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[1] Downscaling precipitation is a difficult challenge for the climate community. We
propose and study a new stochastic weather typing approach to perform such a task. In
addition to providing accurate small and medium precipitation, our procedure possesses
built-in features that allow us to model adequately extreme precipitation distributions.
First, we propose a new distribution for local precipitation via a probability mixture model
of Gamma and Generalized Pareto (GP) distributions. The latter one stems from Extreme
Value Theory (EVT). The performance of this mixture is tested on real and simulated
data, and also compared to classical rainfall densities. Then our downscaling method,
extending the recently developed nonhomogeneous stochastic weather typing approach, is
presented. It can be summarized as a three-step program. First, regional weather
precipitation patterns are constructed through a hierarchical ascending clustering method.
Second, daily transitions among our precipitation patterns are represented by a
nonhomogeneous Markov model influenced by large-scale atmospheric variables like
NCEP reanalyses. Third, conditionally on these regional patterns, precipitation occurrence
and intensity distributions are modeled as statistical mixtures. Precipitation amplitudes
are assumed to follow our mixture of Gamma and GP densities. The proposed
downscaling approach is applied to 37 weather stations in Illinois and compared to various
possible parameterizations and to a direct modeling. Model selection procedures show
that choosing one GP distribution shape parameter per pattern for all stations provides the
best rainfall representation amongst all tested models. This work highlights the importance
of EVT distributions to improve the modeling and downscaling of local extreme
precipitations.
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1. Introduction

[2] In recent decades, the accuracy of general circulation
models (GCM) to simulate the large-scale behavior of the
atmosphere has greatly improved. Still, such models have
difficulties capturing small-scale intermittent processes, for
example, local precipitation. To better understand and
represent these sub-grid-scale meteorological characteris-
tics, Regional Climate Models (RCM) offer an elegant
way to integrate local processes through physical and
dynamical equations. However, they can be extremely
computer-intensive and their spatial resolution, generally
from 5 to 50 km, does not always provide the required
information needed in impact studies. Again, local precip-
itation can be considered as the archetypical example of
such limitations. While advances in computer sciences may
give the necessary computer power to resolve these smaller

scales in the future, practitioners (flood planners, insurance
companies, etc.) need to make decisions locally with the
current information today.
[3] In order to link our large-scale knowledge supplied by

today’s GCM, RCM and reanalysis outputs with measure-
ments recorded at weather stations, statistical downscaling
techniques offer a computationally attractive and ready-to-
use route. This statistical approach consists of inferring
significant relationships among large-, regional- and local-
scale variables. How to estimate, apply and test such
relationships in order to have accurate representations of
local features constitutes the so-called group of statistical
downscaling questions. Three categories of methods are
usually given to answer such questions: transfer functions,
stochastic weather generators and weather typing methods.
The first category is a direct approach. The relationships
between large-scale variables and location-specific values
are directly estimated via either parametric, nonparametric,
linear or nonlinear methods such as the analog method
[e.g., Barnett and Preisendorfer, 1978; Zorita and von
Storch, 1998], multiple linear regressions [e.g., Wigley et
al., 1990; Huth, 2002], kriging [e.g., Biau et al., 1999] and
neural networks [e.g., Snell et al., 2000; Cannon and
Whitfield, 2002]. The second category focuses on weather
generators in which GCM outputs drive stochastic models
of precipitation [e.g., Wilks, 1999; Wilks and Wilby, 1999].
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They are particularly of interest to assess local climate
change [e.g., Semenov and Barrow, 1997; Semenov et al.,
1998]. The weather typing approach, the third and last
category, encapsulates a wide range of methods that have
in common an algorithmic step in which recurrent large-
scale and/or regional atmospheric patterns are identified.
These patterns are usually obtained from clustering and
classification algorithms applied to geopotential height,
pressure or other meaningful atmospheric variables over a
large spatial area. These clustering and classification algo-
rithms can be of different types: CART (Classification and
Regression Trees) [see Breiman et al., 1984; Schnur and
Lettenmaier, 1998], ‘‘K-means’’ methods [e.g., Huth, 2001;
Yiou and Nogaj, 2004], hierarchical clustering approaches
[e.g., Davis et al., 1993; Bunkers et al., 1996], fuzzy-rules-
based procedures [e.g., Pongracz et al., 2001], neural
networks [e.g., Bárdossy et al., 1994] or mixture of copula
functions [Vrac et al., 2005]. Introducing such an interme-
diate layer (the weather patterns) in a downscaling proce-
dure provides a strong modeling flexibility. For example,
linking directly the relationships between large-scale atmo-
spheric variables and precipitation recorded at a few
weather stations may be too complex in most inhabited
regions. In comparison, it may be easier and more efficient
to first model the dependences between large-scale data and
weather patterns, the latter representing the recurrent atmo-
spheric structures corresponding to a kind of summary of the
large scale. Then we can focus on the coupling between
weather patterns and local measurements. Obviously, such a
strategy will only be successful if the weather patterns are
carefully chosen, i.e., if they capture relevant recurrent
summary information. From a probabilistic point of view,
the coupling step of a weather typing approach can be
viewed as deriving the following conditional probability
density function (pdf):

fRt jSt ; ð1Þ

which corresponds to the probability of observing local
rainfall intensities, say Rt, given the current weather state,
say St, at time t. In addition to providing a simple
mathematical framework that can easily integrate various
uncertainties, this probabilistic definition of statistical
downscaling is wide enough to cover many case studies.
In this work, to get more realistic precipitation variability
than with a model only conditional on weather patterns, the
pdf (1) is also defined conditionally on a vector of large-
scale atmospheric variables, say Xt, at time t,

fRt jXt ;St : ð2Þ

[4] In this paper, our main application is to downscale
precipitation over the region of Illinois. Consequently, we
would like to address the following questions: how to find
adequate regional weather patterns for St? How to model the
coupling between large atmospheric variables Xt and St?
What is an appropriate form for the conditional density
defined by (2)? The last question is the central one for the
practitioner.
[5] To our knowledge, none of the statistical downscaling

methods discussed previously in this section has been
developed to address the issue of modeling both common

and extreme values. Nevertheless, although, for example,
hydrologists and flood planners are interested in mean
precipitation, they also have a particular interest in model-
ing extreme local precipitation because of its human,
economical and hydrological impacts where large-scale
information may help at modeling such extreme events.
Past studies [Katz et al., 2002; Naveau et al., 2005] have
illustrated how Extreme Value Theory (EVT), a statistical
theory developed over the past 80 years, provides the
mathematical foundation for appropriately modeling ex-
treme precipitation. Hence another important objective in
this paper is to integrate EVT models within a weather
typing approach, i.e., throughout the density (2). To perform
such a task, we extend the original work on the nonhomo-
geneous stochastic weather typing approach by Vrac et al.
[2007].
[6] The paper is organized as follows. In the first part of

section 2, we recall three classical distribution candidates
that have been proposed to fit rainfall and we also introduce
a mixture model inspired by Frigessi et al. [2003]. A
comparison and a discussion about the performance of these
four distributions is undertaken. In section 3 the full data
sets are presented. Regional precipitation-related patterns
are obtained by applying a hierarchical ascending clustering
(HAC) algorithm to observed precipitation. Then our sta-
tistical downscaling model is explained. Section 4 contains
results about our application and many different diagnostics
are computed to assess the quality of the models and to
select the most appropriate one. All along this section,
instead of ‘‘pure’’ GCM outputs as large-scale atmospheric
variables, we take advantage of reanalysis data from the
National Centers for Environmental Prediction (NCEP).
Indeed, not only are NCEP reanalyses constrained GCM
outputs, but also, using NCEP is necessary to assess our
daily downscaling method in a present climate, before
fitting the method to (pure) GCM outputs to project local
change in precipitation. Hence, because the motivation is
driven by the scale transformation of large-scale atmospher-
ic variables (GCM outputs or reanalysis data), working on
reanalyses is a first essential step. Lastly, in section 5, we
conclude and give some future research directions.

2. Modeling Rainfall Locally

[7] There exists a wide range of distribution families to
statistically model rainfall intensities. For example, Katz
[1977], Wilks [1999], Bellone et al. [2000], Vrac et al.
[2007], and Wilks [2006] argued that most of the precipita-
tion variability can be approximated by a Gamma distribu-
tion. However, it is also well known [e.g., Katz et al., 2002]
that the tail of this distribution can be too light to capture
heavy rainfall intensities. This leads to the underestimation
of return levels and other quantities linked to high percen-
tiles of precipitation amounts. Consequently, the societal
and economical impacts associated with heavy rains (e.g.,
floods) can be miscalculated. To solve this issue, an
increasingly popular approach in hydrology [Katz et al.,
2002] is to disregard small precipitation values and to focus
only on the largest rainfall amounts. The advantage of this
strategy is that an elegant mathematical framework called
Extreme Value theory (EVT) developed in 1928 [Fisher and
Tippett, 1928] and regularly updated during the last decades
[e.g., Coles, 2001] dictates the distribution of heavy precip-
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itation. More specifically, EVT states that rainfall exceed-
ances, i.e., amounts of rain greater than a given threshold u,
can be approximated by a Generalized Pareto Distribution
(GPD) if the threshold and the number of observations are
large enough. In other words, the probability that the rainfall
amount, say R, is greater than r given that R > u is given by

P R > rjR > uð Þ ¼ 1þ x
r � u

s

� ��1=x

þ
; ð3Þ

where a+ = max(a, 0) and s > 0 represents the scale
parameter. The shape parameter x describes the GPD tail
behavior. If x is negative, the upper tail is bounded. If x is
zero, this corresponds to the case of an exponential
distribution (all moments are finite). If x is positive, the
upper tail is still unbounded but higher moments eventually
become infinite. These three cases are termed ‘‘bounded’’,
‘‘light-tailed’’, and ‘‘heavy-tailed’’, respectively. The flex-
ibility of the GPD to describe three different types of tail
behavior makes it a universal tool for modeling excee-
dances. Although this GPD approach has been very
successful to model heavy rains, it has the important
drawback of overlooking small precipitation. Recently,
Wilson and Toumi [2005] proposed a new probability
distribution for heavy rainfall by invoking a simplified
water balance equation. They claimed that the stretched
exponential distribution tail defined by

P R > rð Þ ¼ exp � r

y

� �n� �
; ð4Þ

where y > 0 and n > 0 correspond to the scale and shape
parameter. The latter should be equal to n = 2/3. This was
justified by physical arguments that take into account of the
distributions probabilities of quantities like the upward wind
velocity w (although the distribution of w is much more
unknown than the distribution of R). Note also that,
although the parameter n is expected to be equal to 2/3 in
theory, Wilson and Toumi did not say that in practice this
parameter has to be equal to 2/3. Indeed, they estimated the
shape parameter from different weather station precipitation
measurements over the world. They found that, in practical
applications, the estimated shape parameter is usually
different from the 2/3 constant. Despite its drawbacks, such
a type of model is promising because it tries to combine
probabilistic reasoning with physical arguments. Still, it is
not designed to model small precipitation amounts. For their
main example, Wilson and Toumi [2005] estimated the
parameter (y, n) in (4) for ‘‘heavy precipitation defined as
daily totals with probability less than 5%’’. Hence one may
wonder how to deal with the remaining 95% and what is the
justification for working with 5% of the data and not 10%,
3% or any small percentages (this later problem also exists
with a classical EVT approach). Because our final objective
is to downscale the full range of precipitation values and
because we do not want to choose an arbitrarily preset
threshold (or percentage), we follow a different direction
and opt for the method proposed by Frigessi et al. [2003].
These authors introduced the following mixture model:

hb rð Þ ¼ c bð Þ � 1� wm;t rð Þ
� �

� fb0
rð Þ þ wm;t rð Þ � gx;s rð Þ

	 

;

ð5Þ

where c(b) is a normalizing constant, b = (m, t, b0, x, s)
encapsulates the vector of unknown parameters, fb0
corresponds to a light-tailed density with parameters b0,
the function gx,s represents the GPD density that can be
obtained from deriving the tail defined by (3) and wm,t(.) is
a weight function that depends on two parameters,

wm;t rð Þ ¼ 1

2
þ 1

p
arctan

r � m

t

� �
: ð6Þ

[8] Note that this weight function is nondecreasing, takes
values in (0,1] and tends to 1 as r goes to 1; that is, heavy
rains are represented by the GPD density gx,s(r) in the
mixture hb(r) for large r. Conversely, small precipitation
values are mostly captured by the light-tailed density fb0(r).
Hence the idea behind equations (5) and (6) is rather simple:
the mixing function wm,t(r) provides a smooth transition
from a light-tailed density (small and medium precipitation)
to the GPD density (heavy rainfalls). The parameters m and
t in wm,t(r) correspond to the location and the speed of the
transition from fb0 to gx,s in (5), respectively. In 2003,
Frigessi et al. [2003] applied their model to Danish fire loss
data and opted for a Weibull distribution as a light-tailed
density in (5). In the context of precipitation modeling, past
works [Bellone et al., 2000; Vrac et al., 2007; Wilks, 2006]
indicate that a Gamma density, i.e.,

fb0
xð Þ ¼ 1

lgG gð Þ x
g�1 exp �x=lð Þ; with b0 ¼ g;lð Þ; ð7Þ

should fit appropriately the bulk of the precipitation values
(heavy rains excluded). This hypothesis could be challenged
if the variable of interest was different, for example,
temperature. In addition, one may be puzzled by the
‘‘absence’’ of a threshold in equation (5). Indeed, the
threshold u in equation (3) is forced to be equal to zero in
(5). However, introducing the weight function wm,t(r) and
fixing the GPD threshold to zero brings two important
benefits. First, the difficult threshold selection problem is
replaced by a simpler unsupervised estimation procedure,
i.e., finding m and t in wm,t(r) from the data. This strategy
is particularly relevant to large data sets analysis because it
would be very time-consuming to find an adequate
threshold for a large number of weather stations. Second,
allowing for nonzero thresholds in (5) would impose an
unwelcome discontinuity in hb(r). From a physical point of
view, such a discontinuity represents an unrealistic feature
in precipitation.
[9] In summary, we have four candidates for modeling

local rainfall distribution: (1) the Gamma density that works
well for the main rainfall range but not for large values;
(2) the recently introduced stretched-exponential distribution
function defined by equation (4), constructed on a physical
foundation but only designed for heavy rainfall and not for
small precipitation values; (3) the GPD function that works
for extreme precipitation but not for small values, that is
mathematically sound and universal, in the sense that it can
also fit temperature,winds extremes, etc.; and (4) and our
new mixture model defined by (5) and (7) that combines the
advantages of the Gamma and GPD densities, and conse-
quently can fit small and heavy rainfall.
[10] To compare the performances of these four distribu-

tions, we implement the following procedure. We simulate

W07402 VRAC AND NAVEAU: STOCHASTIC DOWNSCALING OF PRECIPITATION

3 of 13

W07402



100 samples of 1000 iid realizations of each density with: l = 1
and g = 0.25 for the Gamma distribution (see equation (7)),
u = 0, x = 0.3, s = 0.1 for the GPD (see equation (3)),
u = 0, m = 1, t = 0.1 for the mixture of the two previous
distributions (see equation (5)), and n = 2/3 and y = 1 for
the stretched exponential (see equation (4)), respectively.
Such parameter values were chosen because they corre-
spond to reasonable estimates for precipitation data. In
particular, n = 2/3 is recommended by Wilson and Toumi
[2005]. As a second step, we fit each distribution to each of
the four simulated samples by using the maximum
likelihood approach to compute the ‘‘optimal’’ parameters
for each distribution. To be consistent with Wilson and
Toumi’s paper, the parameter n in (4) is not considered as
a constant; that is, we assume that this shape parameter
has to be estimated. This has also the advantage that we
do not penalize the stretched exponential distribution with
respect to the other distributions we test and for which the
shape parameter is also not fixed but estimated. The last
step is to compare the qualities of the fit with respect to
the given density. Classically, one can compute the Akaike
information criterion (AIC) [Akaike, 1974], defined by �2
log(L) + 2p, and the Bayesian information criterion (BIC)
[Schwarz, 1978], defined by �2 log(L) + plog(n), where L
is the likelihood of the model fitted to the data, p is the
number of parameters, and n is the number of data.
Minimizing AIC and BIC helps to select the model with a
good fit to the data (i.e., high likelihood) while penalizing
a model with too many parameters. The BIC tends to add
a larger parameter cost than the AIC. For our simulations,
the frequencies of selection of the four candidate
distributions by the AIC and BIC values are summarized
in Table 1. As expected, the best AIC and BIC (in bold)
are majoritarily obtained along the diagonal of the table;
that is, the simulated samples are best fitted by the density
from which they were generated. We can remark that
about one time every third, the BIC indicates a Gamma fit
when the true density is a mixture; that is, the BIC
penalizes too much. In comparison, the AIC largely selects
the correct distribution for all four cases.
[11] Hence, for these simulations, the AIC appears to

perform reasonably and will be used in the subsequent
analyses. Still, we cannot solely rely on these two criteria

to discriminate among models. In particular, these criteria
may not be well adapted for extreme values. Concerning
the fit quality of the largest values, Figure 1 displays four
quantile-quantile type plots (QQplots). The circles, crosses,
pluses, and diamonds correspond to the analytically fitted
Gamma, mixture, GP and stretched exponential densities,
respectively. The y = x black line represents the ‘‘true’’
distribution that can either be a Gamma (Figure 1, top left), a
mixture (Figure 1, top right), a GP (Figure 1, bottom left)
and a stretched exponential (Figure 1, bottom right) density.
This graph mainly tells us that the mixture distribution
crosses) appears to provide a very good fit in all cases. As
expected, a Gamma fit (circles) does not work very well
when the true trail is heavy. The stretched exponential
diamonds) is somehow limited because it only provides a
good fit when the true tail is stretched exponential. The
worst case is the GPD pluses), but this is expected because
the threshold u was set to zero and it is well known that the
GPD only works well for very large values. An alternative
would be to select a high threshold, but then the main part of
rainfall cannot be statistically modeled (and consequently,
be compared with the other densities). Still, it is very
interesting to see that, despite also having a GPD threshold
set to zero, the mixture density provides very good results.
This reveals that the weight function wm,t in (6) can bring
enough flexibility even if the mixture threshold is equal to
zero. One may argue that the mixture density has too many
parameters, but the AIC and BIC summarized in Table 1 do
not show much cases of overfitting. Even more importantly,
Figure 1 shows that the other three classical distributions for
rainfall (Gamma, stretched exponential and GPD) do not
offer the necessary latitude to model the full spectrum of
precipitation distribution.
[12] Although the scope of this small simulation study is

very limited and a more thorough investigation would be
welcome to review the arguments and problems related to
local rainfall distributions, Table 1 and Figure 1 strongly
suggest that our mixture model could provide a competitive
probabilistic foundation. Consequently, this model will be
used in the rest of this paper. Concerning the choice
between the AIC and BIC, only the AIC will be presented
in the remainder of this paper. In most cases, the BIC
provides similar results and does not change the meaning of
the main findings that will be presented in section 3.
[13] With respect to real data, our goal is to analyze daily

observations that were recorded at 37 weather stations in
Illinois from 1980 to 1999. Those stations correspond to the
complete data set of precipitation provided for Illinois by
the co-op observational program. The stations are found to
be uniformly distributed over Illinois. To reduce seasonal
influences, we only consider three winter months, Decem-
ber, January and February (DJF). To illustrate the fit
between our mixture model and real rainfall observations
and also to show the difference of fit to the data between a
Gamma distribution and our mixture, we select one station
(Aledo) and apply a maximum likelihood estimation proce-
dure to derive the parameters of each distribution. Figure 2
shows the resulting quantile-quantile plots. Figure 2 (top)
displays the fit obtained using a Gamma distribution, while
Figure 2 (bottom) shows the result for our mixture distri-
bution. As already seen in our simulation study, this latter
model provides a gain at capturing extreme values behavior.

Table 1. Frequencies of Selections of the four candidate

Distributions by the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) Values Obtained From 100

Samples of 1000 Simulated Data for Each Given Densitya

True Density

Fitted Density

Gamma GP Mixture Stretched

Gamma AIC = 90 AIC = 0 AIC = 10 AIC = 0
BIC = 100 BIC = 0 BIC = 0 BIC = 0

Generalized-Pareto AIC = 0 AIC = 86 AIC = 11 AIC = 3
BIC = 0 BIC = 96 BIC = 1 BIC = 3

Mixture: GP + Gamma AIC = 7 AIC = 0 AIC = 93 AIC = 0
BIC = 36 BIC = 0 BIC = 64 BIC = 0

Stretched exponential AIC = 3 AIC = 0 AIC = 10 AIC = 87
BIC = 3 BIC = 0 BIC = 0 BIC = 97

aThe bold fonts correspond to the highest frequencies with respect to the
AIC and the BIC.
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At this stage, one could be satisfied by this type of station-
per-station analysis. However, from a statistical and phys-
ical point of views, we prefer to go a step further in our
statistical analysis by relating local precipitation with large-
scale variables through an extension of our mixture model.
This is the object of the following section.

3. Our Downscaling Procedure

[14] To develop a statistical model capable of downscaling
precipitation, we need large-scale atmospheric variables and
local observed precipitation measurements. The latter are
provided here by daily observations described in section 2.
Large-scale atmospheric variables are given by NCEP
reanalysis data, with a 2.5� � 2.5� spatial resolution and at
850 mb. Three NCEP variables are considered in our anal-
ysis: geopotential height denoted Z850, specific humidity,
Q850, and dew point temperature depression DTd850 defined
as T850 – Td850, where T850 and Td850 are the temperature
and dew point temperature at 850 mb, respectively.

3.1. Modeling Regional-Scale Precipitation Patterns

[15] Classically, weather typing methods are based on
circulation-related patterns. A number of studies [e.g.,

Mamassis and Koutsoyiannis, 1996] showed that, according
to the studied region, large-scale atmospheric patterns can
be efficient to explain and characterize local precipitation
variability. However, to better represent precipitation
behaviors, we follow the approach of Vrac et al. [2007].
Instead of defining upper air circulation patterns, these
authors recently constructed precipitation-related patterns,
directly obtained from a subset of observed local precipita-
tions, and showed that, for Illinois, these patterns are
more efficient than classical upper air circulation patterns
to characterize and simulate local precipitation. These
precipitation patterns were derived from a hierarchical
ascending clustering (HAC) algorithm with Ward criterion
[Ward, 1963], applied to the observed precipitation of the
1980–1999 winter months (DJF). Instead of the common
Euclidean distance, a special metric tailored to precipitation
was developed to take account of the spatio-temporal rain
features. The details of this clustering algorithm are given
by Vrac et al. [2007]. Figure 3 shows the four precipitation
patterns over the region of Illinois. It is clear that pattern 1
represents the smallest rainfall intensities whereas pattern 4
corresponds to the most intense precipitation. Patterns 2 and
3 show moderate precipitation, with opposite South/North

Figure 1. Quantiles-quantiles plots (i.e., theoretical versus fitted quantiles). The circles, crosses, pluses,
and diamonds correspond to the QQplots from the Gamma, mixture, GP, and stretched exponential
densities, respectively. Each distribution is analytically fitted by (top left) a Gamma, (top right) our
mixture, (bottom left) a GP, and (bottom right) a stretched exponential density. The 99% quantile is
indicated for each fitted distribution. These graphes mainly tell us that the mixture distribution (crosses)
appears to provide a very good fit in all cases.
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and North/South gradients respectively. The North/South
gradient (drier in the north and wetter in the south) that is
also perceptible in pattern 4, is a classical recurrent feature
of winter precipitation in Illinois.

3.2. Relating Regional Precipitation Patterns With
Large-Scale NCEP Outputs

[16] At this stage, precipitation-related structures St have
been derived (see Figure 3) and represent the regional scale.
How to link them to the larger scale (the NCEP reanalysis)
and how to connect them to the smaller scale (the weather
stations) are the two remaining questions we have to address
in this paper. In this section, we focus on answering the first
one. To perform this task, we model the day-to-day
probability transitions from the given weather state at
day t, say St, to the state of the following day, St+1 as a
function of the current large atmospheric variables, say Xt,
from the NCEP reanalysis. More precisely, a nonhomoge-
neous Markov model [e.g., Bellone et al., 2000] is fitted to
our NCEP data and our states by applying the following
temporal dependence structure,

P St ¼ sjSt�1 ¼ s0;Xtð Þ / gs0s

� exp � 1

2
Xt � ms0sð ÞS�1 Xt � ms0sð Þ0

� �
; ð8Þ

where the symbol / means ‘‘proportional to’’ and where gs0s
is the baseline transition probability from pattern s0 to pattern
s, corresponding to the observed transition probability from
s0 to s, i.e., the proportion of transitions from s0 to s over the
total number of transitions. In the above formula, we can
recognize a weight represented by the exponential term that
is proportional to a normal density whose mean ms0s and
variance matrix S are directly representing the influence of
the large atmospheric variable Xt. Equation (8) comes from
Bayes’s theorem, saying that

P St ¼ sjSt�1 ¼ s0;Xtð Þ

¼ P St ¼ sjSt�1 ¼ s0ð Þ P XtjSt ¼ s; St�1 ¼ s0ð Þ
P XtjSt�1 ¼ s0ð Þ

¼ gs0s P XtjSt ¼ s; St�1 ¼ s0ð ÞP
k gksP XtjSt ¼ s:St�1 ¼ kð Þ : ð9Þ

[17] By assuming in equation (8) that Xt is multivariate
normal, equation (8) is easily derived. In equation (8), ms0s

corresponds to the mean vector of the atmospheric variables
at time t when transitioning from St�1 = s0 to St = s. The four
precipitation patterns defined in section 3.1 imply a
reasonable number of 16 possible transition. Hence the
16 ms0s and gs0s to be computed can be estimated very fast. As
for S, it is the variance-covariance matrix for the whole data
set of large-scale atmospheric data (centered around their
mean). Indeed, as in work by Charles et al. [1999], Bellone
et al. [2000] or Vrac et al. [2007], for stability reasons, a
single covariance matrix is preferred over one matrix per
transition. In contrast to the exponential part of equation (8),
the baseline transition probability gs0s in (8) is time invariant
and corresponds to the transition probabilities that one would
have if large-scale features did not bring any information.
This case corresponds to the homogeneous Markov model.
Hence allowing a nonhomogeneity in our Markov modeling
brings the necessary flexibility to mathematically integrate
large-scale information at the intermediate level of the
regional precipitation patterns.

3.3. Linking Regional Precipitation Patterns to Local
Precipitation

[18] In order to implement an efficient downscaling
precipitation scheme, we also need to model accurately
the distributional properties of precipitation at the smallest
scale, i.e., the ones recorded at rain gauges. We now assume
that, given the current weather state s, all the rainfall
intensities for station i follow the density hbsi

given in (5)
with state- and site-specific parameters. This gives us the
last ingredient to determine our main density defined by (2):
the probability of observing local rainfall intensities at day t,
say Rt = (Rt,1,. . ., Rt,N), given the current weather state, say
St = s, and large-scale atmospheric variables, say Xt. To
compute fRtjXt,St

, we follow Bellone et al. [2000] who
considered that each rain gauge is spatially independent
given the state St. Mathematically, this assumption translates
into the following equality:

fRt jX t ;St rt1; � � � ; rtNð Þ ¼
YN
i¼1

fRti jX t ;St rtið Þ: ð10Þ

Figure 2. QQplot for Aledo with (a) Gamma distribution
and (b) our mixture.
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[19] To give an explicit form for the density fRtijXt,St
, we

take advantage of work by Vrac et al. [2007], who
suggested the following form:

fRtijX t ;St¼s rtið Þ ¼ p X t;asið Þhbsi
rtið Þ

	 
1lfrti>0g� 1� p X t;asið Þ½ �1lfrti¼0g ;

ð11Þ

where hbsi
is given by (5), 1l{a} = 1 if a is true and 0 if false,

and p(Xt; asi) represents the probability of rain occurrence
for weather station i in state s. Equation (11) may look
complex at first sight. Basically, it is composed of three
elements (1) the indicator function 1l{rti=0} is necessary to
take into account that the rain gauge i can record no
precipitation during day t; (2) 1 � p(Xt; asi) provides the

probability of such a dry day and it depends on the
atmospheric variables Xt through a logistic regression with
parameters asi, as suggested by Jeffries and Pfeiffer [2000],

p Xt;asið Þ ¼ P Rti > 0jSt ¼ s;Xtð Þ ¼
exp X0

tasi

� �
1þ exp X0

tasi

� � ; ð12Þ

and (3) the density hbsi
(rti) corresponds to positive rainfall

values.
[20] Combining equations (8), (5), (10) and (11) consti-

tutes the main components of our stochastic weather typing
approach. Through the variables Rt, St and Xt, it integrates
three scales (small, regional and large) summarized in
Figure 4. In addition, the full spectrum of precipitation

Figure 3. Four station-based precipitation patterns over Illinois derived by the Vrac et al. [2007] HAC
method, with area proportional to mean rainfall for each cluster.
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values (dry events, medium precipitation, heavy rainfall) is
modeled.

4. A Case Study: Precipitation in Illinois

[21] As previously mentioned, Figure 3 displays our four
selected regional precipitation patterns over the region of
Illinois. From these four patterns, the nonhomogeneous
Markov model is parameterized, and the parameters of the
conditional distributions of precipitation are estimated by
Maximum Likelihood Estimation (MLE), given each ob-
served (i.e., predefined) pattern. In the following simulation
process, the precipitation patterns are stochastically simu-
lated, for each t, according to the parameterized NMM,
influenced by the large-scale atmospheric variables. In other
words, in the simulation step, we do not use the patterns
defined previously by HAC but we generate new ones
according to Xt and our model. Conditionally on the four
patterns, equations (10) and (11) offer a wide range of
modeling possibilities. For example, one may wonder if it is
better to have a unique GPD shape parameter x for all
precipitation patterns and at all rain gauges or if a better
statistical fit can be obtained by allowing this shape
parameter to vary from station to station, while taking into
account the risk of overparameterization. Before presenting
the seven different models that we have tested and
compared, we note that the parameter t in equation (6)
cannot be null. For this reason, from the limit of equation (6)
when t goes to 0, we extend equation (6) to

wm;0 rð Þ ¼
0; if r < m

0:5; if r ¼ m

1; if r > m

8<
: ð13Þ

for t = 0, whenever we do not wish to estimate t and we
think that the transition from the Gamma to the GPD
distribution is very fast in the mixture defined by (10). Our
seven models are the following ones: model (0), Gamma and

GPD mixtures whose parameters vary with location and
precipitation pattern; model (i), only Gamma distributions
(no GPD in the model) whose parameters vary with location
and precipitation pattern; model (ii), Gamma and GPD
mixtures with one x parameter per pattern (i.e., given the
weather pattern, the weather stations have the same x);
model (iii), the same as model (ii) with t set to be equal to 0;
model (iv), Gamma and GPD mixtures with one common x
for all stations and all patterns; model (v), same as model (iv)
with t set to be equal to 0; and model (iii)*, same as
model (iii), one x parameter per pattern with t = 0, except
that only Gamma distributions are used in pattern 1. Indeed,
since this pattern corresponds to small or null intensities of
rainfall, a modeling of the extreme events could have no
sense here.
[22] From a statistical point of view, the GPD shape

parameters are very difficult to estimate (wide confidence
intervals). Hence diminishing the number of x parameters to
estimate like in model (iii) reduces the overall variability. In
addition, interpreting four x parameters (one per pattern, see
models (ii) and (iii)) instead of 37 � 4 is much easier for the
hydrologist. Besides these two general guidelines, we need
a more objective ‘‘measure’’ to compare our seven models.
As in section 2, we opt for minimizing the classical AIC
criterion (similar results are obtained with the BIC).
[23] Our seven models’ differences primarily focus on the

degree of flexibility allowed for x and t. Concerning the
other parameters (s, m, . . .), we allow them to vary across
stations and across patterns because they mainly represent
local variability.
[24] For each model, we estimate its parameters by

implementing a maximum likelihood estimation method.
To illustrate the quality and drawbacks of our approach, we
will comment on five example stations in this section:
Aledo (northwest of Illinois), Aurora (northeast), Fairfield
(southeast), Sparta (southwest), and Windsor (center-east of
Illinois). This subset was picked because we believe that it
represents a large range of cases and space limitations make
it impossible to provide plots and tables for all 37 stations.
[25] Concerning the large-scale atmospheric variables Xt,

we assume that only the NCEP grid cells over Illinois have
the potential to influence local precipitation and transition
probabilities. Consequently, we only work with the six grid
cells that cover Illinois. According to the studied region, it is
possible that taking more NCEP grid cells into account
could improve the modeling and the simulation process. A
few attempts have been made to enlarge the NCEP area
influencing local precipitation and patterns transitions.The
associated results, not presented here, did not show any
clear improvement for the Illinois region, compared to the
results obtained from the six grid cells. Moreover, the more
grid cells we work on, the more parameters we have (with a
risk of overparameterization). Hence from a computational
point of view, it is better to restrict the large-scale influence
to a reasonable number of NCEP grid cells over Illinois. On
the basis of these two considerations, we then limit the
application presented here to the six NCEP grid cells over
Illinois to influence local precipitation and patterns
transitions.
[26] Instead ofworking directlywith the raw variables,Z850,

Q850, and DTd850, corresponding to 6 � 3 = 18 variables,
we perform a Singular Value Decomposition [Von Storch

Figure 4. Schematic graph explaining the main compo-
nents of our downscaling scheme.
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and Zwiers, 1999; Vrac et al., 2007; Wilks, 2006]. This has
the advantage of reducing significantly the dimensionality
of the NCEP data, while keeping the main part of
information brought by the reanalysis. The SVD operation
gives us the following summary: the SVD explains 93.6%,
98.6%, and 97.5% of the correlation for Z850, Q850, and
DTd850 respectively.
[27] A central theme in this paper is how to capture the

full range of precipitation, extremes included. To determine
if the addition of a GPD to a Gamma density is worthwhile,
Figure 5 displays QQplots (empirical quantiles versus
modeled quantiles) for the Sparta station for two precipita-
tion patterns (see the left and right panels) and in two
models: (0) and (i), see Figure 5, top and bottom plots,
respectively. In contrast to histograms, the QQplots are, by
design, capable of representing the quality of the estimated
fit at the end of the distribution tail; that is, they can show
the capacity of our mixture model to represent extreme
precipitation.
[28] Figure 5 indicates that a fitted Gamma has the

tendency to either underestimate (Figure 5a) or overestimate
(Figure 5b) the largest precipitation for this station, respec-
tively to the precipitation patterns. Figures 5a and 5c show
that, for pattern 2, our mixture can model heavier rainfall
than the gamma distribution alone (i.e., characterizes
stronger intensities for this pattern/station). To explain how
the Gamma model can overestimate large precipitation in
Figure 5b, we have to keep in mind that the whole rainfall

range is fitted and the Gamma distribution does not have a
shape parameter for the tail of the distribution. In the
presence of a heavy tail, it is not clear how the estimation
procedure is going to compensate the facts that the gamma
distribution is not heavy tailed and that the whole distribu-
tion has to be fitted. Either the Gamma-scale parameter can
be largely overestimated (by the largest values) or under-
estimated (depending on the spread and the size of the
sample). Applying a robust estimator to find the Gamma-
scale parameter should remove the problem of overestima-
tion, but then heavy tailed values will even be more
disregarded. Consequently, a possible solution is to allow a
distribution (like the GPD) with a shape parameter. More
generally, Figure 5 clearly indicates that integrating a GPD
improves the fit of ‘‘large’’ rainfalls for this station, as the
closer the estimated quantiles are to the empirical quantiles
the better. Of course, this does not mean that this is true for
all stations and all patterns. Instead, this shows that our
mixture defined by (5) provides the necessary modeling
flexibility to describe heavy-tailed behaviors when needed.
If no heavy rainfalls are observed at a given station, the
estimated weight defined by (6) should take small values to
favor the Gamma distribution, i.e., m large for this station.
[29] Concerning the model selection, Table 2 compares

models (0) and (i) with respect to the Akaike Information
Criterion (AIC) for our five selected stations and for each
precipitation pattern. Because the BIC values gave us
equivalent results, they are not provided in this table,

Figure 5. QQplots of precipitation patterns 2 and 3 for station ‘‘Sparta’’, for (a, b) function hb in
equation (11) as a Gamma distribution and (c, d) hb as a mixture (equation (5)). Units are centimeters.
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illustrating that the optimal choice between model (0) and
model (i) varies greatly across stations and across patterns.
For example, introducing a GPD seems to be a good choice
for Sparta, while a simpler Gamma model appears to be
sufficient for Aurora.
[30] Table 3 contain the AIC values obtained for the

seven models. The bold values correspond to the optimal
criterion of each row. Taking model (iii)* (t = 0, a Gamma
distribution for pattern 1 and one x parameter per pattern for
patterns 2–4) provides the best AIC for Sparta, while
setting one overall x parameter gives the best AIC for the
four other stations. For any of the five stations, we can
remark that setting t = 0 in model (ii), i.e., going from
model (ii) to model (iii), brings an improvement of the AIC.
This means that restricting the number of x parameters
generally provides better criteria. Models (iii)* and (iv)
seem to be the most competitive ones in general (i.e., for
most of the stations separately), while the preferred model
tends to be (iii)* for the set of the five selected weather
stations altogether (last row of Table 3). Consequently,
model (iii)*, i.e., pattern 1 associated with Gamma
distributions and patterns 2–4 to mixtures with one x
parameter per pattern with the constant t = 0, is chosen as
the most efficient model, as it provides the best overall
criterion for the set of these five stations. Hence this model
can well represent both common and extreme precipitation
values with an acceptable number of parameters and has the
overall preference.
[31] Table 4 shows the values of the x parameters and the

values of the m parameters (when applicable) for the five
example stations for model (iii)*. The three x parameters are
clearly positive. These positive values indicate that the
heavy tail component in our mixture pdf is essential to
model heavy rainfalls for precipitation patterns 2–4, while
the Gamma distributions (with light tails) are sufficient in
pattern 1 corresponding to small precipitation events.
Unsurprisingly, the m parameters tend to increase from
pattern 2 (with the smallest rainfall intensities among
patterns 2–4) to pattern 4 (with the strongest rainfalls
among all patterns).
[32] To visually evaluate the fit between our model (iii)*

and the observed precipitation, a QQplot is plotted for the
Aledo station in Figure 6. The agreement between observed

Table 2. Akaike Information Criterion (AIC) Values Obtained

Pattern by Pattern for Five Weather Stationsa

Station Model Pattern 1 Pattern 2 Pattern 3 Pattern 4

Aledo (0) �351.15 �486.98 �162.21 86.72
(i) �349.15 �493.05 �163.29 84.86

Aurora (0) �948.62 �663.43 �228.28 272.63
(i) �954.48 �670.41 �235.40 265.43

Fairfield (0) �367.72 �513.05 57.15 499.93
(i) �375.99 �282.21 97.42 741.63

Sparta (0) �131.34 �488.52 �128.03 613.23
(i) �129.61 �466.06 �123.57 766.54

Windsor (0) �632.25 �982.22 �321.01 441.08
(i) �613.92 �985.26 �325.78 579.47

aThe bold values correspond to the optimal criteria for either model (0)
or (i).
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and theoretical quantiles (even for high quantiles) is clearly
good. Figure 6 has to be compared to Figure 2. This allows
us to conclude that, not only the AIC is better for model (iii)*
than for a ‘‘no pattern’’ modeling, but also that model (iii)*
improves the QQplot.
[33] Besides heavy rainfalls, an important characteristic

of precipitation modeling is the representation of the so-
called wet and dry spell periods, fundamental quantities in
agriculture. Note that none of the following results
concerning wet and dry spells and local precipitation
probabilities, presented and shown from Figure 7, depends
on the Gamma or mixture models. Indeed, they are only
related to the nonhomogeneity introduced in the Markov
model (8), that characterizes pattern transitions, and to the
probabilities of local rain occurrence modeled as logistic
regressions (see equations (11) and (12)). So, the following
results are directly derived from the model developed by
Vrac et al. [2007] and allow us to compare some
precipitation appearance characteristics obtained from the
‘‘four precipitation patterns’’ and those obtained from the
alternative ‘‘no pattern’’ approach.
[34] In this context, we have noticed that the four pre-

cipitation patterns have to be included in order to obtain
adequate wet and dry spell probabilities. For example,
Figure 7 shows such probabilities (in log-scale) at two
stations, respectively Fairfield and Windsor. Figures 7a
and 7b display these probabilities when the four precipita-
tion patterns are included in our analysis. In contrast,

Figures 7c and 7d show the results when no patterns are
introduced. From these graphs, one can see that the ‘‘no
pattern’’ option is not completely satisfying, it tends to
underestimate the probabilities for long spells, above all for
dry spells.

5. Conclusion

[35] We presented here a nonhomogeneous stochastic
weather typing method to downscale the full spectrum of
precipitation distributional behaviors. Our downscaling
technique is based on a nonhomogeneous Markov model
that characterizes the transitions amongst different precipi-
tation patterns obtained from a hierarchical ascending
clustering algorithm. Conditionally on these precipitation
patterns, the precipitation distribution is modeled by a
mixture model that integrates heavy rainfalls, medium
precipitation and no rain occurrences, and that depends on
large-scale features given from a SVD applied to NCEP
reanalysis.
[36] After applying our approach to the region of Illinois,

it appears that a specific subclass of our model (the one with
Gamma distributions for pattern 1 and mixture models with
a single GPD shape parameter per pattern for patterns 2–4)
produces the best fit with respect to the AIC criterion for
this region. In terms of extreme precipitation, this model
corresponds to a very fast transition from the Gamma
distribution to the GPD for patterns 2–4. It is also worth-
while to highlight that introducing four precipitation pat-
terns produces better precipitation characteristics than a
direct ‘‘no pattern’’ approach does.
[37] As possible improvements, spatial dependence mod-

eling could be introduced in this model to better represent
the correlation between stations. In that context, Bayesian
hierarchical methods could provide an additional flexibility.
A possible application of our downscaling procedure could
be the projection of future local precipitation based on large-
scale climate change simulated by GCMs. While the estima-
tion step requires both present large- and local-scale data, the
local projection of future climate scenarios can be done by
using only the GCM outputs describing future time periods.
On the basis of the NMM previously fitted, the future large-
scale outputs are first used to influence the simulation of
future precipitation patterns through equation (8). No local

Table 4. Values of the x and m Parameters for the Five Example

Stations for Model (iii)*a

Pattern 1 Pattern 2 Pattern 3 Pattern 4

x NA 0.3 0.13 0.26
m for Aledo NA 0.73 0.81 1.06
m for Aurora NA 0.28 0.48 1.38
m for Fairfield NA 1.61 1.24 1.84
m for Sparta NA 0.46 1.01 1.83
m for Windsor NA 0.56 0.81 0.96

aNonapplicable (NA) is indicated for pattern 1, since this pattern is
associated with Gamma distributions in this model.

Figure 6. QQplot for Aledo with four patterns and model (iii)*, i.e., Gamma distributions for pattern 1
and mixtures for patterns 2–4 with one x per pattern and t = 0.
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precipitation is needed for this step, since it is obviously
not even available. Conditionally on the generated future
patterns, probabilities of local rainfall events can be com-
puted, influenced by the large-scale GCM outputs, through
equation (12) for rain appearances and through equation (11)
for intensities. These local projections would then allow
economic impact studies of extreme precipitation.
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