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a b s t r a c t

To understand the nature and cause of natural climate variability, it is important to possess
an accurate estimate of past climate forcings. Direct measurements that are reliable only
exist for the past fewdecades. Therefore knowledge of prior variations has to be established
based on indirect information derived fromnatural archives. The challenge has always been
to find a strict objectivemethod that can identify volcanic events and offer sound amplitude
estimates in these noisy records. An automatic procedure is introduced here to estimate
the magnitude of strong, but short-lived, volcanic signals from a suite of polar ice core
series. Rather than treating records from individual ice cores separately and then averaging
their respective magnitudes, our extraction algorithm jointly handles multiple time series
to identify their common, but hidden, volcanic pulses. The statistical procedure is based
on a multivariate multi-state space model. Exploiting the joint fluctuations, it provides
an accurate estimator of the timing, peak magnitude and duration of individual pulse-like
deposition events within a set of different series. This ensures a more effective separation
of the real signals from spurious noise that can occur in any individual time series, and thus
a higher sensitivity to identify smaller scale events. At the same time, it provides ameasure
of confidence through the posterior probability for each pulse-like event, indicating how
well a pulse can be recognized against the background noise. The flexibility and robustness
of our approach, as well as important underlying assumptions and remaining limitations,
are discussed by applying our method to first simulated and then real world ice core time
series.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Records of volcanic eruptions

Explosive volcanic eruptions are extreme events that can inject large amounts of sulfur-baring gases into the
stratosphere. There, the gases are converted into small sulfuric acid droplets that spread and blanket the planet with a
light ‘‘dry haze’’ (Lamb, 1970) that scatters and reflects sunlight. The resulting reduction of solar radiation to the surface
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can have a strong, albeit short-lived, impact on the climate ranging from several months to a few years (Robock, 2000).
Volcanic cooling was found in numerous climate time series, instrumental and proxy alike (Bradley, 1988; Briffa et al., 1998;
Crowley, 2000; Jones et al., 2003; Robock andMao, 1995). Through a large event, or clustering of smaller eruptions, volcanic
forcing is thought to be one of the primary factors affecting decadal to century scale evolution of climate (Ammann et al.,
2007; Crowley, 2000; Hegerl et al., 2003, 2006). It is therefore important to have a good quantitative estimate of these
perturbations through time.

Volcanic forcing histories can be estimated from a host of sources, such as volcanological records (Newhall and Self, 1982;
Simkin and Siebert, 1994), instrumental records (Sato et al., 1993; Stothers, 1996a; Ammann et al., 2003), observational
information of visible perturbations of atmosphere or the ground (Lamb, 1970), or astronomical observations (Keen, 2001).
However, the probably most reliable records that are most consistent in time come from polar ice core series (Gao et al.,
2008; Hammer, 1977; Robock and Free, 1995; Zielinski et al., 1994), where volcanic acid or sulfate spikes can be identified
within individual snow and ice layers of the generally pristine environments of the ice caps (e.g., see Robock, 2000; Zielinski,
2000, for discussion).

Various techniques have been used to recognize these volcanic deposits, either using electrical conductivity changes
to identify the variations in acidity (Hammer, 1977), or more recently through direct measurements of sulfate at very
high resolutions throughout the ice cores (Zielinski et al., 1994; Clausen et al., 1997; Palmer et al., 2001; Castellano et al.,
2005; Kurbatov et al., 2006). The advantage of using the polar ice sheets as an archive for individual volcanic events is
that they preserve the climatically all-important sulfate. If sulfate can be found at multiple locations, then it is highly
likely it was transported through the stratosphere, and thus was climatically ‘‘active’’ (Zielinski et al., 1994; Clausen et al.,
1997). (In contrast, tropospherically transported sulfate is too short lived in the atmosphere and thus is unlikely to have
significant climatic effects.) Deposition can happen both through slow and evenly distributed dry deposition, or through
more event-like wet deposition associated with storm systems. The volcanic sulfate signals that can be found at various
ice-core locations, therefore, represent a spatial sample of the large-scale deposition. Areas with generally more storm
events also commonly exhibit higher sulfate deposition rates. Thus, while each event will likely have some unique weather-
related deposition features, there is an underlying spatial pattern that reflects the climatological deposition rates (Mosley-
Thompson et al., 1993; Gao et al., 2007). Based on a suite of cores, and thus multiple samples for each event, one can
determine what the timing and the flux of sulfate was to the ice sheet, which in turn can be used to estimate the amount of
sulfate and thus forcing.

As with all indirect information, using polar ice cores also involves some inherent difficulties. Exact dating of individual
ice layers, a pre-requisite for core-to-core comparisons, is more problematic than in biological records, such as tree rings,
where time progresses without interruptions. This continuity is not always guaranteed for the small diameter (<15 cm) ice
cores because the possibility for stratigraphic disturbance exists. Wind can under some circumstances erase snow layers in
such small areas; sometimes it can accumulatemore snow,which then forms a false ‘‘annual’’ band. Therefore, the ice coring
community has been using characteristic timemarkers, and in particular a few of the largest volcanic events, as cross-dating
hinge-points. Although generally defendable from a physical perspective, this approach could potentially introduce some
biases. Exploiting relative time intervals of volcanic signals between these marker events as well as inclusion of other prior
knowledge have been corner stones of ‘‘expert-based’’ ice core compilations for volcanic forcing reconstructions (Crowley,
2000; Ammann and Naveau, 2003; Ammann et al., 2007; Gao et al., 2006). A more objective method is desirable. Here we
develop the foundation for such amethod, butwehave to rely on the assumption that the available chronologies are perfectly
dated (synchronized), a condition that would have to be assessed in more detail for the full set of existing high-resolution
ice core records.

1.2. The statistical problem

Statistically, volcanic perturbations can be viewed as pulse-like events, i.e. short and intense deviations from the
climatological (interannual) noise and some underlying longer term variation. The common procedures to identify and then
quantify the volcanic signal has been by applying an evolving mean to the individual time series and then selecting signals
that pass a certain threshold of noise around thismean (Gao et al., 2008; Robock and Free, 1995). However, classical statistical
tools based on averages, variances or projections are not well adapted to capture the true characteristics of the rapid and
sharp features of the volcanic eruption and deposition process (Naveau and Ammann, 2005).

Recently, more modern statistical tools using state space models have been used to improve on the identification and
quantification process of volcanic events (and thus enhance objectivity) in individual time series (Naveau and Ammann,
2005). Identified events could then be averaged across the different series. While large events were generally easy to
recognize, the extraction proved much more difficult for small events that are obscured by the background noise (Naveau
et al., 2003). If chronologies of ice cores were synchronized, then modern statistical tools could further exploit the common
deposition structure across multiple ice cores, and thus the threshold to recognize events could be lowered significantly.
This could make volcanic forcing series more reliable. We build on earlier work (Naveau et al., 2003; Naveau and Ammann,
2005) to develop a statistically sound volcanic extraction process that uses the joint information across a series of ice cores.
The geophysical motivation is centered on volcanic sulfate deposits in ice core time series, but techniques developed in this
article can equally be used in other applications where large amplitude pulses that are superimposed on slowly changing
trends need to be recognized across multiple noisy time series.
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One of the difficulties of statistical modeling in the multivariate framework resides in the estimate of a nonlinear and
non-Gaussian hidden signal common to all of the time series. For example, in the case of volcanoes, a big eruption will have
a strong signal, but the relative magnitude might differ substantially between each of the ice core data sets, and the other
components of the series could be quite heterogeneous. From a statistical point of view, a global solution to estimate the
parameters is preferable because it reduces the propagation of errors. To solve these problems of extraction, we propose
a multivariate multi-state space model which integrates the various components (forcing, trends, and noises) in a global
mathematical formulation.

We discuss the general concept and properties of our extraction model in Section 2. Then, in Section 3, simulations with
a known pulse process embedded in series with different noise characteristics are used to assess the performance of our
extractionmethod. Themethod is then applied to real ice core data proxies in Section 4. In Section 5, we conclude this article
with a brief summary and discussion of the advantages, limitations and possible extensions of our extraction algorithm.

2. Extraction procedure

2.1. State space modeling

State space models have become a practical and powerful tool to model dynamic and complex systems. Closely related
to the Kalman filter, they have been used in a wide range of disciplines: biology, economics, engineering, and statistics
(see Guo et al., 1999). The fundamental idea of the state space model is that the observed data is linearly dependent on
latent variables of interest that vary in time. Mathematically, the observed data are governed by two equations, known as
the observational and system equations. In our case, the observational equation expresses itself as a linear combination of
three variables (common forcing, trends, and noise), while the system equations represent the temporal dynamics of the
underlying hidden processes. The statistical problem is to deduce the behavior of hidden variables of the pulse-like events
from the observed data. Before discussing the aspects of our multivariate approach, we must introduce some notation and
clarify our working hypotheses.

2.2. Our model

Suppose we observe J time series over the same time length, say T , and with the same temporal resolution. Each time
series is denoted yj(t). We also assume that each of these time series is affected by a similar pulse-like forcing, say x(t),
that is unobserved and has to be estimated. This forcing corresponds to abrupt events and therefore is nonlinear and non-
Gaussian. Our first equation explains how the three elements of our statistical model (trends, cycles, pulse-like events and
noises) interact

yj(t) = βj x(t) + fj(t) + ϵj(t), for j = 1, . . . , J, and t = 1, . . . , T . (1)

The hidden, but common, pulse-like signal is represented by the randomvariable x(t). The scalarβj can be viewed as a scaling
factor that reflects the impact of x(t) on the j-th time series. Note that βj is site dependent and time invariant. In case of the
occurrence of a pulse (i.e. It = 1), the random variable v(t) is driven by a Gaussian distribution (the Eq. (3) is introduced
below). That means that each event has its particular amplitude. This hypothesis represents a simplification of real aerosol
load phenomena. The deposition of sulfates on a particular site and originating from a specific volcano may substantially
vary from event to event, depending on the atmospheric circulation features, e.g. Wastegard and Davies (2009). The second
component fj(t) corresponds to a smooth trend. The last term, ϵj(t), is simply a background i.i.d. Gaussian random noise
process centered about zero with standard deviation σj. The different noises in Eq. (1) are assumed to be independent.

The two main differences of our hidden signal x(t) with classical regression models come from its pulse-like nature and
its short term memory. To obey this constraint, we construct x(t) as an autoregressive model defined by

x(t) = α x(t − 1) + v(t), for t = 1, . . . , T , (2)

where |α| < 1 is an unknown constant representing the decaying volcanic aerosol removal from the stratosphere and v(t)
corresponds to an i.i.d. random sequence and we set x(0) = 0. To create a pulse like effect, we impose that the i.i.d. random
sequence v(t) follows a mixture of a normal random variables

v(t) =


N(µv, σ

2
v ), if It = 1,

0, if It = 0, (3)

where N(µv, σ
2
v ) represents a Gaussian variable with mean µv and standard deviation σv . In Eq. (3), It is a sequence of i.i.d.

Bernoulli random variables, whose parameter π = Pr[It = 1] denotes the probability of observing a pulse-like event. The
random variable v(t) corresponds to the strength associated with a rare event. In contrast, v(t) is set to zero if It equals to
zero. Eq. (2) allows for a short lived temporal effect of such a forcing. Despite its low number of parameters (π, α,µv , βj,
σj), the additive model defined by Eq. (1) with this hidden dynamical structure (2) and its pulse-like nature defined by (3)
offers enough flexibility to mimic pulse-like events behaviors at an annual scale.
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The trends fj in Eq. (1) are modeled by cubic smoothing splines represented in state space form (Wahba, 1978; Wecker
and Ansley, 1983). This representation allows to express a smooth function (i.e. a function of which a fixed number m of
derivatives are continuous) as a sum of its weighted derivatives and a Wiener process. By choosing m = 2 trends fj(t) can
be expressed as functions of its first derivatives,

Fj(t) = BFj(t − 1) + Efj(t),

where Fj(t) = (fj(t), f
(1)
j (t)), B[i, k] = 1/(k − i)! for k ≥ i or zero otherwise. The two-dimensional vector Efj(t)

represents a zero mean Gaussian vector with covariance elements λjσ
2
j /[(i + k − 1)(i − 1)!(k − 1)!] where λj denotes

the smoothing parameter. This spline representation allows to model nonparametric trend, based on series developments
similar to Taylor’s. The trend is calculated using a polynomial regression and a random residuesmodeled by aWiener process
(see Abramowitz and Stegun, 1970; Stark and Woods, 2002).

With these notations, it is possible to combine x(t), fj(t), and their associated noises, and thus to rewrite Eqs. (1)–(3) in
matrix form. With the state vector Xt = (v(t − 1), x(t), F1(t), . . . , FJ(t))T We can define

Yt = HXt + Et , (4)

where the temporal dynamics is then described by another matrix equation

Xt = ΦXt−1 + E∗

t . (5)

The matrices H and Φ and the random vectors Et and E∗
t have explicit (but complex) forms that are given in the Appendix.

A rich literature (Guo et al., 1999; Shepard, 1994) exists to estimate parameters of the state spacemodels. Such techniques
are closely related to statistical data assimilation schemes. In Gaussian state space models, the Kalman filter provides an
optimal recursive estimate of x(t) from observations Yt = (y1(t), . . . , yJ(t)). Unfortunately, the nature of the pulse-like
events (the mixture of distribution) implies that the overall assumption of normality is not satisfied (see Eq. (3)). To solve
this problem, we drew inspiration from original work of Guo et al. (1999) who offered a variation of the Kalman filter. The
principal idea is to approximate the distribution of themixture of normals by a normal distributionwhose first twomoments
are identical to that of themixture. The details of this techniquewithin the univariate framework can also be found inNaveau
et al. (2003). When the last evaluations of this modified Kalman filter are found, then a sequential backward algorithm is
applied (Guo et al., 1999).

3. A simulation study

We show in Fig. 1 three simulated times series, each with a different trend, a background variation of local noise and the
common pulse-like signal with its site specific scale (the simulation series were made with µv = 3.5, σv = 2.63, α = 0.7,
and π = 0.3, as parameters of Eqs. (2) and (3)). The included pulse-process is shown in the two bottom panels of Fig. 1.
In the top panel of Fig. 1, the time series y1(t) combines a discernible cycle (a sinusoidal trend with a constant level shift
defined by f1(t) = 10+15 sin(2π((t−1)/90))) with noise and the pulse-like forcing. In this data set, most pulse-like events
are visually identifiable because the noise level is low compared to the pulse amplitude. The middle panel shows a more
noisy time series y2(t) with a linear trend (f2(t) = 0.5t). Here, finding pulse-like events represents already a more difficult
challenge. For instance, the small pulses at the beginning of this time series (see bottom panels of Fig. 1), clearly visible in
y1(t), are not easily distinguishable in time series y2(t). Although the series in the bottom panel of Fig. 1 contains no trend
(f3(t) = 0), this series y3(t) is characterized by the lowest multiplicative factor (β3 = 7.5) for the pulse-like events among
the three simulated time series, i.e. the common underlying signal in y3(t) is less apparent in the large noise.

Fig. 2 shows the results in the multivariate case (top panel) as well as for each of the three individual series if they would
be treated separately. Each panel compares the identified events (solid line) with the timing of the true events that were
embedded as hidden pulses in all three series (gray bars). Overall, the multivariate model was effective in identifying the
hidden pulses and the joint extraction is capable of highlighting features that were not detected by the individual analyses,
e.g. the double peak just before t = 400.

The increasing noise in series y2(t), and particularly y3(t), obviously impacts the extraction process. The shortcomings
express themselves both in the less accurate identification (less) of the imposed events as well as in the rather volatile event
magnitude.

This is illustrated through a scatter plot (Fig. 3) for each identified event, where the magnitude of the true (hidden)
process (x) is compared against the estimates (x̂). The graph highlights that the multivariate algorithm is able to estimate
most accurately (up to amultiplicative constant) the amplitudes of the hidden pulses. Also the extraction from the low-noise
series y1(t) was successful and contains most of the events. The overall estimate of the amplitude across all cases is more
accurate in the multi-variate case, despite two rather unfavorable additional series y2(t) and y3(t).

The extraction procedure not only quantifies the pulse-like events but also offers the full information about the
underlying trends. Fig. 4 shows that the three trends fj of Eq. (1) are well captured.
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Fig. 1. Simulated data from Eq. (1) with J = 3. All series represent samples over a time span of 500 years andwere simulatedwith the following parameter
setting: the standard deviations observation noises: (σ1, σ2, σ3) = (15, 20, 10), the parameters of pulse amplitudes: (β1, β2, β3) = (20, 15, 7.5), the pulse
occurrence probability:π = 0.03, the Auto-Regression parameter of x : α = 0.7, the commonmean pulse amplitude of v:µv = 3.5, the standard deviation
of pulse event amplitude: σv = 2.63. The two bottom panels represent the simulated pulse-like time series hidden in the three time series obtained from
Eqs. (2) and (3) with µv = 3.5, σv = 2.63 and π = 0.03.

4. Application to ice core data

In the real world, themost reliable records of volcanic pulses come from ice cores. The idealized experiment shown above
does not represent the true levels of noise and core-to-core differences in the deposition. Therefore, to test our methodwith
realistic data, we now apply the multi-variate extraction to five selected series from Greenland covering the period from
1645 to 1980 at annual resolution. As indicated above by the simulation results, doing a multivariate extraction rather than
separate individual analysis that subsequently gets averaged has benefits for both recognizing particularly small events
against the varying noise of different cores, and estimate more reliably the amplitude of volcanic pulses across Greenland
where individual cores have substantially different absolute signals. Because we apply a joint-signal extraction through the
multi-variate state-space model, we obtain a unitless, joint volcanic pulse history that is based on the mean contributions
from individual ice cores. This unitless series can then be calibrated against known (i.e. measured) volcanic deposition or
forcing, a substantial improvement over previous methods where individual records had to be calibrated based on a few
noisy events, and to obtain an overall series, these noisy estimates had to be averaged.

Fig. 5 shows five ice core records from Greenland with the identified trends from themulti-variate extraction procedure.
Differences in series, their trends as well as the variance of the sulfate deposition are roughly representative for the full set
of polar ice cores.

Table 1 and Fig. 6 show the extracted pulses (top panel) and their associated posterior probabilities (middle panel)
resulting from the multi-variate state-space model. Five high-probability, about three intermediate-probability and several
low-probability events are recognized across the series. While large events are often identified with high confidence,
applying the extraction procedure to individual ice cores would include more, but often erroneous spikes in the list. The
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Fig. 2. Estimated pulse-like amplitudes. The top panel corresponds to the multivariate extraction and the other three panels represent the univariate
extraction applied to individually to each time series from Fig. 1, respectively y1, y2 and y3 . Note that the multivariate extraction dismissed the ‘‘negative’’
spurious events detected on the 2nd and 3rd series. Note also that the multivariate extraction allows to detect more actual pulse like events than the
different univariate cases.

bottom panel of Fig. 6 illustrates this fact with the extracted signal on the first of the ice core series. A whole series of ‘‘high-
probability’’ events are ‘‘found’’ throughout the 20th century. These spikes, however, do not have any counterparts in the
other series, and thus, despite the fact that they are large and recognized with high confidence in the individual record of
series one, the joint likelihood is much lower. At the same time, more of the small volcanic inputs are recognized in the joint
extraction with higher confidence, a capability that cannot be achieved at the individual level where small events tend to
get overwhelmed by the background noise. The joint extraction reduces the noise and therefore is more sensitive towards
small events.

Looking at the magnitude of events, one particular deposition event in the year 1783 is immediately recognizable across
the five series. It is the result of the well documented, large and intensive Laki eruption sequence in Iceland (Thordarson
and Self, 2003). This eruption quite likely did lead to a substantial non-stratospheric transport of sulfate towards nearby
Greenland, causing the exceptional volcanic signal. Therefore, compared to low-latitude events whose sulfate aerosol get
spread in the stratosphere across both hemispheres, this eruption appears disproportionally large, despite the fact that its
regional effects were tremendous (Stothers, 1996b).

In contrast, the famous tropical eruption of Tambora of 1815was recognized by the extractionwith a signal less than one
third of the 1783 Laki deposit, but nevertheless it was identified with high confidence (high posterior probability). Given the
global spread of its aerosol, and no chance for any tropospheric transport of the sulfate, the stratospheric mass loading of
Tamboramust have been very large. Yet, it has to be calibrated differently than the Laki signal to obtain a global stratospheric
mass. This difference between quasi-local high-latitude events and tropical eruptions represents one of the difficulties in
the interpretation of polar-based ice core records of volcanic forcing. While corrections can easily be applied for these well-
known events, lesser known, or even unknown, eruptions require more detailed analyses, such as the evaluation of other,
the timing and deposition of other chemical species that could indicate local transport (Clausen et al., 1997), or synchronous
deposition in Antarctica and Greenland which would point to a tropical source (Palais et al., 1992; Langway et al., 1995;
Ammann and Naveau, 2003). But particularly for small events, this distinction is very difficult (Crowley, 2000).
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Fig. 3. The x-axis represents the standardized hidden x(t) and the y-axis corresponds to our estimated standardized x̂t from the data displayed in Fig. 1.
Black circles corresponding to the multivariate extraction better estimate amplitudes of the pulse like events than the different univariate cases.

Fig. 4. The solid black curves represent the hidden trend fj and the dotted lines correspond to our estimated trend f̂j for each of the time series displayed
in Fig. 1.
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Fig. 5. Five unitless volcanic history ice core records of sulfate deposits from Greenland covering the period from 1645 to 1980 at annual resolution, with
the estimated trends obtained from our multivariate extraction (gray lines).

The fifteen events listed in Table 1 contain some well-known events as well as some clearly unknown signals. We list
the likely source volcanoes, but should not forget to consult the posterior-probability to evaluate if these events are to be
regarded as robust.

To convert the volcanic pulse history into an estimate of a forcing, the amplitudes of the unitless ice core-extracted
volcanic pulses need to be scaled to units such as ‘‘stratospheric loading of sulfuric acid’’ (Gao et al., 2008; Zielinski et al.,
1994) or radiative forcing (Hansen and Coauthors, 2002; Wigley et al., 2005). The individual ice cores series do not contain
local volcanic pulse signals that are directly comparable because of spatial differences in volcanic sulfate deposition (Gao
et al., 2007). Therefore, the output from the extraction procedure actually provides only the relative magnitudes of events.
This series needs to be calibrated against other information, such as the conversion of the mean sulfate fluxes at a particular
site to the stratospheric loading over a known period or by simply using a reference event (e.g. Pinatubo or El Chichon)
(see Gao et al., 2008, for discussion).

As discussed for the simulated cases above, real world records exhibit often a combination of variations coming from an
evolving trend and background noise in addition to the volcanic pulses. Some of these variations can be simple noise, others
could potentially be interesting climatically. However, particularly with regard to sulfate deposition, real world records
sometimes suffer from a distinct, fundamental change over the last century as human fossil fuel burning has artificially
released large amounts of sulfur into the atmosphere. Thus,most NorthernHemisphere records exhibit a systematic increase
in the background deposition (Mayewski et al., 1986; Neftel et al., 1985). Sulfate records from the 20th century should
therefore be analyzed and interpreted with caution. Looking at individual records (Figs. 5 and 6), a clear increase in the
background noise as well as in the variance can be seen. The danger of erroneously identifying some of these anomalies
as volcanic spikes exists in the individual extraction (Fig. 6(b)), but the joint extraction is clearly less sensitive to this.
Nevertheless, all of 20th century signals should be interpreted with caution.

In summary, compared to individual extraction of volcanic signal for each series, the joint extraction offers amore robust
identification of events against noise, and the sensitivity for capturing small eruptions is increased. This benefit is already
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Fig. 6. Estimated magnitudes and associated event probabilities extracted from the five ice cores using the multivariate extraction approach. The bottom
panel illustrates the erroneous spikes extracted using a univariate procedure throughout the 20th century.

Table 1
Parallel between the detected events from our method (see Fig. 6) and date of known volcanoes found in the literature (e.g. Wastegard and Davies, 2009).
Note that 20th century records quite likely only show Katmai–Novarupta, while others, after 1912, are considered as spurious due to anthropogenic noise.
The second column gives the relative amplitudes comparatively to the biggest event (i.e. the Laki eruption in 1783). The five last columns show whether
or not the pulse like signal was detected using a univariate procedure on each time series.

Year Ampl Proba Poss. Volcano y1 y2 y3 y4 y5

1668 0.070 0.35 Shikotsu ∗

1695 0.073 0.24 Komagatake?Serua?Hekla?
1732 0.152 0.91 Unknown (Lanzarote?) ∗ ∗

1755 0.099 0.64 Taal? or Katla? ∗

1762 0.065 0.26 Unknown
1783 1.00 1.00 Laki (Grimsvoetn) ∗ ∗ ∗ ∗ ∗

1810 0.093 0.35 Unknown tropical ∗

1815 0.071 0.65 Tambora ∗ ∗ ∗

1822 0.109 0.60 Galunggung ∗

1832 0.145 0.95 Babuyan Claro? ∗

1884 0.032 0.11 Krakatau
1900 0.093 0.66 Unknown ∗

1912 0.281 0.98 Katmai–Novarupta ∗ ∗ ∗ ∗ ∗

recognizable in this small sample of five ice core records from Greenland. In a future study, we will apply this technique
to the full set of volcanic series from both Greenland and Antarctica to establish a new volcanic sulfate history that can be
added to the currently existing series of Crowley and Kim (1999), Ammann et al. (2007), Gao et al. (2008) and Wastegard
and Davies (2009).

Before discussing thiswork,wewant to add a few comments about the fitting of themodelwith the actual series. The first
question underlying this application is about the use of a Gaussian distribution in Eq. (3). The choice of Gaussian distribution
could implies the occurrence of ‘‘negative’’ volcanic events. This couldhappenwhen themeanµv ofv(t) is smallwith respect
to the variance σv . In the simulation shown in Fig. 1 we choose µv large enough to avoid that to happen. In the application,
the parameter µv appears to be large enough with respect to σv .



Author's personal copy

54 J. Gazeaux et al. / Computational Statistics and Data Analysis 58 (2013) 45–57

Another related comment is needed. Volcanic eruptions are sometimes assumed to be driven by lognormal distribution
instead of Gaussian (e.g. Castellano et al., 2004). To test this assumption, we run our model on the log transformation of
the signal yj(t) : log(yj(t)). This transformation allows roughly to change the supposed log-normal distribution of the
amplitudes of the events into a normal distribution. Results of this study show the same detected events as when running
the model directly on yj(t). Nevertheless, this logarithmic transformation is not satisfactory because it does not allow to
separate the different components of the additive equation (1), which is the main goal of the current study. Fig. 6 showing
the estimated pulses and the parallel with Table 1, with regards to previous work on volcanic eruptions show that the
detected eruptions are relevant with history. These results mean that the assumption that volcanic amplitudes distribution
can be approximated by a Gaussian distribution can be considered as relevant for this specific example.

5. Discussion

In this article, we introduced a state space model which allows for the extraction of timing and amplitude of pulse-
like events in the presence of trends and noise. The algorithm developed here is applied to multivariate time series with a
common hidden forcing. Beyond the problem of detection of the impact of volcanic eruptions on temperature time series,
we believe that this type of statistical procedure is flexible enough to be able to work equally well with other time series
consisting of large amplitude pulses superimposed on slowly changing trends as may be found in hydrology.

It is possible, or even desirable, to further extend this type of extraction model. In paleoclimatology, it is very rare to
have perfect chronologies. Additionally, the time resolution (temporal sampling) can vary across the multitude of different
types of records and time series that cover the period of interest. For instance, ice-core chronologies thatwere established by
counting visible/detectable annual layersmight be get off-track throughmissing or repeated layers throughwind action. This
potential ‘‘drift’’ in chronologies needs to be corrected. For the purpose of a cleaner introduction of our method, we have not
dealt with this issue. But before the method can be applied to the full set of ice core records, clearly, their chronologies need
to be synchronized. Clustering and other techniques could make this process significantly more objective and reproducible.
We are currently exploring such methods. Further, we are adapting our algorithm so that it could deal with non-regular
time steps and thus could combine low-resolution (say annual) with high-resolution (full seasonal resolution) data without
having to average time series ahead of time. Finally, we are re-evaluating the assumption that the unpredictable noise ϵj in
(1) are no longer i.i.d., but have a spatial structure in their covariance. These next efforts illustrate that different degrees of
complexity can be added to our current model. The challenge for the geophysicist is to ensure that all information is used
properly, while the challenge for the statistician is to keep the extended model simple enough for easy interpretation, and
for the procedure to be able to actually estimate the necessary parameters. Overall, such collaborations between statisticians
and geoscientists have the potential of advancing (in this case climate) research (Hughes and Ammann, 2009) by improving
the quantitative treatment of the diverse records and by introducing a formal way of handling uncertainties.
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Appendix

A.1. General remarks and notations about the estimation procedure

To identify and interpret the parameters βj in (1), we have to force the variance of x(t) to be equal to one. This constraint
imposes that σv and µv has to obey the relationship 1 − α2

= σ 2
v π + µ2

v π (1 − π), because of (2) and (3). This implies
σ 2

v =
1
π
(1 − α2

− µ2
v π (1 − π)).

The matrices H and Φ and the random vectors Et and E∗
t in Eqs. (4) and (5) are defined in as follows

H =


0 β1 1 0 0 0 0 0 0 0 0 0
0 β2 0 0 1 0 0 0 0 0 0 0

0
... 0 0 0 · · · 1 0 · · · 0 0 0

0 βJ 0 0 0 0 0 0 0 0 1 0

 ,

and

Φ =


0 0 0 0 0 0
1 α 0 0 0 0
0 0 B1 0 0 0

0 0 0 0
. . . 0

0 0 0 0 0 BJ

 , with Bj =


1 1
0 1


,



Author's personal copy

J. Gazeaux et al. / Computational Statistics and Data Analysis 58 (2013) 45–57 55

with Et = (ϵ1, ϵ2, . . . , ϵJ)
T and E∗

t = (0, 0, ET
f1
(t), . . . , ET

fJ
(t))T , where Efj(t) follows a zero-mean bivariate normal

distribution with covariance λjσ
2
j

 1
1
2

1
2

1
3

. Here H corresponds to a J × [2(J + 1)]-matrix, E to a J-vector, Φ to a

[2(J + 1)] × [2(J + 1)]-matrix and E∗ to a 2(J + 1)-vector.
The estimation of the parameters is accomplished by sequential updating the system and observational equations in a

similarmanner as presented in appendices (Guo et al., 1999; Naveau et al., 2003). However, there are slight differences since
this algorithm is extended to a multivariate framework. See details below in Appendix A.2.

Although the smoothing parameter can be chosen using an automatic method through cross validation techniques, λj
remains a free choice by the user in our algorithm. From experience, we find that a small value of λj such as 0.01 works well
with our simulated and real data sets. Using the same value of λj across all data sets aided in the comparison of the results.

A.2. Multivariate MKF

For any given values of the parameters of interest, the first step of thismultivariate extension of themultiprocess Kalman
Filter begins with an initial estimate of X̂(t − 1|Yt−1) (resp. Σ̂(t − 1|Yt−1)) which are defined as the expectation of Xt−1
conditioned on the observations Yt−1 = (y1, . . . , yt−1) (resp. the variance of Xt−1 conditioned on the observations Yt−1).
The estimation of the parameters is carried out by performing the following steps.

1. Conditioned on Zt−1,i = (Yt−1, It = i), the distribution of X̂t is characterized by the first two moments:

X̂(t|Zt−1,i) = E[Xt |Zt−1,i],

= ΦX̂(t − 1|Yt−1) + EE[Ej(t|It = i)],

and

Σ̂(t|Zt−1,i) = Var[Xt |Zt−1,i]

= ΦΣ̂(t − 1|Yt−1)Φ
T

+ Cov[Ej(t|It = i)],

E[Ej(t|It = i)] = (µv(t), µv(t), 0, . . . , 0)T , if i = 1,
= (0, 0, 0, . . . , 0)T , else.

Cov[Ej(t|It = i)] =


Σv 0 0 0
0 Cov(Ef1(t)) 0 0

0 0
. . . 0

0 0 0 Cov(EfJ (t))

 ,

Σv =


σ 2

v σ 2
v

σ 2
v σ 2

v


.

Recall that Efj(t) is a 2-dimensional vector with zero mean and covariance elements λjσ
2
j /[(i + k − 1)(i − 1)!(k − 1)!].

2. The predicted distribution of Yt = (y1(t), y2(t), . . . , yJ(t))T conditioned on Zt−1,i is also characterized by the first two
moments:

E[Yt |Zt−1,i] = HX̂(t|Zt−1,i),

Var[Yt |Zt−1,i] = HΣ̂(t|Zt−1,i)HT
+ Var(ϵ),

where

Var(ϵ) =

σ 2
1 0 0 0

0 0
. . . 0

0 0 0 σ 2
J

 .

The distribution of (Yt |Yt−1) is a mixture of multivariate normal distributions (MVN ):

(1 − π)MVN (E[Yt |Zt−1,0], Var[Yt |Zt−1,0]) + πMVN (E[Yt |Zt−1,1], Var[Yt |Zt−1,1]).

3. The posterior probability of index variable It = i conditioned on Yt is then given by

Pr(It = 0|Yt) =
(1 − π)MVN (E[Yt |Zt−1,0], Var[Yt |Zt−1,0])

Pr(Yt |Yt−1)
,

and

Pr(It = 1|Yt) =
πMVN (E[Yt |Zt−1,1], Var[Yt |Zt−1,1])

Pr(Yt |Yt−1)
.
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4. Given Yt we can update the first two moments of Xt conditioned on It :

X̂(t|Yt , It = i) = X̂(t|Zt−1,i) + Σ̂(t|Zt−1,i)HT
[Var(Yt |Zt−1,i)]

−1
[Yt − Y (t|Zt−1,i)],

and

Σ̂(t|Zt) = Σ̂(t|Zt−1,i) − Σ̂(t|Zt−1,i)HTVar[Yt |Zt−1,i]
−1HΣ̂(t|Zt−1,i).

5. Marginal distribution of X̂(t|Yt) is a mixture of multivariate normals. We approximate the mixture by a multivariate
normal with the same first two moments.

X̂(t|Yt) = (1 − π)X̂(t|Zt,0) + π X̂(t|Zt,1),

and

Σ̂(t|Yt) = (1 − π)Σ̂(t|Zt,0) + πΣ̂(t|Zt,1) + (X̂(t|Zt,i) − X̂(t|Yt))(X̂(t|Zt,i) − X̂(t|Yt))
T .

This steps allows us to continue sequential updating.
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