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ABSTRACT

This work focuses on the clustering of a large dataset of atmospheric vertical profiles of temperature and
humidity in order to model a priori information for the problem of retrieving atmospheric variables from
satellite observations. Here, each profile is described by cumulative distribution functions (cdfs) of tem-
perature and specific humidity. The method presented here is based on an extension of the mixture density
problem to this kind of data. This method allows dependencies between and among temperature and
moisture to be taken into account, through copula functions, which are particular distribution functions,
linking a (joint) multivariate distribution with its (marginal) univariate distributions. After a presentation
of vertical profiles of temperature and humidity and the method used to transform them into cdfs, the
clustering method is detailed and then applied to provide a partition into seven clusters based, first, on the
temperature profiles only; second, on the humidity profiles only; and, third, on both the temperature and
humidity profiles. The clusters are statistically described and explained in terms of airmass types, with
reference to meteorological maps. To test the robustness and the relevance of the method for a larger
number of clusters, a partition into 18 classes is established, where it is shown that even the smallest clusters
are significant. Finally, comparisons with more classical efficient clustering or model-based methods are
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presented, and the advantages of the approach are discussed.

1. Introduction

The major role played by a priori information in the
problem of retrieving atmospheric variables from sat-
ellite vertical sounder observation can be understood
by considering the fact that radiance observed by the
sensor integrates the atmospheric thermal structure
over relatively thick layers. Such an integration results
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in the well-known problem of the nonuniqueness of the
solution. By specifying an initial guess solution as close
as possible to the final correct solution, any a priori
information may help to overcome this difficulty. For
example, the improved initialization inversion (3I)
method (Chédin et al. 1985; Scott et al. 1999) makes
systematic use of available a priori information for re-
trieving the best possible temperature and water vapor
profiles initial guess through a pattern recognition type
approach. A priori knowledge of the airmass types, op-
timally at synoptic scale (Davis and Walker 1992; Kal-
stein et al. 1993), should be very useful because the
average temperature or moisture profiles and associ-
ated variances may be very different for each airmass
class. Providing full description of the vertical atmo-
spheric column, operational meteorological analyses
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are at the basis of the method we have developed to
determine the type of the air mass observed. This
method allows one to cluster a set of atmospheric pro-
files by characterizing each type of air mass in a statis-
tical sense, opening a way to model the distribution of
each variable (temperature, moisture) and the prob-
ability of appearance of any new atmospheric tempera-
ture and/or moisture profile. This method, dealing with
probability distribution functions data, also called cu-
mulative distribution functions data, is based on the
notion of mixture densities (Diday et al. 1974; Demp-
ster et al. 1977) and on the statistical modeling of de-
pendencies between and among the temperature and
moisture variables, through the so-called copula func-
tions (Sklar 1959; Schweizer and Sklar 1983).

From a sample of N units (e.g., p-dimensional vectors
of temperature or moisture values), the classical prob-
lem of mixture densities consists of estimating a prob-
ability density function f (e.g., of temperature) as a fi-
nite sum of K-weighted parametric densities (K given),

K
for, . oux,) = E piftry, . x ), (D)

where f(., a) is a density with parameter «a belonging to
RY, p, is the probability that a unit from the sample
follows the law with density f(., o) Wwith Vk =1, ..., K,
0 < pr <1 and =§_,p, = 1. This problem has been
investigated by many authors with two different ap-
proaches. The most widespread approach (called esti-
mation approach) deals with the estimation of the mix-
ture parameters (p,, «,) (Dempster et al. 1977; Everitt
and Hand 1981). Classical methods for the estimation
of these parameters maximize the likelihood. The most
powerful algorithms rely on the expectation maximiza-
tion (EM) method, as in Dempster et al. (1977) and
studied by Redner and Walker (1984). Once the pa-
rameters are estimated, a partition P = (Py, ..., Pg)
into K clusters can be made by applying the maximum
a posteriori principle (MAP),

Py ={x flx, o) = flx, ), j =

The second approach (called clustering approach),
looks for a partition into K clusters such that each clus-
ter P, can be seen as a subsample with density f(x, o).
With such an approach, the currently used algorithms
rely on the so-called dynamical clustering method
found in Diday et al. (1974) and consist, at each step, of
estimating the best parameters (p,, a,) according to a
classifier log-likelihood criterion (Scott and Symons
1971), and then in defining the new partition P = (P,
..., Pg) according to the MAP Eq. (2), and so on. For
more details, see Symons (1981). Obviously, as this ap-

L...Kij#kl.
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proach uses a different criterion, it provides slightly
different estimates than the estimation approach. For
both approaches, the number of clusters has to be
given. Finding the right number is still a hard question
in clustering analysis and in mixture models because
there are no completely satisfactory methods. A very
common approach consists of running the mixture
models several times for various numbers of clusters
and using the number that maximizes a given criterion,
generally based on the likelihood. More specifically,
bootstrapping methods, likelihood ratio tests, and
Bayesian or classification-based information criteria for
instance, have been applied to assess this number. A
very nice review of some of these methods is given in
McLachlan and Peel (2000).

In this study, we apply a model-based clustering ap-
proach (i.e., a clustering approach type) to a set of tem-
perature and moisture atmospheric profiles to charac-
terize air masses. To get a good modeling of dependen-
cies between the variables and among each variable, we
use a particular family of statistical distributions: the
so-called copula functions (Sklar 1959; Schweizer and
Sklar 1983; Vrac 2002). Copulas are particular distribu-
tion functions that link the joint (i.e., multidimensional)
cumulative distribution functions of a multivariate ran-
dom variable X = (X3, ..., X,,), to the marginal (i.e.,
one-dimensional) cumulative distribution functions of
each univariate random variable X;. This link, giving an
analytic modeling of dependencies is expressed through
the most important result in copula theory, that is
Sklar’s theorem. However, copulas can also be used as
statistical distribution with uniform marginal distribu-
tion.

Moreover, the model-based clustering approach by
mixture copulas we present here, deals with cumulative
distribution functions (cdf) data. The cumulative distri-
bution function F (sometimes called distributions in this
paper) of a real random variable X is defined by F(x) =
P(X = x). Hence, the initial dataset we want to study
contains vectors of cdf data (e.g., bivariate vectors of
temperature and moisture cdf) instead of classical nu-
merical values. Such data are usually studied in func-
tional data analysis (FDA), developing data analysis,
and statistical methods for functional data (Ramsay and
Silverman 1997, 2002), or in symbolic data analysis
(SDA), our approach in the present paper, extending
data analysis methods to more complex data than clas-
sical numerical or categorical data (e.g., intervals, se-
quences of weighted values, histograms, density func-
tions, etc.) See Bock and Diday (2000) for a review of
SDA.

First, we present the data and detail the process we
use to transform our dataset from numerical to cdf data.
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Presentation and transformation are made in section 1.
Developing a mixture model method for such cdf data
requires adapting the concept of distribution. This is
given in section 3 through the concept of distribution
function of distributions (DFDs). This section explains
what copulas are, associates the adapted distribution
(DFD) with copulas, and presents the key Sklar’s theo-
rem. The general shape of the mixture copulas formula
applied to DFDs and an algorithm for solving it are
given in section 4. Finally, this algorithm is applied to
our cdf data in section 5 and several results and statis-
tical descriptions are given, showing the very good rel-
evance of the air masses obtained. Comparisons with
more classical efficient clustering and model-based
methods are done on section 6, where we show that our
approach gives results that are more satisfactory.

2. From numerical data to cumulative distribution
function data

The atmospheric dataset we use comes from the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF). Data points are realized as grid points over
the earth at each latitude and longitude degree, and
extended in altitude to 50 data point levels called sigma
coordinates, from the surface to about 65 km. Several
products (e.g., the temperature and the specific humid-
ity) are recorded at each 3D latitude X longitude X
altitude grid point every six hours (at 0000, 0600, 1200,
1800 UTC). Suppose our present specific interest is the
field of world temperatures for 0000 UTC 15 December
1998 (the reasoning will be the same for specific hu-
midity). The objective then is to partition the weather
world into well-defined temperature (humidity) regions
meteorologically or synoptically coherent and to in-
clude estimation of the underlying probability distribu-
tion function for each identified region.

The method we propose to apply allows us to work
with cdf data, instead of having classical numerical data.
A cdf modeling of the initial numerical data allows us to
reduce the data, for computational purposes, in a very
effective way. Indeed, knowledge contained in a single
value, say F(x) of a cdf F, is more important than the
one contained in any single numerical data point: the
single cdf value F(x) gives us a piece of information
about what happened before x. Then, we have to com-
pute the cdfs associated to the profiles and to the vari-
ables we want to study. In this article, we only work
with the temperature and specific humidity profiles. So,
for each temperature profile, we estimate a cdf from the
37 first temperature values (surface to 30 km altitude),
and for each humidity profile, a cdf is computed from
the 24 first humidity values (surface to 13.5 km alti-
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tude). Values above about 30 km for the temperature
and above about 13.5 km for the humidity are not con-
sidered as being accurate. Therefore, we just use the
most precise forecasts to estimate two cdfs (tempera-
ture and humidity) for each profile. This is done by
assuming that all the values (e.g., of temperature) in a
given profile have the same distribution law: for each
profile, we use the Parzen’s kernel method to estimate
a cdf. For instance, for the temperature (the humidity),
this nonparametric method uses the p = 37 (p = 24)
values (X, ..., X)) closest to the surface to compute
f(x), the estimate probability density function (pdf)
with

X 1 & x—X;
f(x>=p—h§1<e( - ) 3)

where Ke is called a kernel function (usually, and in this
article, it is the normal pdf) and /4 is the window width,
automatically estimated in the following according to
the mean integrated square error (MISE), h =
1.060p~ ', with ¢ equal to the sample standard devia-
tion. For details on & estimation or on cdf or pdf esti-
mation, see (Silverman 1986) for a review of methods.
From the dataset (X, ..., X,), we could have used a
parametric distribution (such as a normal distribution)
to model the cdfs associated with each profile. But a
parametric modeling approach would have supposed
knowledge about the general shape of our distributions,
which we do not have. Actually, Eq. (3) can be seen as
a mixture (i.e., a weighted sum) of p parametric normal
distributions, each one associated with one X, in the
database (X, ..., X,). The Parzen’s kernel method
given in (3) does not suppose any shape for the distri-
bution to be estimated. Obviously, this implies that we
lose the notion of where the 7 and g appear in the
vertical profiles, which would have been true also for a
parametric distribution, and so, we may lose level fea-
tures corresponding to specific profile characteristics
(e.g., low-level inversion). However, this simple cdf
modeling approach gathers information from the entire
vertical profile and, consequently, reduces the number
of data to be dealt with in a very effective way. By
applying this approach, each profile has a temperature
and a specific humidity cdf. Considering all the world
profiles, we have 360 X 180 profiles. To reduce the total
number of items while preserving information, we de-
velop the temperature (or humidity) patterns for every
other (i.e., 2° apart) latitude-longitude grid point.
There are therefore (360/2) X (180/2) = 16 200 such
locations and therefore 16 200 cumulative distribution
functions.
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FIG. 1. An example of five temperature cumulative distribution
functions.

3. Distribution of cdf data and copulas

Developing an extension of the mixture density al-
gorithms for cdf data requires adapting the concepts of
pdf or cdf. The concept of distribution of distributions
has been developed for the first time in a general
probabilistic context by Vrac (2002) and theoretical de-
tails may be found in (Diday and Vrac 2005). Here, we
just give the essentials of this notion.

a. Distribution function of distributions

For simplicity reasons, we consider the case of only
one product, such as temperature. We work on a set 3
of N-estimated temperature cdfs F, ..., Fy, for ex-
ample, the 16 200 temperature cdfs. For a given value T
of temperature and a given value x of probability (i.e.,
x €[0, 1]), we would like to know how many chances we
have to get a cdf F; (randomly chosen among 3), which
is lower than x at point 7. That is, what is the probabil-
ity to get F,(T) = x? This probability, defined for each
temperature value 7, is a function of x e [0, 1]: this
function is what we call a distribution function of dis-
tributions (DFD). More formally, a DFD at a given 7,
denoted by G(x), is a function from [0, 1] to [0, 1]
defined by

G(x) = P{Fe3IF(T) = x}) )

corresponding to the cdf of a random variable with val-
ues in a probabilistic space (i.e., instead of having nu-
merical realizations of the random variable, we have
cdfs). As an illustration, we consider in Fig. 1 five tem-
perature cdfs estimated from five (arbitrarily chosen)
temperature profiles as described in the previous sec-
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tion. By fixing a value T, of temperature, we can easily
compute G77'7(x), an empirical version of G,(x) for all
x € [0, 1]. For example, in this figure, x = 0.4 and
G77™(x) corresponds to the percentage of cdfs taking a
smaller value than 0.4 at the point 7. In this case, there
are only three cdfs checking it among five. So,
G7(0.4) = 3/5.

Obviously, we can extend DFDs to the multivariate
case. For a given T = (Ty, ..., T,) of temperature
values and a given x = (xy, ..., x,,) € [0, 1]" (x; is a
probability), how many chances do we have to get a cdf
F; (randomly chosen among 3), which is lower than x;
in T; and lower than x, in 75, and . . . and lower than x,,
in 7,,? That is, what is the probability to get F(T;) =
x; and F(T,) = x, and ... and F(7,) = x,? This
n-dimensional function of (x4, ..., x,), denoted by Hr,
is defined from [0, 1]" to [0, 1] by

Hy(x) = P{FeSIF(T)) = xy;.. .; F(T,) = x,}) ()
and corresponds to the joint cdf of a n-dimensional
random variable with probabilistic values. The function
Hy is called a joint distribution function of distributions
(JDFD). In Fig. 1, we see that we only have two tem-
perature cdfs that are lower than 0.4 in 7, and lower
than 0.5 in 7,. Therefore, the empirical estimation in
(0.4, 0.5) of the bivariate JDFD at the given T = (7},
T,) is HF"P(0.4, 0.5) = 2/5. Actually, the DFD (JDFD)
should be called a single (multidimensional) point of a
distribution function of distributions rather than a
DFD, but when the number of 7's is big enough, we can
suppose that the entire continuous DFD is well-
characterized and then that the multidimensional point
of DFD is a good approximation of the complete DFD.
Hence, for simplicity, in the following we will talk about
JDFD for multidimensional point of DFD and DFD for
single point of DFD. More theoretical details and con-
siderations on DFDs and JDFDs, with several variables
and products, are given in Vrac (2002) and Diday and
Vrac (2005).

b. Modeling and estimating points of DFD

Although an empirical model for DFD and JDFD
can be useful for graphical representation of JDFDs,
for example, it does not enable one to get continuous
functions. In this subsection, we present a way to model
continuous DFDs and JDFDs. Modeling and estimat-
ing a DFD (respectively a JDFD) corresponds to mod-
eling and estimating a cdf from [0, 1] ([0, 1]", respec-
tively) to [0, 1], or a pdf and then integrating. For this
purpose, several statistical distributions and methods
exist. For the presented application, we only work with
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one statistical distribution: the beta distribution, which
is the Dirichlet’s distribution in one dimension. Its
pdf is

xV] 71(1 _ x)vz*l

fop,(0) = Jl ; (6)

YL =y dy
0

with »; > 0 and v, > 0 the two parameters. From a
temperature cdf dataset 3 = {F, ..., F,}, and for a
given temperature value 7, the two parameters v; and
v, have to be fitted to the dataset {F,(T), ..., Fx(T)},
for example by the Newton-Raphson algorithm (see
Press et al. 2002). The DFD at point 7, obtained by
integrating f, ,,, characterizes the probabilistic position
of the cdfs in 3 at 7. With two values 7 and T,, the
JDFD is starting to give us an idea of the shape of 3. To
make a functional link between positions (e.g., in T}
and T,) and to get a statistical description of the global
shape of 3 (i.e., a link between a JDFD and its two
marginal DFD), the copulas’ theory is used.

¢. Modeling dependence between DFDs with
copulas

The word copula first appeared in the journal Statis-
tics in 1959 in an article by Sklar (1959). The name
comes from the fact that copula functions couple to-
gether a joint cdf with its marginal cdfs (or margins).
These functions can be seen as particular cumulative
distribution functions with uniform marginal distribu-
tions. We do not give the formal definition of these
functions (see Nelsen 1998; Schweizer and Sklar 1983),
but only the most important result on copulas given
by Sklar’s theorem. Using a similar notation as in sec-
tion 3b, Sklar’s theorem says that if we have H, an
n-dimensional cdf with marginal cdfs Gy, ..., G,, then
there exists a copula function C coupling together H
and (Gy, ..., G,). More formally, there exists a copula
C such that for all (xy, ..., x,) € R",

’xn) = C[Gl(xl)? R Gn(xn)]' (7)

Then, when fixing, for example, two temperature val-
ues 7'y and 7, and modeling the associated temperature
DFDs (with beta laws), G, and G, we can model the
JDFD Hy with T = (T, T,) as a composition of a
copula function and the two DFDs. Formally, there ex-
ists a copula C such that Vx,, x, € [0, 1],

H(x,, ...

Hy(xy, x5) = C[Gr,(xy), Gr,(x5)]. 8)

Obviously, copulas are a very specific class of functions.
There exists many copulas and most studies work on a
class of parametric copulas: the Archimedian copulas
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(see Nelsen 1998; Vrac 2002). In our application, we
make use of Frank’s family (Genest 1987) given by

B - 1B - 1)
“’g[l TG ]

logp '
with u, v € [0, 1], B strictly positive and B # 1. This
family has the following noteworthy properties, helpful
to explain the clusters of the future partitions:

Cplu,v) =

9

e limg ,q Cp(u, v) = min(u, v) (copula called min copula
or lower bound of Fréchet-Hoeftding),

e limg_,; Cp(u, v) = uv (copula of independence),

e and limg_,.. Cg(u, v) = max(u + v — 1, 0) (copula
called upper bound of Fréchet-Hoeffding).

When the marginal DFDs are known, estimation of the
B parameter is based on likelihood criterion with a
Newton—Raphson method. When this is not the case, 8
can be estimated from Kendall’s 7 or Spearman’s p (see
Genest and Rivest 1993). For more details on copu-
las’ properties and Archimedian copulas, see Nelsen
(1998), Schweizer and Sklar (1983), and Vrac (2002). In
the following, two temperature values T = (7, = 225 K,
T, = 265 K) and two specific humidity values q = (¢, =
310 kg kg !, g, = 6.107% kg kg™ !) are fixed for es-
timating temperature and humidity DFDs. This choice
can appear quite arbitrary. Most of the time, the expert
knowledge is essential in choosing the values of a fixed
number of Ts. However, some numerical approaches
can be used, such as the triangle method or the surface
of distributions, to help the expert to make or confirm
this choice. These two methods are not given here but
are detailed in Diday and Vrac (2005) and support the
choice made in this paper, leading us to choose the
above values. In this application, only two values of
distribution are kept for each physical variable because
the higher the dimensionality, the slower the conver-
gence and the more complex the copulas to be ex-
plained. Indeed, n-dimensional copulas, Archimedian
or not, are numerous but the simplest ones induce a
high symmetry in dependencies between variables and
the most complex copulas are hard to understand (see,
e.g., Nelsen 1998; Hillali 1998). In the following appli-
cation, all the DFDs are modeled with beta laws and
the relationships between the JDFDs (Hy for tempera-
ture and H, for humidity) and their marginal DFDs
(G, for temperature and G, for humidity) are modeled
by Frank’s copulas.

4. Mixture decomposition of copulas

Our goal is dual: first, we would like to get a proba-
bilistic model to describe our (cdf) data and to compute
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the probability of having each temperature and humid-
ity cdf. Secondly, we want to cluster the dataset 3 into
K clusters. Each cluster must describe a coherent set of
atmospheric profiles (cdfs). Profiles in the same cluster
must be close to each other and profiles in different
clusters must be distant enough. To reach these two
goals, we only use one method: mixture decomposition
of copulas. First, we consider our dataset 3 to be only
the 16 200 temperature cdfs from section 2. Setting 7
= 225K, T, = 265 K, and using 3, we are looking for
the JDFD of temperature Hy. We assume that Hy is a
mixture of K JDFDs, that is, for all (x,, x,) in [0, 1], Hy
(x1, x5) is written as a sum of K parametric JDFDs
H%(x,, x,) (k = 1, ... K), each one weighted by a
mixture ratio p, (k = 1, ..., K). Sklar’s theorem,
through the relations (8) or (7), can be applied to each
HX with margins G’}1 and G’;z, and then the initial mix-
ture of JDFDs becomes a mixture of copula functions
C, applied to a couple of (points of) DFDs. In the
following, C, is taken to be a bivariate Archimedian
Frank’s copula. Let h(x,,x,) = §*Hy/ox,,0x, denote the
pdf associated with Hy, and h, = = 6*H’/ox,,dx, the pdf
associated with H%. When working with pdfs instead of
cdfs, the initial mixture of JDFDs becomes now

K 2 de
hxyx) = 2, pk[H = (x»]

i=1

2Ck

ou,0u,

[GF,(x1), G(x)]. (10)

From this equation, the mixture densities algorithms
can be extended. We propose here to extend and apply
a clustering approach algorithm: the CEM algorithm
that allows us to get a model and clusters from numeri-
cal data. This algorithm (Celeux and Govaert 1992)
consists of adding a clustering step (C-step) in the EM
method as in Dempster et al. (1977). Theoretical and
practical comparisons between the classical EM algo-
rithm, its stochastic version (SEM) and the CEM algo-
rithm can be found in Celeux and Govaert (1992,
1993). In our case, CEM can be summarized as
follows: Given a partition P = (Py, ..., Py) (usually
randomly generated), the clustering algorithm is de-
fined in two steps. The first one consists of estimating
the mixture parameters in (10): the mixture ratios p,
with p, = [card(Py)/card(3)], the parameters (bf)i = 1,
2, k = 1, K of each DFD G in component k [p¥ =
(vi#k, 1K), parameters of the beta laws], and the
copula parameters (Bi)i—i.. ... x by maximizing the
classifier log-likelihood (also called classification log-
likelihood) CL,
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K
CL(P,0) = >, D log{hF(T)). F(To)l}. (1)
k=1 FjePy
with 0 = (B, b¥, b5}, _, x> and F(T,) the value of the

df Fin T,
The second step consists of allocating the cdfs into K
new clusters by

P = {F; i FAT)), F(T5), 0,]

= ph [ F(T)), F(T,), 6,,Nm}, (12)

with k < m in case of equality. Then, we go back to the

first step until convergence of the criterion CL defined

in (11). At convergence, we obtain a partition into K

clusters of the cdf dataset, a statistical model for each

cluster and a global model as a mixture of copulas.
Let us define the simple decision rule

Py = [F; d(F, F,) < d(F, F,,),Vm], (13)

with d(F,, F,) a distance (the Euclidian distance for
example) between the couple [F(T;), FAT>)] [F{q,),
Fi(q,)] and the couple [Fi(T)), Fi(T2)] [Fi(q1), Fi(q2)],
where F, is the mean distribution (of temperature or
humidity according to the context) in cluster k. Once
the classes are defined, one can wonder to what extant
the use of this simpler decision rule to assign new pro-
files would change the results. Given our model-based
clustering approach, let us take a simple example with
a two-component one-dimensional Gaussian mixture
(easier than a mixture of copulas for the example). Let
us assume that we have a first cluster, ¢;, with a Gauss-
ian pdf narrow around the mean m, (i.e., small variance
o?) and a second cluster, ¢,, much larger around its
mean m, (i.e., big variance ¢3). We suppose that the
clusters are well separated. In the case of a new value v
= (my + m,)/2 — € with a small € > 0 [i.e., v is slightly
on the left of the middle of (m,, m,)], the decision rule
(13) implies that v belongs to cluster ¢; with the narrow
pdf. But if we take into account the pdfs, as it is done in
Eq. (12), the new value v will clearly be assigned to
cluster ¢, (see Fig. 2). That means that the simple de-
cision rule (13) does not take into account the distribu-
tion associated with each cluster. Actually, this rule im-
plicitly assumes the same variance for the two clusters.

5. Application to the clustering of a set of
thermodynamical profiles

As explained in section 1, there are no completely
satisfactory methods to assess g, the number of clusters
or components in clustering analysis and in mixture
models. In the present application we used an approxi-
mate Bayesian solution to the choice of g using the
classification maximum likelihood (ML) approach. This
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(12) => v belongs to C2

(13) => v belongs to C1

F1G. 2. An example of the decision rule.

approximation suggested and detailed by Banfield and
Raftery (1993), leads to the approximate weight of evi-
dence (AWE) criterion,

AWE(g) = —2log(L¢) + 2d[3/2 + log(N)], (14)

where d is the number of parameters to be estimated
when g components are in the mixture, L is the clas-
sification ML associated with (11) and N is the number
of atmospheric profiles. The 31 algorithm mentioned in
section 1, worked with a five-cluster partition for sev-
eral years, corresponding to two polar clusters, two
temperate clusters and one tropical (Chédin et al. 1985;
Achard 1991). Because of the small number of clusters,
this partition assumed equivalent behavior (i.e., similar
thermodynamic profiles) in the winter in the North
Hemisphere and in the summer in the South Hemi-
sphere (and conversely). This is obviously not true. To
improve the partition used for the 3I algorithm, a mix-
ture of copulas has been run for g ranging from 7 to 18
(six has not been tested because we wanted to favor an
odd number of clusters to keep a kind of symmetry to
the tropical cluster). For this range, the criterion given
in (14) is maximized for seven clusters for the tempera-
ture and for the humidity. Hence, in the following sec-
tions, the seven-cluster partition is presented.

a. Clustering of temperature profiles into seven
clusters

Temperature profiles for 0000 UTC 15 December
1998 are classified into seven clusters with the Frank’s
copula and with a DFD modeled with a beta law with
parameters v, and v,. From the 16 200 distributions, the
algorithm converges in two iterations to the partition in
Fig. 3a. Parameters of copulas and DFD are given in
Table 1. The clusters of the partition look coherent and
identify realistic climatic regions: one large tropical
class (cluster 4), two polar classes, winter in the North
Pole (cluster 1) and summer in South Pole (cluster 7),
two temperate classes (clusters 2 and 5). Cluster 3 links
midlatitude and tropical zones and cluster 6 links polar
and midlatitude zones. Some high relief is identified
(Himalayas, Andes), in spite of the use of the sigma
coordinates. Moreover, clusters 1, 4, and 5 have similar
parameters of copulas (10™°) near zero, meaning that
their copulas are near the so-called min copula C(u, v)
= min(u, v) (see section 3c). This value implies that for
these clusters, our method has grouped together distri-
butions having a tendency to have the same shape:
within each one of these three clusters, the functional
data that we handle do not cross over each other (i.e.,

(a)

(b)

FIG. 3. (a) Clustering on temperature distributions and (b) mean temperature (500-700
hPa).
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TABLE 1. Parameters of the clustering into seven clusters for

temperature.
Classes B vy in T v, in T viinT, 1inT,
1 0.000001  6.836969 14.342546 12208704 2.217218
2 0.300001 11.408380 69.945442 21.956 680 14.064 272
3 0.004 093 12.180901 70.0 61.601 810 70.0
4 0.000001 12.651747 70.0 56.703 354 70.0
5 0.000001 13.335871 70.0 11.891472 11.261731
6 0.030567 6.040135 25.066311 8938780 3.687 328
7 0.007 445  8.839353 22.021719 19.165813  2.168 266

they evolve in a parallel way). Moreover, an interesting
comparison can be made with the map of the mean
temperature between 500 and 700 hPa (Fig. 3b). Tran-
sition shapes between midlatitude and tropical zones
agree well with that of Fig. 3b. The tongues (incursion
of warm air mass into colder air mass or conversely) are
well identified. The red disc (cluster 7) located at 60°N,
60°E is perfectly explained with Fig. 3b, and corre-
sponds to a depression. More generally, the fit with the
synoptic analysis of the situation is good (shape of hot
or cold air incursions, depression, etc.).

Another way to describe the clusters is to look at the
pdfs of the temperature at different pressure levels.
These pdfs, determined using the Parzen’s kernel
method, bring information on the distribution of the
temperature values in each cluster and on their degree
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of discrimination. For instance, in Figs. 4a,b [corre-
sponding to pdfs at levels 900 hPa (about 1 km altitude)
and 500 hPa (5.5 km altitude), respectively], the clusters
appear well discriminated. In these figures, the y axis
corresponds to the values of the normalized pdfs (i.e.,
when minimal temperature value = 0 and maximal
temperature value = 1). As expected, clusters 1 and 7
are the two coldest, cluster 4 the warmest, and clusters
3 and 6 (closer to the Tropics and closer to the poles,
respectively) are transition clusters. From the result in
Fig. 3a, we can sort out the clusters, from the coldest
(near the poles) to the warmest (near the Tropics): clus-
ter 6, cluster 2, cluster 5, and cluster 3. This order is
verified by the pdfs. However, the higher the altitude
(i.e., the smaller the pressure), the smaller is the dis-
crimination between the clusters. It is the case above
the tropopause. This is shown on Fig. 4c illustrating the
results at 70 hPa, 20 km altitude (stratosphere). In this
example, the tropical cluster 4 is very distinct, and be-
comes the coldest, as expected by the climatology.

b. Clustering of specific humidity profiles into seven
clusters

A similar clustering into seven clusters has been car-
ried out on specific humidity distributions. We fixed
two values ¢, = 3.10 " kgkg 'and ¢, = 6.10 *kgkg .
Parameters of copulas and DFDs are given in Table 2

fumcar L =

cumcar 3 ——

(c)

clymar 4 ——-—

climar g ——de—

FIG. 4. Densities of temperature (K) for each cluster at several pressure levels: (a) 900 hPa
(1 km); (b) 500 hPa (5.5 km); (c) 70 hPa (20 km).
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TABLE 2. Parameters of the clustering in seven classes for the

humidity.
Classes B v in q; v, in q; v in g, v, 1N ¢,
1 020001 1.772749 36.192062 70.0 24.484 861
2 0.016939 6.292977 742.659 424 30.004 604 13.469 539
3 0.619099 0.000001 12.617126 16.619267 20.368 376
4 0445017 0.000001  12.617126 29.424 589 48242210
5 0.100001 0.000001 12.617126 6.890862  5.887 025
6 0.020641 0.000001 12.617126 38931557 14.840351
7 0.017 804 2215375 23.266142 70.0 18.847 424

and the resulting clusters are shown in Fig. 5a. This map
is compared to the map of vertically integrated vapor
content (TWVC) for each profile (Fig. 5b). Features in
common between Figs. Sa,b are numerous. Incursions
of humid air are precisely defined and most of the
shapes are found with great precision. The previous
tropical cluster is split into two clusters (3 and 4). Clus-
ter 4 contains the most humid zones. Moreover the
boundary between cluster 3 and cluster 2 (less humid
air mass) is edged with cluster 5 (humid air incursions in
a drier air mass). The method identifies two clusters
with low humidity values (clusters 1 and 7). These later
two have different parameters of copulas (0.2 and
0.018) meaning a different behavior of their distribu-
tions. Moreover, a spiral at 60°N, 60°E fixes the posi-
tion of a depression (corresponding to the red disc in
the clustering on temperature; Fig. 3a). The spiral seen
on this map is also present at the same latitude and
longitude on the TWVC (Fig. 5b).

The pdfs for each cluster and at different pressure
levels give information on the discrimination between
clusters. Figure 6 corresponds to densities at 900 hPa (1
km). This figure shows well-separated clusters. As ex-
pected from Fig. Sa, clusters 1 and 7 are the driest and
cluster 1, with the humid right wing of its pdf, corre-
sponds to more frequent situations than the one shown
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by cluster 7, even drier and associated to polar winter
situations. At upper levels, the rapid decrease of hu-
midity leads to a greater overlapping of the pdfs. Com-
parison with the TWVC leads to the following conclu-
sions:

o the pdfs of clusters 1 and 7 are the driest;

e cluster 4 is the most humid with a pdf having its mean
value at 0.015 kg kg™ '; and

¢ the midlatitude and transition clusters can be sorted
out from the less to the more humid: clusters 3, 5, 2,
and 6.

Once we have the parameters from the classification on
temperature (humidity), it is easy to find out to which
one of the seven clusters a new atmospheric state vec-
tor, say V,(V,), belongs. First, the cdf, for example, F"
for temperature (F? for humidity), associated with this
vertical profile has to be calculated by (3). The decision
rule is based on the values F* (T;) and F” (T.,) [F? (q;)
and F? (¢,)] with T} and T, (¢, and g,) given earlier.
Then, from the parameters given in Table 1 (Table 2)
and the mixture ratios (not given here), it is easy to
apply (12) in order to define the correct class to assign
the new atmospheric state vector. It has to be noted
that we do not need to keep in memory the original
data or information on the 16 200 vertical profiles, to
classify an independent profile. Indeed, we use para-
metric modeling for DFDs (beta distributions) and
copulas (Frank’s copulas).

c. Clustering of coupled temperature and humidity
profiles into seven clusters

To classify combined temperature and specific hu-
midity profiles, a mixture decomposition of multidi-
mensional copulas can be used. Here, the coupling
method developed in (Vrac 2002) is applied. From the
estimated mixture parameters (i.e., parameters of copu-

(8)

(b)

F1G. 5. (a) Clustering on specific humidity distributions and (b) total column water vapor
(kg m™?).
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FIG. 6. Densities of humidity (kg kg™ ') for each cluster at 900
hPa (1 km).

las, DFDs, and mixture ratios), a value of JDFD (which
is a value of cumulative distribution function) can be
written for each variable (temperature and humidity)
and for each profile i = 1, ..., N with distribution F/
(for temperature) and F? (for humidity), and described
by the couples (x7., x7.) = [F/(T}), F/(T)] (for tem-
perature) and (x, , x;, ) = [F{(q:), F{(g>)] (for humid-
ity) by

7
HE (0, xy) = >, prC Gl (xiy, b)), G (x5 )],
k=1

(15)

and

7
i iy — k(@ k k@ k
Hi, sy Xi) = 20 PRCHIGl (i by ) Gl )

(16)

where B/ () is the parameter of the copula in cluster
k and the temperature (the humidity) and b7, (bg) is the
parameter associated to the DFD defined in T)(g;) in
cluster k. For a profile w, a couple [H™*™P(w),
H™™(w)] of values of distributions is computed, and
for the 16 200 profiles, 16 200 new couples are obtained.
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A mixture decomposition of copulas can be applied to
this new database. The results of the partition in seven
clusters are given in Table 3 and Fig. 7. The coupling
gives good results with an apparent coherent mixture of
the two previous partitions. In particular, the two tropi-
cal classes (cluster 4 and 3) are in much better agree-
ment with TWVC (Fig. 5b) than were the same clusters
on Fig. 5a, resulting from the clustering of the water
vapor alone profiles. The other clusters (2, 5, and 6) are
transitions from tropical classes (hot and humid) to po-
lar classes (dry and cold). The spiral (60°N, 60°E) is
present. In general, the details introduced by this com-
bined clustering seem relevant: see for instance, a small
colder and drier zone than its neighborhoods, south of
Australia.

When comparing the densities of temperature at 900
hPa, 1 km altitude (Fig. 4a), from Fig. 3a, with those
(Fig. 8a) from the partition by coupling, one can see
that the last ones have a lower discriminating power.
This effect was expected because the coupling accounts
for the two variables considered here (temperature and
humidity). However, the clusters stay relatively distinct
in temperature until the tropopause is reached; densi-
ties at 900 hPa (1 km), Fig. 8a, and at 300 hPa (10 km),
Fig. 8b, are somewhat less distinct than in Fig. 4a, but
remain clearly separated. Above the tropopause (in the
stratosphere), the pdfs tend to overlap. Figure 8c of
pdfs at 70 hPa (20 km) gives an example of this effect.
On this figure, cluster 4 (the warmest cluster between
900 and 300 hPa) is the coldest at 70 hPa. This is also
true for cluster 3: one of the warmest clusters in the
troposphere and one of the coldest in the stratosphere.
This expected inversion for such tropical clusters, is
perfectly highlighted. The pdfs of humidity at 900 hPa
(Fig. 8d) from the coupling method are slightly less
separated than the pdfs from the humidity only cluster-
ing (Fig. 6). However, most of the pdfs stay distinct and
give a good description of the humidity characteristics
of the clusters (cluster 4 is the lost humid, 1 and 7 are
dry, etc). These seven clusters appear coherent and in
agreement with the physical characteristics expected.

Once more, it is easy to figure out to which one of

TABLE 3. Parameters of the clustering into seven classes for temperature and humidity.

Clusters B v, in Tq, v, in Tq, v, in Tq, v, in Tq,
1 0.000 001 6.712 667 2.140 064 5.703 492 5.222 391
2 0.100 001 70.0 70.0 10.424 58 14.541 202
3 0.200 001 18.965 822 88.125916 8.056 098 145.218 979
4 0.050 867 19.533 854 112.066 284 6.489 847 357.520 905
5 0.362 295 12.315 609 31.493 969 5.033 236 18.545 059
6 0.126 157 0.864 89 7.177 879 3.316 219 7.178 005
7 0.003 896 23.222773 4.773 149 13.366 582 3.108 013




OCTOBER 2005

VRAC ET AL.

1455

F1G. 7. Clustering in temperature and humidity cdfs (Frank’s copula, DFD beta law).

these clusters a new independent vertical profile be-
longs. First of all, H %,TZ and HZ]"Iz have to be calculated
by (15) and (16) from the parameters given in Tables 1
and 2 and mixture ratios (not given here). Then, from
Table 3, we can apply Eq. (12) to find out the class
where the new profile must be assigned, without keep-
ing in memory information on the original profiles.

d. Clustering of coupled temperature and humidity
profiles into 18 clusters

The choice of the number of clusters, even though we
use a criterion, may appear quite arbitrary. For ex-
ample, what happens when more than seven clusters
are considered? Is every new cluster significant or are
there clusters with no meaning? To try to answer these
questions, we consider here a partition into 18 clusters.
As previously, it is obtained by the coupling method
with Frank’s copulas [defined by (9)] and DFD mod-
eled by beta law. The resulting partition is shown on
Fig. 9. At first sight, the main result of the clustering
into 18 clusters is to split clusters coming from the par-
tition into seven clusters. For example: the tropical clus-
ter of the partition in seven clusters (4/7 in the follow-
ing) is split into the two clusters 10/18 and 8/18, the
latter at the edges of cluster 3/7. In addition, cluster 3/7
is split into three new clusters: 5/18, 6/18, and 11/18. The
pdfs of these three new clusters are well separated, cov-
ering the whole interval of the pdf of 3/7 (see Fig. 10).

These pdfs show that density from 3/7 is a mixture of
densities from 5/18, 6/18, and 11/18. This is true for any
level of the atmosphere and for specific humidity too.

Other conclusions, similar to the seven cluster case,
can be made. The pdfs of temperature are well sepa-
rated below the tropopause; the distinction between
pdfs of temperature is more difficult above the tropo-
pause; the pdfs of specific humidity are distinct in the
troposphere and overlap in altitude (i.e., the domain
where the pdfs are not zero is about the same for each
pdf when they are calculated with values over the
tropopause).

Moreover, to tentatively assess the significance of the
partition into 18 clusters, we have analyzed in detail
cluster 13, which only includes 138 atmospheric pro-
files. This cluster can be seen in the North Atlantic up
to Scandinavia, off the west coast of Canada, and in the
Mediterranean Sea. In these three cases, the synoptic
map (not presented here) shows a localized depression
and strong winds. The cluster 13 actually reveals inter-
esting information on the meteorological situations.

6. Comparisons

This original algorithm of mixture decomposition of
copulas has been compared to other classical clustering
methods applied to the same dataset. One of the most
powerful clustering methods is the so-called mixed clus-
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cluster from coupled clustering on temperature and humidity profiles. Temperature (K) at (a)
900 hPa (1 km), (b) 300 hPa (10 km), and (c) 70 hPa (20 km); and (d) densities of specific

humidity (kg kg™') at 900 hPa (1 km).

tering (Molliere 1985). This strategy is well adapted to
clustering huge databases and consists of a combination
of a principal components analysis (PCA), a dynamical
clustering method with cross-validation, a hierarchical
ascending clustering method and a final stabilization by
a new dynamical clustering method. For more details,
see Vrac (2002). This procedure is considered to be
very efficient.

The mixed clustering has been applied to our climatic
database for the 0000 UTC 15 December 1998, and for
the same variables (temperature and specific humidity).
The 37 most reliable values of the temperature profiles
(from the surface to about 30 km) and the 24 most
reliable values of the specific humidity profiles (from
the surface to about 13.5 km) are used for each situa-
tion. Each situation is thus described by 61 numerical
variables, which are then normalized and weighted to
give equal weight to both temperature variables and
specific humidity variables. The algorithm is summa-
rized in Fig. 11, and the results given in Fig. 12. Com-
pared to Fig. 7, the depiction of the situation appears
significantly looser. Tropical clusters are relatively well
described, however with some marked exceptions:
tropical moist air intrusions within the northern or
southern midlatitudes are not properly seen. Mid-to-
high latitude clusters have a pronounced zonal behavior

that is less visible in Fig. 7 and in either Fig. 3b or, a
fortiori, Fig. 5b. Compared to Fig. 7, many details are
missing in Fig. 12. From the pdfs of each cluster (not
shown), one can see that the discrimination is much
weaker, compared to the partition into seven clusters
with copulas. One conclusion is that the mixed cluster-
ing applied to this climatic database is less efficient than
the mixture decomposition of copulas applied to our
probabilistic database. Other comparisons have been
carried out [EM on functional or numerical data, etc.;
see Vrac (2002)] and have led to the conclusion that the
mixture decomposition of copulas gives more precise
and relevant clusters.

7. Conclusions

We sought to develop a statistical approach to cluster
a large set of atmospheric vertical profiles. This has
been performed by preprocessing the data of tempera-
ture and humidity and converting these vertical pro-
files into distribution functions. Then, we developed
adapted models (DFD) and mixture models for such
data. Moreover, in order to take into account depen-
dencies between variables and/or inside vertical pro-
files, we combined these models with copula functions,
linking joint and marginal distributions. The associated
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F1G. 9. Result of clustering into 18 clusters

mixture model can be resolved by an appropriate EM-
type algorithm. This original approach for mixture dis-
tributions generalizes the classical approach with the
use of a higher abstraction level (i.e., dealing with cdfs
instead of raw values). The results on thermodynamical
cdf data seem to give realistic and relevant clusters con-

0 n 1z 13

14 15 16

17
on temperature and humidity cdfs by coupling.

18

cerning the climatology and are encouraging for the
next variables. For a better evaluation of the obtained
clusters, this work has to be applied to data from the
radiative world, such as data given by the Infrared At-
mospheric Sounding Interferometer (IASI) or by the
Atmospheric Infrared Sounder (AIRS). This future
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FiG. 10. Comparison of temperature densities for cluster 3 from the partition into seven
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clusters, and clusters 5, 6, and 11 from the partition into 18 clusters at 900 hPa.
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PCA (Principal Components Analysis)
37 temperature levels
24 specific humidity levels

Mobile centers method
with auto-validation
¢ Mixed classification
(cf Molliere 1985)

Hierarchical ascending classification
(Benzecri algorithm, Ward criterion)

]

Stabilisation with mobile centers |

|

Projection on global map

F1G. 11. Main steps of mixed clustering.

work should provide an assessment of our clusters, for
instance by examining the time to find a solution by the
3] algorithm and the accuracy of the obtained solution.

From a more technical point of view, the method
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applied in section 5 uses a clustering approach (see sec-
tion 1), but estimation approaches have also been gen-
eralized in the same sense (with copulas and for distri-
bution functions), see Vrac (2002) or Diday and Vrac
(2005) for EM, SEM, and simulated annealing (SAEM)
algorithms. The parameters of copulas have been esti-
mated by maximizing the likelihood, but Kendall’s T or
Spearman’s p could be used (Nelsen 1998). The choice
of the T, can be delicate. The efforts to automatically
get an optimal 7; were not successful yet but some new
approaches have been considered (Vrac 2002; Diday
and Vrac 2005). Moreover, the initial cdfs have been
modeled with a nonparametric distribution, and the dis-
tribution function of distributions with parametric beta
distributions, but classical mixture distributions can
even be used to model cdfs and DFDs themselves.
However, modeling statistical distributions by taking
into account the dependencies between variables and
among vertical profiles (temperature and humidity) is
of high interest in climatology and meteorology. Then,
the kind of results given by the proposed method
should be useful in any method using a priori infor-
mation on airmass types for instance. Hence, informa-
tion on the distribution of the temperature and the hu-
midity and their dependencies can be introduced as a
priori information in a method for retrieving atmo-

15 decembre OH (37 Temp (1), 24 Hum(1))

1 2 3
F1G. 12. Result of clustering into seven clusters on 37 temperatures at 24 specific humidities, 0000 UTC 15 Dec 1998.
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spheric variables from satellite vertical sounder obser-
vations.
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