fact:

F (u) = 1− Ωde
−ud < 1

then e−udΩd > 0 so that u ∈ R.

Using Gnedenko equation 1.25 we can calculate G(t) as follows:

G(t) =

∫ ∞

t

1− F (u)

1− F (t)
du =

∫ ∞

t

e−ud

e−td
du =

1

d

∫ ∞

td

e−v

e−td
dv =

1

d
(4.31)

then the limit condition 1.25 is easily verified.

According Leadbetter et al. [1983] proof of Gnedenko theorem we can study

both an and bn or γn convergence as:

lim
n→∞

n(1− F{γn + xG(γn)}) = e−x

lim
n→∞

nΩde
−d(γn + xG(γn)) = e−x

then:

γn ≃ log(nΩd)

d

Using Gnedenko Corollary in section 1.1.2 we can obtain an and bn by using

γn:

an = d bn = −1

d
log(n) +

log(Ωd)

d

In Arnold’s cat map d = 2, we have to verify that:

σ =
1

an
=

1

d
=

1

2
(4.32)

µ = bn = C − 0.5 log(n) (4.33)
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Looking at figure 4.2 these relations seem to be verified. σ is almost constant

around a value of 0.5 and µ has a logarithmic behaviour with n. A linear

fit give the following decay:

µ = 9.133− 0.504 log(n) r2 = 0.99

where r is the correlation parameter. These results justifies the use of GEV

instead of EV distribution with the normalizing sequences substituted by

the parameters µ and σ obtained by the fit function.

Figure 4.2: GEV µ and σ parameter VS n for g1 observable, Arnold’s cat

Map.
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4.4.3 Sensitivity studies of α parameter

The first analysis we have performed regards a sensitivity study about α

parameter in order to evaluate which is the response of the fit function and

which α value is eligible to our further analysis.

The map used was a hyperbolic toral automorphism known as Arnold’s cat

map (see also section 5.4). For each α value we have computed the g2 and

g3 observable series for a total of 104 maxima each chosen over 104 iteration

of the map.

In figure 4.3 we can observe the behaviour of ξ tail parameter in respect

to α. Recalling that ξ is expected to be positive in this case, we see that

ξ reaches very quickly a negative asymptotic value ξ
(g2)
∞ ≃ −0.008. This is

unexpected from a theoretical point of view but we have to note that the

uncertainty in the estimation of ξ parameter is of order 10−2 so that even ξ

positive values are allowed. It is also interesting to note that the behaviour

for the g3 observable is similar and that ξ
(g3)
∞ ≃ ξ

(g2)
∞ ≃ −0.008. Eventually

we can imagine that the ξ estimator is biased although the uncertainty

justifies also positive value of ξ
(g2)
∞ . To avoid this problem, in order to

obtain clear positive ξ values for g2 observables and negative for g3, we will

set α = 3 for our subsequent investigations.

Besides ξ we have investigated the behaviour of µ and σ parameters. In

figure 4.4 it is possible to observe a rapid decay to an asymptotic µ∞ value

for g2 and g3 observables. The uncertainty over µ estimation is of order

10−2 for α ≃ 10 and of order 10−4 when α ≃ 103 − 104 .

The behaviour of σ parameter is interesting since it shows a linear decay

when plotted against α in a log-log scale as shown in figure 4.5. A linear

interpolation of data gives the following results:

log(σ(g2)) = −1.006 log(α)− 0.612 r2 = 0.99

log(σ(g3)) = −0.995 log(α)− 0.711 r2 = 0.99
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where r is the correlation parameter.

Note that all the fits shown in figure 4.3-4.5 pass Kolmogorov Smirnov test

described in section 1.4.1 with the maximum confidence level even the test

parameter D increases as α increases.

Figure 4.3: GEV ξ parameter VS α for g2 observable (a) and g3 observable

(b), Arnold’s cat Map.
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Figure 4.4: GEV µ parameter VS α for g2 observable (a) and g3 observable

(b), Arnold’s cat Map.
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Figure 4.5: GEV σ parameter VS α for g2 observable (a) and g3 observable

(b), Arnold’s cat Map.



Chapter 5

Mathematical models

In this chapter we apply different indicators of dynamic stability to mathe-

matically simple prototype maps which show interesting properties of sta-

bility, chaoticity or mixing. The existence of clear mathematical statement

for these maps allow us to work in a strong theoretical framework that we

can use to investigate the behaviour of GEV parameters even in stochasti-

cally perturbed maps.

We show that in case the Lebesgue measure is the same of stationary mea-

sure for a perturbed map we expect no difference in GEV parameters among

the different noise amplitudes and if compared to the deterministic map.

When this condition is not verified a quite different behaviour is achieved:

this is the case of Shear Flow Perturbed Map.

Through the chapter we present many dynamic indicators of stability ex-

plaining what can be expected theoretically and what are the difficulties in

their numerical computation. The use of all indicators give us a theoretical

environment to begin the study of physical systems. This topic will be

pursued in the next chapter.

63



64 5. Mathematical models

5.1 Irrational Rotations

The name originates from the fact that this map comes from a rotation by

an angle of ω on a circle after identifying that circle with the interval [0, 1]

where the boundary points are identified. The map, in its unperturbed

version, can be written as:

xn+1 = xn + ω mod 1 (5.1)

If we introduce both deterministic and stochastic perturbations, then:

xn+1 = xn + ω + ηω + ǫξn mod 1 (5.2)

where η is a small parameter representing a deterministic perturbation, ǫ

represents the noise amplitude, and ξ ∈ [−1, 1] is a random variable with

uniform distribution.

5.1.1 Orbit Divergence

Let us consider two orbits:







xn+1 = fn(x0)

x̄n+1 = fn(x0 + δx0)
(5.3)

where δx0 is a small quantity. Then, the orbit divergence is defined as:

Jxn+1 = x̄n+1 − xn+1 (5.4)

We can introduce a stochastic perturbation:







xn+1 = fn(x0)

x̄n+1 = fnǫ (x0)
(5.5)
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Then the divergence is in a statistical sense:

Jxn+1 =< (xn+1− < x̄n+1 >)
2 >1/2 (5.6)

Let us compute orbits divergence in case of perturbed or unperturbed map.

We consider the following cases:

• η = ǫ = 0. It follows that:

xn+1 = x0 + nω mod 1

so that

Jxn+1 = δx0 mod 1

and there is not orbit divergence.

• η 6= 0, ǫ = 0 As before:







xn+1 = x0 + nω mod 1

x̄n+1 = xo + δx0 + nω + nηω mod 1
(5.7)

In this case we obtain a divergence proportional to n:

Jxn+1 = nηω + δx0 mod 1

• η = 0, ǫ 6= 0 In this case we define:







xn+1 = x0 + nω mod 1

x̄n+1 = xo + nω + ǫ
∑n

j=0 ξj mod 1
(5.8)

We use the definition 5.6, then:

Jxn+1 =< ǫ2(ξ0 + · · ·+ ξn)
2 >1/2 mod 1
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Jxn+1 =< ǫ2
n
∑

i,j=0

< ξiξj >>
1/2 mod 1

Jxn+1 =< ǫ2
n
∑

i,j=0

δij >
1/2 mod 1

Jxn+1 = ǫ(n+ 1)1/2 mod 1

with a divergence proportional to the square root of n that is typical

of a diffusion process.

5.1.2 Correlations decay

Correlations decay detailed in section 3.3 can be computed both analyti-

cally and numerically for qx mod 1. The analytical result can be obtained

using Fourier theory as detailed in Turchetti et al. [2010].

Considering a pure irrational rotation without perturbation we observe no

correlations decay:

cn =
∑

k,k′

φkφ
∗
k′

∫ 1

0

e2πik(x+ nω)e−2πik′xdx (5.9)

the integral vanishes if k 6= k′, so that:

cn =
∑

k

φkφ
∗
ke

2πiknω (5.10)

if |φk| ≤ C/|k|, then we observe only an oscillating behaviour with no

correlations decay.

5.1.3 Fidelity decay

We have introduced Classical Fidelity in equation 3.16 and fidelity decay

has been noted as δ̥ǫ
ϕ,ψ(n) in equation 3.17.
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In case of irrational rotations we write Fidelity as:

̥
ǫ
φ,ψ(n) =

∫ 1

0

(

∫ 1

−1

· · ·
∫ 1

−1

φ (x+ nω)ψ

(

x+ nω + ǫ

n
∑

j=0

ξj

)

dξ0
2

· · · dξn
2

)

dx

Let φ(x+1) = φ(x) be periodic of period 1. Using Fourier theory as in the

decay of correlations:

̥
ǫ
φ,φ(n) = φ2

0 +
∑

k 6=0

|φk|2
∫ 1

−1

· · ·
∫ 1

−1

exp

(

2πikǫ
n
∑

j=0

ξj

)

dξ0
2

· · · dξn
2

If we perform the integrals over noise, then:

̥
ǫ
φ,φ(n) = φ2

0 +
∑

k 6=0

|φk|2
(

sin(2πkǫ)

2πkǫ

)n+1

Let us choose φ(x) = cos(2πx) then φ±1 = 1/2 and φk = 0 otherwise. Then:

δ̥ǫ
φ,φ(n) =

1

2

(

sin(2πkǫ)

2πkǫ

)n+1

(5.11)

The following relations hold:

lim
n→∞

̥
ǫ
φ,φ(n) = 0

̥
ǫ
φ,φ(0) = 1/2

If α << 1 then:
(

sin(α)

α

)n

= exp

(

n log

(

sin(α)

α

))

= exp

(

n log

(

1− α2

3
+ ...

))

(

sin(α)

α

)n

= exp

(

−nα
2

3

)

furthermore, with α2n << 1:

(

sin(α)

α

)n

≃ 1− nα2

3
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Eventually, if α >> 1:

(

sin(α)

α

)n

≤ α−n = exp(−n logα)

and in this case the fidelity decay is almost exponential.

In figure 5.1 it is possible to observe what we have just analytically de-

scribed. The computation has been performed using a Monte Carlo method

starting with 106 random initial points within the torus [0, 1]. For ǫ = 0.1

the decay is exponential while small ǫ values show slower decay behaviours.

Figure 5.1: Fidelity for different ǫ, Irrational rotations perturbed map
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5.1.4 Return time statistics

The existence of at most three different return times for irrational rotations

on the circle was proved by Slater about forty years ago. However, the proof

of the existence of a limit law, provided the shrinking subsets of the circle

are chosen in a descending chain of re-normalisation intervals, is a recent

result. Coelho and De Faria [1996] were able to find the limit distribution

of first entry times when the rotation number is taken as an arbitrary

irrational number whereas a simple proof concerning the limit statistics of

first return times and restricted to a particular class of quadratic irrationals

was independently given by Buric et al. [2005].

5.2 Skew Map

This integrable map was widely studied by Hu et al. [2004] and Rossi et al.

[2005] to show an algebraic decay of return time spectrum and introduce

the concept of local mixing.

The map may be written as:







xn+1 = xn + yn mod 1

yn+1 = yn
(5.12)

The concept of local mixing over a domain is intuitively understandable

looking at figure 5.2, the stretched form of domain justifies the other name

given to this map that is shear flow. It can be formalized following Hu

et al. [2004] as follows:

Let µL be the Lebesgue measure and take a cylinder Cǫ = T× [0, lside] where

we define the measure µlside

µlside(A) =
µL(A)

µL(Clside)
=
µL(A)

lside
A ⊆ Clside

The set Clside is invariant with respect to system 5.12 and µlside is its invari-

ant measure.
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Now we are ready to introduce the definition of local mixing which is proved

in Hu et al. [2004].

Proposition: Given the dynamical system 5.12 over the cylinder Clside and

with measure µlside and the square Alside = [0, lside] × [0, lside] the following

property holds:

µǫ(Alside ∩Rn(Alside) )− µ2
lside

(Alside) = O
(

1

n

)

. (5.13)

Figure 5.2: Skew map, representation after some iterations

5.2.1 Orbit Divergence

Proceeding in the way shown in section 5.1.1, we compute the divergence

in different cases:
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• First we consider the unperturbed map:







x̄n+1 = x0 + δx0 + n(y0 + δy0) mod 1

ȳn+1 = y0 + δy0
(5.14)

Since we are in two dimensions:

J~xn+1 =
√

(x̄n+1 − xn+1)2 + (ȳn+1 + yn+1)2 (5.15)

J~xn+1 =
√

(δx0 + nδy0)2 + (δy0)2 (5.16)

J~xn+1 ≃ nδy0 (5.17)

and we obtain a similar result, except a factor (1 + η), considering a

deterministic perturbation such ηyn

• Let us consider a stochastically perturbed version of the Skew map:







x̄n+1 = x0 + ny0 + ǫ
∑n

j=0 ξj

ȳn+1 = y0
(5.18)

Using the definition 5.6, then we obtain the same decay that holds

for perturbed irrational rotations map:

J~xn+1 =< ǫ2
n
∑

i,j=0

< ξiξj >>
1/2

J~xn+1 =< ǫ2
n
∑

i,j=0

δij >
1/2

J~xn+1 = ǫ(n+ 1)1/2
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• We can perturb the angular variable y obtaining a different result:







x̄n+1 = x0 + ny0 + ǫ
∑n

j=0 ξj(n− j)

ȳn+1 = y0 + ǫ
∑n

j=0 ξj
(5.19)

Let us divide into two parts:

Jyn+1 = ǫ(n+ 1)1/2

as shown in the precedent computation. It is more interesting Jxn+1,

in fact:

Jyn+1 =< ǫ2
n
∑

j,l=0

< (n− j)ξj(n− l)ξl >>
1/2

but j = l, so that:

Jxn+1 =< ǫ2
n
∑

i,j=0

(n− l)2 >1/2

Jxn+1 ≃
ǫ

3
(n+ 1)3/2

this kind of diffusion is typical for angular variables. The same kind

of results hold in the continuous case

5.2.2 Correlations decay

For the shear-flow map in absence of noise, the correlation function may be

written as:

cn =

∫

Φ(x)Φ(x+ ny))dµ(x, y) (5.20)

where Φ(x) is a generic observable. The map is here defined over T× [0, η]

so that dµ = dx · dy/η.
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We can obtain the correlation spectral decay Cφ(n) = |cn−c0| using Fourier

theory as in the precedent cases:

cn =
∑

k,k′

φkφ
∗
k′

∫ η

0

∫ 1

0

1

η
e2πik(x+ ny)e−2πik′xdxdy

=
∑

k

φkφ
∗
k

1

η

∫ η

0

e2πiknydy

= φ0φ
∗
0 +

∑

k 6=0

e2πikηn − 1

2πikn
φkφ

∗
k

= φ0φ
∗
0 +

1

n

∑

k 6=0

eπikη
sin(πkηn)

πkη
φkφ

∗
k

(5.21)

if |φk| ≤ C/|k|, then:

Cφ(n) = |cn − φ2
0| ≤ 2C2

∞
∑

k=1

S(kηn) · 1

k2
(5.22)

The next task is to estimate decay analysing the structure of S(x).

|S(x)| =
∣

∣

∣

∣

sin(2πx)

2πx

∣

∣

∣

∣

≤











exp (−x2 log(2π)) |x| < 1
1

2π|x| |x| ≥ 1
(5.23)

we obtain:
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∞
∑

k=1

1

k2
S(kηn) ≤

1/η
∑

k=1

1

k2
exp

(

−k
2

4
η2n2 log(2π)

)

+
1

n

∞
∑

k=1/η

1

πkη
· 1

k2
≤

≤
∫ ∞

1

exp

(

−k
2

4
η2n2 log(2π)

)

dk2 +
1

n
· 1

πη

∫ ∞

1/η

dk

k3
=

=
exp

(

−η2 n2

4
log(2π)

)

η2 n
2

4
log(2π)

+
1

n
· 1

πη

η2

2
=

=
η

2πn
+

exp
(

−η2 n2

4
log(2π)

)

η2 n
2

4
log(2π)

(5.24)

which shows an asymptotic power-law decay for the correlation spectrum

in a shear-flow map.

Correlation decay - noise added only to x variable

By adding noise only to x variable, as in equations 5.18, the correlation de-

cay spectrum can be observed only if Φ = Φ(x). Otherwise, if the observable

is of the type Ψ = Ψ(x, y) and, for example, factorizable as Ψ = ϕ(x) ·χ(y),
the decay cannot be observed.

In fact, supposing ϕ as constant , we obtain the following contradiction:

cn =

∫

χ2(y)dy 6=
(∫

χ(y)dy

)2

(5.25)

Again, using Fourier series decomposition, we rewrite:

cn =
∑

k,k′

φk′φ
∗
k

∫ 1

−1

∫ 1

−1

∫ 1

0

exp (2πikx) exp

(

−2πik

(

x+ nω + ǫ

n−1
∑

j=0

ξj

))

dx
d~ξn
2n

(5.26)

and proceeding as before:

cn =
∑

k

|φk|2e−2πikωSn(kǫ) (5.27)
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|S(x)| =
∣

∣

∣

∣

sin(2πx)

2πx

∣

∣

∣

∣

≤











exp (−x2 log(2π)) |x| < 1
1

2π|x| |x| ≥ 1
(5.28)

supposing |φk| ≤ C/|k|, we write:

Cφ(n) ≤ 2C

1/ǫ
∑

k=1

1

k2
exp (−nk2ǫ2 log(2π)) + 2C

(2π)n

∞
∑

k=1/ǫ

1

k2
· 1

(kǫ)n
≤

≤ 2C exp (−ǫ2n log(2π))
1/ǫ
∑

k=1

1

k2
+

2C

(2π)n
ǫ

∞
∑

k=1/ǫ

ǫ

(kǫ)n+2
≤

≤ 2C exp (−ǫ2n log(2π))
(

1 +

∫ 1/ǫ

1

dk

k2

)

+
2Cǫ

(2π)n

(

ǫ+

∫ ∞

1/ǫ

ǫ
dk

(kǫ)n+2

)

=

= 2C exp (−ǫ2n log(2π))(2− ǫ) +
2Cǫ

(2π)n

(

ǫ+
1

n+ 1

)

≤

≤ 4C exp (−ǫ2n)
(5.29)

Equation 5.29 shows the exponential decay of correlations in the case of

random noise added only to x variable.

Correlation decay - noise added to y variable

We now consider the map 5.19 expecting some difference in correlations de-

cay when noise is added to angular variable as in this case. The correlation

function may be written as:

cn =

∫ 1

0

dx

∫ η

0

dy

η

∫ 1

−1

dξ1
2
...

∫ 1

−1

dξn−1

2
φ(x)φ

(

x+ ny + ǫ

n−1
∑

k=1

(n− k)ξk

)

(5.30)
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cn = φ2
0 +

∑

k 6=0

φkφ
∗
k

∫ 1

0

exp(2πikny)
dy

η
· 1
2

∫ 1

−1

exp(2πikǫ(n− 1)ξ1)dξ1·

· 1
2

∫ 1

−1

exp(2πikǫ(n− 2)ξ2)dξ2 · · ·
1

2

∫ 1

−1

exp(2πikǫξn−1)dξn−1

(5.31)

cn = φ2
0+
∑

k 6=0

φkφ
∗
k exp (πikǫ)S(η(k/2)n) ·S(kǫ(n−1)) ·S(kǫ(n−2)) · · ·S(kǫ)

(5.32)

We note an initial power lay decay followed by an asymptotic exponential

decay, as shown In the following proof.

Suppose that k ≤ kmax with |φn| ≤ C/|k|, if kmaxǫn << 1, then:

n−1
∏

j=1

|S(kǫj)| ≤ exp

(

− log(2π)k2ǫ2
n
∑

j=1

j2

)

≤ exp

(

−k2ǫ2n3 log(2π)

3

)

(5.33)

if n3k2maxǫ
2 << 1 the product of S(kǫj) is about of order 1 while S(πkηn)

decay as 1/n.

If, instead, nǫ >> 1 the we have:

n−1
∏

j=1

|S(kǫj)| ≤
n
∏

j=n/2

1

2πkǫj
=

1

2πkǫ

n

2
exp





n
∑

n/2

log j



 =

=
1

(2πǫ)n/2
exp

(

n log(n)− n− n

2
log
(n

2

)

+
n

2

)

=

=
1

(2πǫ)n/2
exp

[n

2
(log 2n− 1)

]

(5.34)

The product of S(kǫj) is about of order 1 and the decay is given by the

first term:
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Cφ(n)) = |cn − φ2
0| ≤

η

π
· 1
n

To observe the exponential decay we have to consider the region in which

kmaxǫn̄ >> 1 and n > n̄ > 1.

Assume n̄ = n/2 we eventually obtain:

n−1
∏

j=1

|S(kǫj)| ≤
n
∏

j=n/2

1

2πǫjk
=

1

(2πǫk)n/2
exp





n/2
∑

j=1

log(j)



 =

=
1

(2πǫk)n/2
exp

(n

2
(log 2n− 1)

)

=
1

(4πǫnk)n/2

(5.35)

from which we obtain:

kmax
∑

k=1

1

k2
· 1

kn/2
≤
∫ ∞

1

dk

k2+n/2
=

1

1 + n/2
≤ 2

n
(5.36)

Then:

Cφ(n) = |cn − φ2
0| ≤

2c2

n
· 1

(4πǫn)n/2
(5.37)

and the decay is more than exponential, that is exp
(

−n
2
log n

)

.

5.2.3 Fidelity decay

Fidelity decay in Skew map follows the general framework described for cor-

relations except some oscillating factor. In the case of noise added only to

x variable, we observe an exponential decay of fidelity as for the perturbed

case of irrational rotations. It is possible to compute numerically δ̥ǫ for

various noise values. In figure 5.3 this task has been done using a Monte

Carlo. The behaviour shown in figure reproduces analytical results. We

verify a super-exponential decay in the case of noise added on the angular

variable y as shown in figure 5.4.
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Figure 5.3: Fidelity for different ǫ, Shear Flow map, noise added to x

variable

Figure 5.4: Fidelity for different ǫ, Shear Flow map, noise added to y

variable
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5.2.4 Return time Statistics

The power law decay of return time spectrum has been proved by Hu et al.

[2004] analytically with a geometric construction and investigated numeri-

cally obtaining the same result. We report their main result:

Proposition Given the cylinder C = T × [0, lside] (where T represents a

one-dimensional torus) and the set A = [0, lside]× [0, lside] ⊂ C the spectrum

Flside of the return times in A is given by

Flside(t) =















































































1 if 0 ≤ t < t1

1

2
if t ∈ [tn, tn+1[, tn < tn̄

1

2

[

1− (tn − 1 + ǫ)2

tn ǫ

]

if t ∈ [tn, tn+1[, tn = tn̄

(1− lside)
2

2tn(tn − lside)
if t ∈ [tn, tn+1[, tn > tn̄

(5.38)

where n̄ = ⌊1/lside⌋ and tn = n · lside. The asymptotic decay is proportional

to 1/t2.

It is interesting analyse numerically the Return Time Statistics for a noise

perturbed Skew map. To accomplish this task we have choose the map

of equation 5.18. Then we followed the orbit of 104 points starting in a

square centred in xc = 0.3, yc = 0.6 and lside = 0.01. For each orbit we

have registered the number of iteration that causes a return into the initial

square. In this way we have constructed return time statistics that now are

reported in figure 5.5. The time on x axis is normalized as: t = n · l2side.

For small ǫ values a power law decay is obtained. If ǫ = 10−7 the spectrum

decays as 1/t2, while for intermediate values of noise (ǫ = 10−4 − 10−5) Re-

turn time statistics follows 1/t2 and then 1/
√
t power law decay. When the

noise amplitude ǫ > 10−3 the decay is exponential after an initial plateau.
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This behaviour presents again assonances with the correlation and fidelity

behaviour where a power law decay is observed in deterministic map while

the presence of noise involves in an exponential behaviour.

Figure 5.5: Recurrence Statistics for different ǫ, Shear Flow map

5.2.5 Extreme value distribution for unperturbed and

perturbed map

Freitas’ Theorem in section 4.2.2 tell us that Skew Map is not suitable to

obtain a reliable fit of GEV distribution. In fact, it follows that local mixing

is not enough to satisfy conditions necessary to obtain one of the three type

distribution of maxima.
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The situation is different if we introduce noise, for example on x variable

as done for Recurrences. For each different ǫ value, we have performed

104 realisations of the map in equation 5.18, starting from the same initial

point ζx = ζy = 0.3 + π/10. we have used the block of maxima approach in

order to obtain a fit to GEV distribution. For each time step we compute

the distance from the initial point as

d((x, y), (ζx, ζy)) =
√

min{|x− ζx|, 1− |x− ζx|}2 +min{|y − ζy|, 1− |y − ζy|}2
(5.39)

Then, once divided distance series in 104 bin each containing 3 · 105 itera-

tions of the map, we compute the minimum distance for each bin and then

calculate the observable functions g1, g2, g3. Eventually we fit 104 gi data

to the GEV distribution using maximum likelihood estimation of parame-

ters. The GEV parameters obtained show a normal distribution (KS test

for normal distribution passed at confidence level 0.20). These results are

presented in figures 5.6-5.8:

In the deterministic case we are unable to fit data to GEV distribution.

For small ǫ we recall that Return Time Statistics show a power-law spec-

tral decay. For this reason we expect no reliable fits for our perturbed data.

This is verified in all the cases considered and noted in figure with a dotted

line: the Kolmogorov-Smirnov test is not accomplished if ǫ < 10−3 and the

normal fit show substantially a great spread of parameters value. On the

other hand if ǫ > 10−3 we obtain reliable fit to GEV distribution and the

spread of parameters value are contained in small intervals. Note that the

bin length (3 · 105 data for each bin) is greater than the one used for the

subsequent cases of mixing maps. This is necessary since the Recurrence

Statistics is exponential only after an initial plateau.

In figure 5.6 we may also note how for g1 observable, even for ǫ > 10−3

the fit parameter ξ is negative and not distributed around zero as expected

from theory. We have to say that in all cases considered the KS test is not

passed at maximum confidence level and this affects the value of considered

parameters.
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Figure 5.6: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Shear Flow Perturbed Map VS (noise on x) ǫ; g1

observable
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Figure 5.7: Normal fit mean and standard deviation of GEV parameter for

104 realisations of Shear Flow Perturbed Map VS (noise on x) VS ǫ; g2

observable
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Figure 5.8: Normal fit mean and standard deviation of GEV parameter for

104 realisations of Shear Flow Perturbed Map VS (noise on x) VS ǫ; g3

observable
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5.3 Bernoulli Shift map

This map starts with an initial parameter and transforms it like all other

discrete maps using the result as input of the next iteration:

xn+1 = qxn mod 1 q ∈ N (5.40)

xn+1 = qnx0 mod 1 q ∈ N (5.41)

Despite its simplicity, this map owns three important characteristics of

chaotic systems as. It is:

• Area preserving: guarantees the the preservation of phase-space

volume as the system evolves through time (Louisville’s theorem).

• Bounded: as it is the result of linear transformations.

• Deterministic: It is completely deterministic yet very sensitive to

initial conditions.

The concept behind the Bernoulli shift can be better understood looking

at a numeric representation of a shift map. The shift map considered in

this chapter and used in the subsequent numerical investigations is defined

by the equation:

xn+1 = 2xn mod 1 (5.42)

This map is also called a shift map because the numbers can be easily

manipulated when in binary form. Let us consider a seed number in the

mapping represented in the form 0.1010010... To iterate the map we mul-

tiply by 2 that, in binary representation, is done by simply shifting all the

numbers over to the left such that we get 1.011101... in the example above.

To take the modulus we simply drop the integer part so we have 0.011101...



86 5. Mathematical models

A random seed would have any possible complexity and this is what makes

the map chaotic. The output is indistinguishable from noise even though

the process is completely deterministic.

5.3.1 Orbit divergence

We derive some analytical results following again the pattern described in

section 5.1.1.

• First we consider the unperturbed map:

x̄n+1 = qn(x0 + δx0) (5.43)

Jxn+1 = x̄n+1 − xn+1 (5.44)

Jxn+1 = qnδx0 (5.45)

the divergence is proportional to qn.

• If we introduce a deterministic perturbation η of the map (note that

in this case the map is discontinuous):

x̄n+1 = (q + η)n(x0 + δx0) (5.46)

if η ≃ O(δx0) then:

Jxn+1 = qnδx0 + ηnqn−1x0 (5.47)

and again the important term is qn

• In case of a stochastic perturbation:

x̄n+1 = qnx0 +
n
∑

j=1

qjξn−j (5.48)
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then:

Jxn+1 =< (xn+1− < x̄n+1 >)
2 >1/2 (5.49)

Jxn+1 =<
n
∑

j,l=1

qjql < ξn−lξn−j >
2>1/2 (5.50)

that is different from zero if j = l:

Jxn+1 =
n
∑

j=1

q2j ≃
∫ n

0

q2xdx (5.51)

Jxn+1 ≃
∫ n

0

exp (2x log q)dx (5.52)

and eventually we obtain an exponential divergence:

Jxn+1 ≃
1

2 log q
exp(2n log q) (5.53)

5.3.2 Correlations decay

cn =

∫ 1

0

φ(qnx)ψ(x)dx

Let us introduce a periodic observable φ(x) = φ(x+1). Then, using Fourier

theory, we rewrite our correlations:

cn =
∑

k,k′

φ∗
kφk′

∫ 1

0

ei2πkxei2πkq
nxdx

it follows that k = qnk′ is the condition to obtain cn 6= 0 . Since:

cn = φ0φ
∗
0 +

∑

k 6=0

φkφ
∗
k

∫ 1

0

e−i2πkq
n
dx

cn = φ0φ
∗
0 +

∑

k 6=0

φkφ
∗
k

ei2πkq
n
− 1

i2πkqn
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if |φk| ≤ C/|k| then:

Cφ(n) = |cn − φ2
0| ≤ 2C2

∞
∑

k=1

sin 2πkqn

2πkqn

The correlations decay is shown in figure 5.9 with φ(x) = cos(2πx) then

φ±1 = 1/2 and φk = 0 otherwise. As stated in chapter 3, this function

shows an exponential decay. A Monte Carlo integration is not suitable to

obtain the same result since for Cφ(n) < 10−4 the method is unreliable and

the noise overcame the signal.

Figure 5.9: Correlation Cφ(n) for different ǫ, 2x mod 1 map
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5.3.3 Fidelity decay

Let us analyse the perturbed version of the Bernoulli shift map:

xn+1 = qxn + ǫ · ξn mod 1 (5.54)

where ǫ represents the noise amplitude of a stochastic perturbation, and

ξ ∈ [−1, 1] is a random variable with uniform distribution.

Therefore, following the procedure described for correlations decay, the

Fidelity is:

̥
ǫ
φ,ψ(n) =

∫ 1

0

(

∫ 1

−1

· · ·
∫ 1

−1

φ (qnx)ψ

(

qnx+ ǫ

n
∑

j=1

ξjq
n−j

)

dξ1
2

· · · dξn
2

)

dx

Let φ(x+1) = φ(x) be periodic of period 1. Using Fourier theory as in the

decay of correlations:

̥
ǫ
φ,φ(n) = φ2

0 +
∑

k 6=0

|φk|2
∫ 1

−1

· · ·
∫ 1

−1

e

2πikǫ

(

n
∑

j=1

ξjq
n−j

)

dξ1
2

· · · dξn
2

If we perform the integrals over noise, then:

̥
ǫ
φ,φ(n) = φ2

0 +
∑

k 6=0

|φk|2
n−1
∏

j=0

sin(2πkǫqj)

2πkǫqj

As before, let us choose φ(x) = cos(2πx) then φ±1 = 1/2 and φk = 0

otherwise. Then:

̥
ǫ
φ,φ(n) =

1

2

n−1
∏

j=0

sin(2πkǫqj)

2πkǫqj
(5.55)

The following relations hold:

lim
n→∞

̥
ǫ
φ,φ(n) = 0 ̥

ǫ
φ,φ(0) = 1/2
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In figure 5.10 it has been plotted the behaviour of δ̥ǫ
φ,φ(n), with φ(x) =

cos(2πx) , q = 2 and for different ǫ values. The analytical plots of equation

5.55 show an initial plateau of length n̄ ≃ − ln(ǫ) then a super-exponential

decay. The results are confirmed even with a Monte Carlo integration

although if δ̥ǫ
φ,φ(n) < 10−4 noise overcomes signal.

Figure 5.10: Fidelity for different ǫ, 2x mod 1 map
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5.3.4 Return time Statistics

We have investigated Return time Statistics for the map 2x mod 1 even in

the perturbed case. Since µǫ is equal to the invariant measure used in the

unperturbed case, we expect no difference in spectral decay. The Return

time statistics is computed over 2.5 ·105 trajectories with initial point inside

a segment ς of width 0.01 using equation:

F̃ς(t) = µς

(

x ∈ ς :
τς(x)

τς
≤ t

)

(5.56)

where, if n is the n-th iteration of the map, t = n · ς. In figure 5.11 it is

possible to observe the same exponential decay for all the ǫ values and no

difference with deterministic case.

Figure 5.11: Recurrence Statistics for different ǫ, 2x mod 1 map
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5.3.5 Extreme value distribution

As stated by the Freitas’ Theorem in section 4.2.2, Bernoulli Shift Map is

suitable to obtain a reliable fit of GEV distribution. For each different ǫ

value, we have performed 104 realisations of the map in equation 5.54 with

q = 2, starting from the same initial point ζ = 0.3 + π/10. we have used

the block of maxima approach in order to obtain a fit to GEV distribution

using the following procedure: first we iterate the map for 108 steps. For

each time step we compute the distance from the initial point as

dist(xn, ζ) = min(|xn − ζ|, 1− |xn − ζ|)

Then, once divided distance series in 104 bin each containing 104 iterations

of the map, we compute the minimum distance for each bin and then cal-

culate the observable functions g1, g2, g3. Eventually we fit 104 gi data to

the GEV distribution using maximum likelihood estimation of parameters.

The GEV parameters obtained show a normal distribution (KS test for

normal distribution passed at confidence level 0.20). Since in this case, as

said, µǫ is equal to the invariant measure used in the unperturbed case we

expect no difference in noise distribution for different ǫ value and almost the

same expected value of the deterministic case. These results are presented

in figures 5.12-5.14 where the deterministic values for the parameter ξ, σ, µ

of the GEV distribution have been noted with a dotted black line while the

colored bar delimits one standard deviation of the normal distribution fit for

each ǫ value. Note that the uncertainty over deterministic parameter esti-

mation is about two times greater than the standard deviation of normal fit.

For small ǫ value it is possible to observe a perfect agreement between the

deterministic and perturbed case. The standard deviation of normal fit, as

expected, remains the same on the whole ǫ value interval . We encounter a

small deviation from the determistic parameter value for ǫ ≥ 10−4 while the

standard deviation does not change magnitude. This behaviour is repeated

for the three parameters and for all the observable functions. Since these

deviations appear to be randomly directed for different observables and pa-
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rameter we consider them as natural effects of increased amplitude of noise.

Figure 5.12: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Bernoulli Shift Perturbed Map VS ǫ; g1 observable
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Figure 5.13: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Bernoulli Shift Perturbed Map VS ǫ; g2 observable



5.3 Bernoulli Shift map 95

Figure 5.14: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Bernoulli Shift Perturbed Map VS ǫ; g3 observable
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5.4 Arnold’s cat Map

Arnold’s cat map is a chaotic map from the torus into itself. It was named

by Vladimir Arnold, who demonstrated its effects in the 1960s using an

image of a cat [Arnold and Avez, 1968]. It is given by the transformation:

[

xn+1

yn+1

]

=

[

2 1

1 1

][

xn

yn

]

(5.57)

If we consider all the point of the bi-dimensional torus as an image, the

effect of the map is to shear one unit to the right, then one unit up, and all

that lies without that unit square is wrapped around on the other respective

side to be within it. We can resume the main properties of Arnold’s cat

Map as follow:

• It is area-preserving since the determinant is 1.

• It is an hyperbolic map: its eigenvalues are real numbers, one greater

and the other smaller than 1, so they are associated respectively to

an expanding and a contracting eigenspace which are also the stable

and unstable manifolds. The eigenspace are orthogonal because the

matrix is symmetric.

• The Lyapunov characteristic exponents are given by

[

1− σ 1

1 2− σ

]

= σ2 − 3σ + 1 = 0 (5.58)

so that:

σ± =
1

2
(3±

√
5) (5.59)

• It is ergodic (equation 2.3) and strong mixing (equation 2.18).
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5.4.1 Correlations and Fidelity decay

Since the map is strong mixing it presents an exponential decay of fidelity

and correlation functions can be proved, see Casati et al. [1982] for some

examples.

It is difficult to use Fourier Theory to prove analytically this results . We

have tried to obtain numeric evidence using Monte Carlo method as de-

scribed in the precedent case. Unfortunately, after few iterations, numer-

ical noise overcomes signal and it is impossible to verify or estimate a trend.

5.4.2 Return time Statistics

Let us consider the following perturbed Arnold’s cat map:







xn+1 = 2xn + yn + ǫξn mod 1

yn+1 = xn + yn mod 1
(5.60)

We have studied the Recurrence following the orbit of 104 points starting

in a square centred in xc = 0.3, yc = 0.6 and lside = 0.01. For each orbit the

number of iterations that causes a return into the initial square have been

registered. In this way we have constructed return time statistics that now

are reported in figure 5.15. The time on x axis is normalized as: t = n · l2side.

As seen for Bernoulli Shift map, Lebesgue measure is the same of stationary

measure. For this reason we expect no difference in Return time spectrum

even in the perturbed case. This is what we have verified numerically for

various ǫ. There are no difference even with the deterministic case: the

curve which represent ǫ = 0 spectrum is superimposed to the others.
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Figure 5.15: Recurrence Statistics for different ǫ, Arnold’s cat Map map

5.4.3 Extreme value distribution

As well as Bernoulli Shift map, even Arnold’s cat map is suitable to obtain

a reliable fit of GEV distribution. We proceed as in the case of 2x mod 1

except for the distance which has been computed using the following equa-

tion:

d((x, y), (ζx, ζy)) =
√

min{|x− ζx|, 1− |x− ζx|}2 +min{|y − ζy|, 1− |y − ζy|}2
(5.61)

ζx = ζy = 0.5. Our results are presented in figures 5.16-5.18 where the

deterministic values for the parameter ξ, σ, µ of the GEV distribution have

been noted with a dotted black line while the coloured bar delimits one

standard deviation of the normal distribution fit for each ǫ value. A perfect
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agreement between the deterministic and perturbed case hold in this map

even for noise of great amplitude.

Figure 5.16: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Perturbed Arnold’s cat Map VS ǫ; g1 observable
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Figure 5.17: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Perturbed Arnold’s cat Map VS ǫ; g2 observable
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Figure 5.18: Normal fit mean and standard deviation of GEV parameter

for 104 realisations of Perturbed Arnold’s cat Map VS ǫ; g3 observable
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Chapter 6

Physical models

In this chapter we present different physical models which show appealing

features such as resonances or exhibit a mixed behaviour with chaotic and

regular regions.

It is interesting to investigate which dynamic indicators of stability are

suitable to highlight main characteristics of this kind of maps or dynamical

systems. In particular we put to the test new indicators strictly connected

with Freitas’ work: Kolmogorov-Smirnov fit parameter and fit confidence

level for GEV distribution of observable functions, widely described in sec-

tion 4.4.2. Quite surprisingly we discover that this parameter is a good

indicator of stability as well as Reversibility Error.

In this chapter only maps with low dimensionality have been considered.

This choice is justified by the great computational time required to carry

out parametric scans and the number of iteration and bins required to

obtain a good fit to GEV distribution.

6.1 Standard Map

The Standard map (also known as Chirikov-Taylor map or Chirikov stan-

dard map) is an area-preserving chaotic map from a square with side 1 onto

itself. It can be thought as a stick that is free of the gravitational force,

103
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which can rotate frictionless in a plane around an axis located in one of

its tips, and which is periodically kicked on the other tip. This mechanical

system is usually called a kicked rotator. It is defined by:







yn+1 = yn − K
2π

sin(2πx) mod 1

xn+1 = xn + yn + 1 mod 1
(6.1)

Standard map is one of the most widely-studied examples of dynamical

chaos in physics. It can be regular or chaotic, depending on the strength of

the impulses: stronger kicks lead to chaotic behaviours. The variables yn

and xn respectively represent the angular position and angular momentum

of the stick at the n-th kick. K measures the intensity of the kicks. For

K < 0.971635 the variation of momentum y is bounded. Which type of

orbit is observed depends on the map’s initial conditions [Lichtenberg and

Lieberman, 1983]. Nonlinearity of the map increases withK, and with it the

possibility to observe chaotic dynamics for appropriate initial conditions.

The map in equation 6.1 describes a situation present in different physical

phenomena. Due to this property various dynamical systems and maps can

be locally reduced to the standard map. As example we cite:

• Charged particle confinement in magnetic traps [Chirikov, 1969].

• Particle dynamics in accelerators [Izraelev, 1980].

• Comet dynamics in solar system (a similar map is found for the comet

Halley) [Chirikov and Vecheslavov, 1989].

and due to this reason the term standard map was coined by Chirikov

[1969].

6.1.1 Stability indicators and Standard Map

In this section we present the results obtained using different indicators in

order to show standard map characteristics with different K values. We

found that it is possible to depict the map using the stability indicators
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presented in previous chapters.

The Reversibility Error at the n-th iteration with n=1000 and the Kol-

mogorov Smirnov fit parameter have been computed and they are repre-

sented respectively in figure 6.1 for K=2 parameter and in figure 6.2 for

K=3. The GEV fit has been done considering 2 · 103 bin each contain-

ing 1 · 103 iteration of the map. The distance is computed as in equation

5.61. The points unable to be fitted have been excluded by this analysis.

Furthermore, the original image obtained using fitted data shows a noisy

behaviour like a picture underexposed. To highlight the behaviour of the

map, then, it has been applied a Gaussian convolution filter to the image

obtained by GEV D fit parameter data. Then, for every pixel of the image

it was taken the sum of products. Each product is the value of the current

pixel or a neighbour of it, with the corresponding value of the kernel filter

matrix that in our case is:









1/11 1/11 1/11

1/11 3/11 1/11

1/11 1/11 1/11









(6.2)

Considering Reversibility Error we note that the regions of regular motion

are characterized by lower values of ∆n while the chaotic sea shows higher

values. The structure of the map is exactly reproduced as you can see com-

paring with Chirikov and Shepelyansky [2008]. The same patterns can be

found using GEV KS parameter in the successfully fitted regions: in this

case the regular region show high D parameter since the KS test is not

accomplished by data.

When K = 2 intermediate values of both Reversibility Error and KS pa-

rameter are found at the border of central island while the highest values

of ∆n match the lower ones of D.

K = 3 plots in figure 6.2 show the agreement between the two indicators

especially in finding the islands of regular motion at the border and around

the centre of the figure.
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Figure 6.1: Filtered Kolomogorov Smirnov Fit Parameter D (a) and Re-

versibility Error ∆n (b), Standard Map, K = 2.
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Figure 6.2: Filtered Kolomogorov Smirnov Fit Parameter D (a) and Re-

versibility Error ∆n (b), Standard Map, K = 3.
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6.2 Hill’s equation - Parametric Resonance

We now prove our indicators of stability in systems which exhibit para-

metric resonance briefly recalling the theoretical framework beyond this

systems. For a detailed treatment see Turchetti [1998] and Verhulst [2009].

Let us consider the equation:

ẋ = Ax+ ηB(t)x (6.3)

in which x ∈ Rm, A is a constant m x m-matrix, B(t) is continuous and T

periodic m x m-matrix and ǫ is a small parameter. Floquet Theory tells

how it is possible to write solutions of equation 6.3:

x(t) = Φ(t, η)eC(η)t (6.4)

with Φ(t, η) a T -periodic m x m-matrix and C(ǫ) as a constant m x m-

matrix. It is the determination of C(ǫ) which provides us stability behaviour

of the solutions.

As particular case of equation 6.3 let us introduce the following equation

called Hill’s equation:

ẍ+ (ω + ηf(t))x = 0 (6.5)

in this case we have no dissipation then it can be useful to introduce canon-

ical transformations such as:

ẋ = y ẏ = −∂H
∂x

with Hamiltonian function:

H(x, y, t) =
1

2
y2 +

1

2
(ω + ηf(t))x2 (6.6)

A typical problem to study is for which values of ω and η in (ω, η) parameter

space the trivial solution ẋ = y = 0 is stable. Solutions of Hill’s equation
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can be written in the Floquet form with Φ(t, η) π-periodic. The eigenval-

ues λ1, λ2 of C are ǫ dependent and are called characteristic exponents.

Furthermore, we know that:

n
∑

i=1

λi =
1

T

∫ T

0

Tr(A+ ηB(t))dt (6.7)

This leads to:

λ1(ǫ) + λ2(ǫ) = 0

The characteristic exponents, which are complex conjugate, are purely

imaginary or real:

• If ω2 6= n2, n = 1, 2 =⇒ λ1, λ2 ∈ C so that x = 0 is stable near ǫ = 0.

• If ω2 = n2 for some n ∈ N =⇒ λ1, λ2 ∈ R since we can include the

imaginary part in Φ(t, η)

Assuming ω2 = n2 for some n ∈ N we look for periodic solutions of Hill’s

equation 6.5 and this solutions define the boundaries between stable and

unstable solutions in parametric space. putting:

ω2 = n2 − ηβ (6.8)

with β constant. Applying Poincaré-Lindstedt method to find the solution

we find periodic solutions for n=1 if:

ω2 = 1± 1

2
η +O(η2) (6.9)

for n = 2 if:

ω2 = 4− 1

48
η2 +O(η4)

ω2 = 4 +
5

48
η2 −O(η4)
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the corresponding instability domain called Floquet tongues are shown in

figure 6.3

Figure 6.3: Tongues of parametric resonance in parametric space (ω, η).

After [Verhulst, 2009]

As a case of study we have analysed a system showing this kind of paramet-

ric resonance but similar in structure to a shear-flow forced periodically:

H = ωj(1 + ǫ cos2 φ(t)) (6.10)

that is the Hamiltonian in equation 6.6 if f(t) = cos2(φ(t)), x2/2 = j and

η/ω2 = ǫ.
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This Hamiltonian corresponds to the following system of equation:







φ̇ = ω(1 + ǫ cos2 φ(t))

j̇ = ǫωj sin 2φ(t)
(6.11)

discretized as:







φn+1 = φn + ω(1 + ǫ cos2 φn)

jn+1 = jn + ǫωj sin 2φn
(6.12)

Whit this structure we expect to find numerical evidence of parametric res-

onance.

In figures 6.4 and 6.5 we use respectively the Kolomogorov-Smirnov Fit

parameter D and the confidence level of fit to Extreme Value Distribution

to depict the parametric space in both logarithmic and linear scale. For

each pair of (ǫ, ω) the GEV fit has been done over 2 · 103 bins each of con-

taining 1.5 · 104 map iterations. Tongues of parametric resonance are well

highlighted using parameter of GEV distribution and represent instability

regions of parametric space.

Studying standard map behaviour we have found that fit confidence interval

is unreliable to highlight stability features of the map for the presence of

embedded islands of stability in unstable regions and vice versa.

Working with Hill’s equation confidence level seems a good indicator of

stability since there is a clear division among different stability regions.

The same results is achieved using Reversibility error as represented in

figure 6.6. As for the standard map, in this case the regions with higher

reversibility error value individuate instability behaviour.
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Figure 6.4: Tongues of parametric resonance highlighted using Kolmogorov

Smirnov Fit Parameter for GEV distribution, Hill’s equation, number of

bins: 2 · 103, length of each bin: 1.5 · 104, g1 observable.
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Figure 6.5: Tongues of parametric resonance highlighted using Kolmogorov

Smirnov Fit Confidence level for GEV distribution, Hill’s equation, number

of bins: 2 · 103, length of each bin: 1.5 · 104, g1 observable.



114 6. Physical models

Figure 6.6: Tongues of parametric resonance highlighted using Reversibility

Error with n = 1000, Hill’s equation.
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6.3 Hénon Map

The Hénon map is one of the most studied examples of dynamical sys-

tems that exhibit chaotic behaviour. The map was constructed by Hénon

attempting to modify every point of an oval stretching its form : to accom-

plish this task the map takes a point (xn, yn) in the plane and maps it to

a new point:







xn+1 = yn + 1− ax2n

yn+1 = bxn
(6.13)

a and b are two parameters, which for the canonical Hénon map have values

of a = 1.4 and b = 0.3. For the canonical values the Hénon map is chaotic.

For other parameter values the map assumes different behaviours: it may

be chaotic, intermittent, or converge to a periodic orbit.

The map was introduced by Michel Hénon as a simplified model of the

Poincaré section of the Lorenz model. For the canonical map, an initial

point of the plane will either approach a set of points known as the Hénon

strange attractor, or diverge to infinity. The Hénon attractor is a fractal,

smooth in one direction and a Cantor set in another. Numerical estimates

yield a correlation dimension of 1.42 ± 0.02[1] and a Hausdorff dimension

of 1.261 ± 0.003[2] for the attractor of the canonical map.

Its shape changes drastically as a and b do. In general, suppose we fix a and

increase b from 0 on up. For b=0 the Hénon map smashes everything down

onto the parabola y = 1− ax2, and the map on that parabola is essentially

the 1D map associated to it. For small non-zero values of b it is known that

there is an attractor. As b is raised, a certain critical value will be passed

after which a horseshoe appears and the non-wandering set is described by

all two-sided binary strings. For a = 1.4 this critical value is just above 1.3.

In between 0 and the critical value just about nothing is known rigorously.

We present our analysis for a=0.2, b=0.9991 and apply our indicators of

stability to investigate the behaviour of the map.

Considering Reversibility Error in figure 6.7 we note that the regions of
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regular motion are characterized by lower values of ∆n while values ∆n >

102 have been filled with azure colour . The structure of the attractor is well

reproduced with this indicator while the same result can not be achieved

using GEV fit parameters: in this case, depending on initial conditions we

fall into different situations:

1. The distribution of maxima is a Dirac delta: the value corresponds

to the distance between initial point and stable point.

2. The distribution of maxima cannot be calculate because the distance

diverges quickly.

Figure 6.7: Reversibility Error, Henon Map, a=0.2, b=0.9991, n=500



Conclusions

This work of thesis has pointed out the utility of dynamical stability in-

dicators in recognize and highlight properties of discrete maps as well as

continuous dynamical systems.

Starting from the intuitive orbit divergence that is quick (exponential) in

chaotic or mixing systems, while is not present or follows a power decay in

regular maps, we have analysed the role of many indicators:

For Correlation functions we have verified a power law decay in regular map

and an exponential decay in chaotic maps. A different behaviour is achieved

looking at Fidelity decay: this indicator presents exponential decay in mix-

ing systems and over-exponential decay in regular perturbed maps. All

these results have been verified with numerical simulations performed us-

ing Monte Carlo methods or directly computing analytical results .

Following the work of Freitas we have proved the validity of their theorem

in the stochastic perturbed case. We have also verified empirically that we

are able to use Generalized Extreme Value distribution rather than one pa-

rameter Extreme Value distribution by substituting normalizing sequences

an and bn respectively with µ and 1/σ.

For mixing maps such Arnold’s Cat map and Bernoulli Shift map in which

the stationary measure µǫ is equal to the Lebesgue measure µLEB. Con-

sidering a perturbed version of Skew Map, that shows a Recurrence Time

Spectrum exponential decay only if ǫ, the noise strength, is greater than

10−3, we have observed unreliable fits for small value of ǫ. Increasing noise
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strength, Kolmogorov-Smirnov test succeeds and we obtain significant pa-

rameters distribution values.

In some physical systems we have proved Kolmogorov-Smirnov fit param-

eter as indicator of dynamic stability: when it is small, the fit succeeds

telling us that we are in a mixing region of our space. On the other hand

if the fit is bad, KS parameter increases and the region considered is not

mixing.

This indicator has been verified on maps such as Standard Map and Hill’s

Equation both with Reversibility Error. We satisfactorily find a good agree-

ment between these two indicators.

This wide knowledge of dynamical indicators allow us to plan the study

of more involved systems. To enhance our understanding of climate sys-

tem and weather forecasts we can imagine to use Extreme Value Theory

as indicator of stability in a contest in which it is rather meaningful: ex-

treme temperature, large precipitation amount, powerful thunderstorms,

high greenhouse gases concentrations are examples that may be interesting

to study. We may also try to improve quality forecast by knowing what

situations can cause instability: indicators like fidelity or reversibility error

may accompany ensamble predictions that are now widely used to ensure

and evaluate quality forecast.

In these theoretical and numerical studies we have tried to add a brick to

the bearing wall of dynamical systems theory hoping that this work will be

followed by further applications especially in geophysical systems.
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