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Particle filtering for Gumbel-distributed daily
maxima of methane and nitrous oxide
Gwladys Toulemondea*, Armelle Guilloub and Philippe Naveauc

In atmospheric chemistry, daily maxima concentrations capture information about the variability among peak values.
Statistically, they can often be modeled by a Gumbel distribution. This is the case for two very important greenhouse gases
methane and nitrous oxide maxima when they are measured at our site of interest, Gif-sur-Yvette, a city south west of Paris.
In practice, those two daily concentrations are not always recorded during the same period, and it would be of interest to
reconstruct one from the other one. Such a type of inference can be handled within a state space modeling framework,
but state space models are not tailored to represent the dynamics among Gumbel-distributed maxima. By building on our
previous work, which made a link between linear autoregressive time series and Gumbel-distributed maxima, we propose
and study such a state space model. It has the advantages of being linear and of preserving the Gumbel characteristic in
both the state and observational equations. Concerning the inference of the hidden maxima at the state equation level, we
derive the optimal weights of the auxiliary particle filtering approach of Pitt and Shephard. A simulation study indicates
that our approach offers a gain over the Kalman filter, the bootstrap filter, and the nonmodified version of the Pitt and
Shephard auxiliary filter. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: atmospheric chemistry; data assimilation; extreme value theory; hidden Markov models; particle filters;
state space models

1. INTRODUCTION
Since at least 2002, the RAMCES network (Atmospheric Network for the Measurement of Greenhouse Compounds) has been recording
daily maxima of nitrous oxide (N2O) and of methane (CH4) at Gif-sur-Yvette, a small city about 30 km south west of Paris, France. The two
time series of daily maxima concentrations in parts per billion by volume displayed in Figure 1 for the period 2002–2007 represent complex
temporal variations with peaks and missing data during a few time lags. Nitrous oxide is a greenhouse gas with tremendous global warming
potential (has about more than 300 times of capability to trap heat in the atmosphere than carbon dioxide). Methane is also an important
greenhouse gas with a global warming potential of 25 compared with carbon dioxide. In this context, the monitoring of daily maxima of
CH4 and N2O over long periods is paramount, for example, for health reasons. As the recording of the CH4 and N2O appears to be inter-
mittent, one may wonder if daily maxima concentrations of nitrous oxide could be inferred (reconstructed) from the methane observations
(the inverse question can also be asked).

Moreover, since 2007, the RAMCES network has proceeded to record CH4 but has stopped the regular recordings of N2O. That is why
we would like to be able to reconstruct daily maxima of N2O step by step in an online reasoning.

This inquiry can be explored if these two random variables are dependent. The scatter plot shown in Figure 2 clearly indicates a real but
complex relationship between the two concentrations. The cloud shape in Figure 2 can be, in part, explained by the distributional nature of
the random variables at hand. Coming back to Figure 1, the marginal distributions of those two atmospheric concentrations do not appear to
be symmetrical around a mean value. Large concentrations tend to be more disperse than smaller ones. This is a clear indication that a sym-
metrical distribution such as a Gaussian one will not provide a reasonable fit, especially for the upper tail behavior of these two greenhouse
gases. This discrepancy with the Gaussian paradigm is typical of random variables that are defined as daily maxima.

Since the seminal work of Fisher and Tippett (1928), extreme value theory (e.g., Embrechts et al., 1997; Coles, 2001; Beirlant et al., 2004;
de Haan and Ferreira, 2006) has been specially developed to model distributions of maxima. Under suitable assumptions, correct normalized
maxima should follow a generalized extreme value (GEV) distribution that merges three different tail behaviors: light (Gumbel type), heavy
(Fréchet type), and bounded (Weibull type). Concerning daily maxima concentrations of CH4 and N2O, our previous work (Toulemonde
et al., 2010) pointed out that a Gumbel distribution offers a reasonable fit for such data. The Gumbel cumulative distribution function is
given by
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Figure 1. Daily maxima of CH4 and N2O during the period 2002–2007. Measurements in parts per billion by volume were made at LSCE, a laboratory
located at Gif-sur-Yvette, a city south west of Paris, France. Data are missing during a few time lags, and daily maxima are computed over a block size

of 24 h.
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Figure 2. Scatter plot between daily maxima concentrations of CH4 (x-axis) and N2O (y-axis)—see Figure 1.
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where ! and " correspond to the so-called location and scale parameters, respectively. As a visual check, the quantile–quantile plot displayed
in the left panel of Figure 3 compares the ranked observed CH4 maxima (x-axis) with their expected values obtained from a fitted Gumbel
model (y-axis). The inference was made by implementing the method-of-moment technique studied in Proposition 4 in Toulemonde et al.
(2010) in a temporal dependence context. The diagonal line indicates a perfect fit. Overall, the assumption that both daily CH4 and N2O
maxima are marginally Gumbel distributed appears to be reasonable.

Consequently, this Gumbel hypothesis for the margins will be assumed throughout this paper. Concerning the temporal dependence, the
scatter plot of consecutive maxima of CH4 from day t (x-axis) to day t C1 (y-axis) shown in the left panel of Figure 4 indicates a short-term
dependence. The same can be said from N2O maxima; see the right panel of Figure 4.

The inference of such dependences between bivariate maxima can be undertaken via different methods. For example, one could follow
a copula approach (Joe, 1997) or estimate a bivariate extremal dependence function (e.g., Naveau et al., 2009). Here, we opt for another
modeling road because our goal is to infer unobserved daily maxima of N2O from measured daily maxima of methane. In addition, we
would like to reproduce the temporal structure plotted in the left panel of Figure 4. The classical state space models formalism (e.g., Cappé
et al., 2005) represents an appealing solution to address these issues. The main difficulty here resides in ensuring that the marginals of daily
maxima (see Figure 3) follow a Gumbel distribution within a state space modeling structure.

In a state space model context, the measurement Yt recorded at time t , that is, the daily maxima of methane in our case, is described by two
equations: the observational and the state ones. The first one depicts the link between Yt and Zt , where the latter represents an unobserved
state variable, that is, the daily maxima of nitrous oxide in our application. The second equation, also called the system equation, represents
a temporal dynamical structure, like the one shown in the right panel of Figure 4. Typically, most state space models have the following form
(e.g., Doucet et al., 2001)
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Figure 3. Quantile–quantile plots of daily maxima of CH4 and N2O obtained after fitting a Gumbel distribution via a method-of-moment technique
proposed in Toulemonde et al. (2010). In (1), we obtain the following estimates with 95% confidence intervals: O" D 79:8 2 Œ73:3I 86:4# and

O!D 1915:9 2 Œ1904:4I 1927:4#, and for nitrous oxide, O" D 1:52 2 Œ1:39I 1:64# and O!D 320:0 2 Œ319:7I 320:2#.
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Figure 4. Scatter plots of consecutive maxima of CH4 and N2O. The x-axis corresponds to day t and the y-axis to day t C 1. The empirical estimate of the
lag 1 autocorrelation is equal to 0:55 for the CH4 and to 0:52 for the N2O.

#
Yt D Ft .Zt ; "t / (observational equation)
Zt D Gt .Zt!1; #t / (state equation)

Factorizing the joint probability density of states and observations denoted by p.Z0WT ; Y1WT /, we remark that such a state space model is
determined by its initial law p.Z0/, its transition density p.Zt jZt!1/, and its conditional probability density p.Yt jZt / via

p.Z0WT ; Y1WT / D p.Z0/

TY
tD1

p.Zt jZt!1/p.Yt jZt /

where the vector Z0WT denotes .Z0; Z1; : : : ; ZT /
0

and Y1WT D .Y1; : : : ; YT /
0
. The main issue is to estimate Zt from an a priori knowl-

edge of p.Z0/ and from the observations vector Y1Wt . In other words, the conditional density p.Zt jY1Wt /, called the filtering density, is of
primary interest in state space modeling. To compute this density, two assumptions are often made in geosciences. The noises "t and #t are
assumed to be Gaussian, and the transfer functions Ft and Gt are assumed to be linear. This leads to the well-known Kalman filter equations
(Kalman, 1960; Kalman and Bucy, 1961), which describe a sequential scheme for computing the conditional mean and the covariance matrix
of the underlined system.

Going back to our daily maxima of concentrations, a Gaussian linear state space model cannot reproduce the behaviors shown in our four
Figures 1–4. This remark leaves us with three options: to remove the Gaussian hypothesis, to discard the linearity assumption, or to do both.
The Gumbel nature of the margins (see Figure 3) implies that the Gaussian hypothesis cannot be kept. For practical reasons, an additive
linear structure offers many advantages. It is simple to explain and interpret; for example, the units such as parts per billion volume can
be preserved. In contrast, introducing nonlinearity makes the inference and the error propagation more difficult to handle than in a linear
framework. Hence, our strategy in this paper is to propose and study a linear state space model that preserves the Gumbel feature of our daily
maxima. To implement this strategy, we build on our previous work (Toulemonde et al., 2010) that focused on linear Gumbel autoregressive
(AR) models. This extension to a state space context will be explained in Section 2. In particular, abandoning the Gaussian world for the
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Gumbel one implies that the filtering law will not be explicit anymore and particle filtering techniques will be tailored to take advantage
of the Gumbel constraint (see Section 3). Our introductory example will be treated in Section 4, and a few conclusions will be proposed in
Section 5.

2. A GUMBEL STATE SPACE MODEL
In 2010, we developed a linear Gumbel AR model (Toulemonde et al., 2010). The key ingredient of this AR model was that adding a
Gumbel-distributed variable to the logarithm of a positive ˛-stable variable can still be Gumbel distributed (see e.g., Fougères et al., 2009).
More precisely, if X is Gumbel distributed with parameters ! and " and independent of S˛ , a positive ˛-stable variable, then the sum
X C " log S˛ is also Gumbel distributed with parameters ! and "=˛. We recall here that a positive ˛-stable variable (Zolotarev, 1986;
Nolan, 2012) with ˛ 2 .0; 1/ is defined by its Laplace transform

E.exp.!uS// D exp.!u˛/, for all u > 0 (2)

In terms of notations, it is convenient to call the random variable !C " log S˛ , where S˛ is defined by (2), an exponential-stable variable
with parameters ˛ 2 .0; 1/, !, " > 0, denoted by ExpS.˛;!; "/. This allows us to write down our state space model.

PROPOSED MODEL. Let fZt ; t 2 Zg and fYt ; t 2 Zg be two stochastic processes defined as follows:

(
Yt D $t C Ht Zt C #t;˛2 (observational equation)

Zt D ˛1Zt!1 C "t;˛1 (state equation)
(3)

where Ht > 0, ˛1 2 .0; 1/, ˛2 2 .0; 1/ and the sequences f"t;˛1gt and f#t;˛2gt correspond to two independent samples of exponential-
stable variables, ExpS .˛1; !"%.1 ! ˛1/; ˛1"/ and ExpS .˛2; !Ht"%.1=˛2 ! 1/; Ht"/, respectively. The variable "t;˛1 is independent of
fZt 0gt 06t!1, and the variable #t;˛2 is independent of fZt 0gt 06t . The scalar % is the Euler’s constant.

The state equation in (3) has a unique strictly stationary solution, which we will consider and where Zt is Gumbel distributed. The
observational equation corresponds to adding an exponential-stable noise to the Gumbel-distributed variable Zt . This ensures that the mar-
gins of fYt g are also Gumbel distributed. More precisely, the variables Zt and Yt are Gumbel distributed with parameters .!%"; "/ and!
$t ! Ht$"

˛2
; Ht

"
˛2

"
, respectively (see Appendix for details). Having a linear model makes the computation of covariances and correlation

between fZt g and fYt g simple, and we obtain

Cov.Zt ; Zt!h/ D ˛
jhj
1 Var.Zt / (4)

Cov.Yt ; Zt / D Ht Var.Zt / (5)

Cor.Yt ; Zt / D ˛2 (6)

These formulae allow for a straightforward interpretation of the main parameters ˛1, ˛2, and Ht in terms of the dependences within fZt g
(temporally) and between fZt g and fYt g. As an illustration of pathwise trajectories that model (3) can produce, Figure 5 presents a simulated
realization of f.Yt ; Zt /gtD1;:::;T , with T D 250, ˛1 D 0:5, ˛2 D 0:6, Ht D " D 1, and $t D 0, and Figure 6 represents the scatter plot
of successive values of Zt (left panel) and the scatter plot of Yt against Zt (right panel). As expected from formulae (5) and (6), the path
of fYt g mimics well the one of fZt g (˛2 D 0:6), and the associated scatter plot shows correspondences between both series. However, the
variability within fYt g is larger than the one observed in fZt g (Ht D 1 and ˛2 D 0:6).
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Figure 5. Simulated paths for fZt g (solid line) and fYt g (dotted line) from the system defined by (3) with T D 250, ˛1 D 0:5, ˛2 D 0:6, Ht D " D 1,
and %t D 0.
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Figure 6. Scatter plot of consecutive values in the simulated hidden series Zt and scatter plot between the simulated observed series Yt and Zt .

3. ESTIMATION OF THE FILTERING DENSITY
Under the assumption that the parameters of the state space model defined by (3) are known, we would like to approximate the filtering
density p.Zt jY1Wt / and the prediction density p.Zt jY1Wt!1/. This leads to the classical recursive system in two steps (Doucet et al., 2001;
Cappé et al., 2005) symbolized by arrows just as follows:

p.Zt!1jY1Wt!1/
prediction!!

p.Zt jZt!1/
p.Zt jY1Wt!1/

correction!!
p.Yt jZt /

p.Zt jY1Wt /

with

p.Zt jY1Wt!1/ D
Z

p.Zt jZt!1/p.Zt!1jY1Wt!1/ dZt!1 (Prediction step)

p.Zt jY1Wt / D p.Yt jZt /p.Zt jY1Wt!1/R
p.Yt jZt /p.Zt jY1Wt!1/ dZt

(Correction step)

The prediction step at time t is based on the available information at step t !1 about the hidden state Zt!1. The prediction density is deduced
by the filtering density at time t ! 1 and by the transition density. For the correction step at time t , a new observation Yt is available, and the
current state information can be updated. According to the proposed model (3), Yt and Zt are Gumbel distributed and consequently have a
skewed density. Thus, the mean and the variance do not entirely capture the full distribution. Consequently, applying the classical Kalman
filter equations to estimate the hidden states is not optimal in this Gumbel setting.

3.1. Presentation of particle filters

During the last decade, many authors (see, for example, Doucet et al., 2000; Cappé et al., 2007) worked on sequential Monte Carlo techniques

to estimate the necessary integrals to obtain the filtering density. Classically, the set of weighted particles
˚
&i
t!1; wi

t!1

$N

iD1 approximates
the filtering density p.Zt!1jY1Wt!1/. The empirical distribution corresponding to this approximation is

pN .Zt!1jY1Wt!1/ D
NX

iD1

wi
t!1ı

&i
t!1

.Zt!1/

In the sequel, for sake of simplicity, we note p
%
:j&i

t!1

&
D p

%
:jZt!1 D &i

t!1

&
, p

%
:j&i

t

&
D p

%
:jZt D &i

t

&
and q

%
:j&i

t!1; Yt
&

D
q

%
:jZt!1 D &i

t!1; Yt
&
. An approximation of the prediction density and the filtering density follows:

pN .Zt jY1Wt!1/ D
NX

iD1

wi
t!1p

!
Zt j&i

t!1

"

pN .Zt jY1Wt / ˛

NX
iD1

wi
t!1p.Yt jZt /p

!
Zt j&i

t!1

"
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According to the importance sampling principle, to obtain a set of weighted particles
˚
&i
t ; wi

t

$N

iD1 that approximate p.Zt jY1Wt /, one
can sample particles &i

t according to a proposal density q
%
:j&i

t!1; Yt
&

and in computing the associated importance weights with the
recursive relation

wi
t ˛ wi

t!1

p
%
Yt j&i

t

&
p

%
&i
t j&i

t!1

&
q

%
&i
t j&i

t!1; Yt
&

A suitable choice for the proposal density q
%
:j&i

t!1; Yt
&

has to be done; for instance, we can use the transition density p
%
&i
t j&i

t!1

&
. We

consider this choice for which the update of the weights has the simpler expression wi
t ˛ wi

t!1p
%
Yt j&i

t

&
, and this leads to a particular case of

the sampling importance sampling algorithm. In a few iterations, this algorithm presents a problem of weights degeneracy in the sense that
almost any weight is equal to zero. Gordon et al. (1993) introduced a resampling step in the algorithm, leading us to the sampling importance
resampling algorithm, also called the bootstrap filter for this particular choice of the transition density as the proposed one. This algorithm
is decomposed into three steps. The first step is an initialization step bringing into play an initial distribution. According to Toulemonde
et al. (2010), the state equation in (3) has a unique strictly stationary solution, which is Gumbel distributed and which justifies the Gumbel
distribution for the initial one in the algorithm. After a propagation step, the last one is a selection (resampling) step, where the particles are
eliminated or multiplied according to their weights.

The resampling step improves the sampling importance sampling algorithm, but it leads to a progressive loss of diversity in the particle
set. The particles are either eliminated or multiplied according to their adequacy with the new observation. In some cases, only one or two
particles are selected. So they are multiplied and constitute the set of particles for the next step. Ideally, it would be better to force the
propagation mechanism to directly propose particles in areas associated to high likelihood. To this aim, Pitt and Shephard (1999) proposed
the auxiliary particle filter (APF) introducing first-stage weights called auxiliary variables denoted here by ˇ. These new weights concentrate
the computation effort on some promising particles. A description of this APF, which generalizes the sampling importance resampling filter,
is given in the boxed-text on the next page.

The optimal auxiliary weights depend on p
%
Yt j&i

t!1

&
, which cannot always be computed. So the weights need to be estimated. Pitt and

Shephard (1999) proposed to consider bp %
Yt j&i

t!1

&
D p

%
Yt jZt D !i

t

&
, with !i

t D E
%
Zt j&i

t!1

&
. In the sequel, this filter is denoted by

APF-PSN , with N corresponding to the number of particles.
For our proposed Gumbel state space model defined by (3), it is possible to compute optimal weights as a density (derivative with respect

to yt ):

p.yt j&i
t!1/ D @

@yt
P .C C Ht".˛1 log St;˛1 C log St;˛2/ 6 yt /

D @

@yt
P

'
˛1 log St;˛1 C log St;˛2 6 yt ! C

Ht"

(
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D @

@yt

Z 1

0
P

'
log St;˛2 6 yt ! C

Ht"
! ˛1 log St;˛1

ˇ̌
ˇSt;˛1 D s

(
fSt;˛1

.s/ ds

D @

@yt

Z 1

0
P

'
St;˛2 6 exp

'
yt ! C

Ht"
! ˛1 log s

(ˇ̌
ˇSt;˛1 D s

(
fSt;˛1

.s/ ds

D @

@yt

Z 1

0
P

'
St;˛2 6 exp

'
yt ! C

Ht"
! ˛1 log s

((
fSt;˛1

.s/ ds

D
Z 1

0

@

@yt
P

'
St;˛2 6 exp

'
yt ! C

Ht"
! ˛1 log s

((
fSt;˛1

.s/ ds

D
Z 1

0

1

Ht"
exp

'
yt ! C

Ht"
! ˛1 log s

(
fSt;˛2

'
exp

'
yt ! C

Ht"
! ˛1 log s

((
fSt;˛1

.s/ ds (7)

where yt is the observation at time t , C D $t ! Ht$"
˛2

C Ht ˛1%" C Ht ˛1&
i
t!1, St;˛i

(i D 1; 2) are two independent ˛i -stable variables as
defined in (2), and fSt;˛i

is the density of an ˛i -stable variable.
Such an integral is numerically time consuming because it involves two exponential-stable densities that have no explicit expression. To

compute these optimal weights without increasing computation time, we approximate these weights by using a kernel estimator. According
to (7), we have

p
!
yt j&i

t!1

"
D @

@yt
P

'
Ut;˛1;˛2 6 yt ! C

Ht"

(

with Ut;˛1;˛2 D ˛1 log St;˛1 C log St;˛2 . Denoting by fUt;˛1;˛2
the associated density to Ut;˛1;˛2 , we obtain

p
!
yt j&i

t!1

"
D 1

Ht"
fUt;˛1;˛2

'
yt ! C

Ht"

(
(8)

There is no integral in this expression of p
%
yt j&i

t!1

&
. We just need to accurately estimate the light-tailed density fUt;˛1;˛2

.:/ for any fixed
˛1 and ˛2. This approximation of fUt;˛1;˛2

has to be carried out only once in a preprocessing step (ie., before our filtering algorithm). This
can be implemented by a kernel method using Gaussian kernel associated to a bandwidth chosen by a rule of thumb (Silverman, 1986). In
practice, 1000 samples of size 10; 000 are simulated as Ut;˛1;˛2 D ˛1 log St;˛1 C log St;˛2 .

By this way, we propose an adapted APF to our model denoted in the sequel as the APF-OptN filter with N corresponding to the number
of particles.
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3.2. Comparison of four different filters

At this stage, we have four different filters at our disposal: Kalman filter (KF), BFN , and the two versions of APF. The notations APF-PSN

and APF-OptN denote the classical Pitt and Shephard one and our version for which the weights are computed to respect the Gumbel
structure of our model, respectively. For practical reasons, we set the number of particles to N D 500 and the time length of the time
series to T D 250. To compare the different filters, we have simulated 100 pairs of series according to the model defined in (3) with
˛1 2 f0:1; 0:5; 0:9g, ˛2 2 f0:4; 0:6g, Ht D " D 1, and $t D 0. Other choices for Ht , " , and $t do not affect the conclusion of the
simulation results. We aim to compare the estimated ŒZt jY1Wt ' with the unobserved Zt .

As an example, in the case ˛1 D 0:5 and ˛2 D 0:6, Figure 7 overlays the true hidden signal Zt (solid line) with the empirical quartiles
(gray) from our APF-Opt500 method obtained from the Yt displayed in Figure 5. The dotted line corresponds to the classical Kalman filter
estimate. Unsurprisingly, the APF-Opt500 outperforms the Kalman filter in this example. By construction, the Kalman filter cannot repro-
duce skewed distribution behaviors. This is not the case for the BFN and the APF-PSN filters. To compare the different approaches, we
compute for each series the mean square error (MSE):

MSE D 1

T

TX
tD1

!bZt ! Zt

"2
(9)

where bZt represents the particle set average at each time t . Table 1 compares the mean of these MSEs based on 100 replica for the four
filters in the six cases. It is important to notice that the computation times of the different particle filters are comparable. Our main tuning
choice concerns the number of particles N . Table 2 compares the different filtering methods according to three different N (each row) in
the case where the parameter choices (˛1 D 0:5 and ˛2 D 0:6) correspond to our application at hand (see Section 4). It is sufficient to set
N D 100 for our method to outperform (in terms of MSE) the other approaches, even if the others have N D 1000. Hence, our choice of N
should be rather a question of computation time. As the latter classically increases linearly with N for particle filtering methods, the number
N D 500 particles has been chosen as a compromise between performance and computing cost.

Coming back to Table 1, as expected from formulae (5) and (6), the gain in MSE is stronger when ˛2 increases. This is also true when
dependence (characterized by ˛1) into the hidden series increases. Kalman filter gives generally the worst results and this is exacerbated
when ˛1 becomes high. In some cases (in particular with ˛1 D 0:9), APF-PS500 and APF-Opt500 are comparable. Overall, the APF-Opt500

outperforms the APF-PS500 and the other filtering approaches.

Hidden series Zt
Estimated quartiles by the APF-Opt500
Kalman Filter

0 50 100 150 200 250

-2
0

2
4

6

Figure 7. Comparison of filtered states with the Kalman filter (dotted line) and with the APF-Opt500 (quartiles in gray area).

Table 1. Mean of the mean square errors based on 100 replica.

˛1 ˛2 KF BF500 APF-PS500 APF-Opt500

0.1 0.4 1.354 1.317 1.317 1.314
0.1 0.6 1.036 1.017 1.096 1.013

0.5 0.4 1.336 1.296 1.233 1.222
0.5 0.6 0.994 0.959 0.905 0.841

0.9 0.4 0.984 0.873 0.764 0.764
0.9 0.6 0.665 0.569 0.434 0.434
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Table 2. Mean of the mean square errors based on 100
replica for ˛1 D 0:5 and ˛2 D 0:6.

N KF BFN APF-PSN APF-OptN

100 0.992 1.004 0.939 0.876
500 0.994 0.959 0.905 0.841
1000 0.989 0.948 0.897 0.829
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Figure 8. Box plots of the mean square errors (MSEs) of the KF, BF500, APF-PS500, and APF-Opt500, Ht D " D 1, %t D 0. Results with ˛2 D 0:4
(respectively ˛2 D 0:6) are on the left (respectively on the right). On the top, the box plots correspond to ˛1 D 0:1; on the middle, ˛1 D 0:5; and on the
bottom, ˛1 D 0:9. The crosses represent the means of the MSEs for each case. The whiskers extend to the most extreme data point, which is no more than

1.5 times the interquartile range from the box. The MSEs whose values are out of these whiskers are represented by circles.

Figure 8 summarizes the dispersion in the MSEs. Overall, the optimal filter provides the best results of the 100 computed MSEs in each
case. In a general way, the auxiliary filters are better than the two others. For example, in the case ˛1 D 0:9 and ˛2 D 0:6, the mean of the
MSEs corresponding to the auxiliary filters is equal to the best MSE we have obtained on 100 series with the Kalman one.

We propose another simulation exercise highlighting the practical impact of our approach (inference of high quantiles) and exploring
how return levels can be improved by using a filtering method and especially the APF-Opt filter. By simulating three months of stationary
bivariate daily maxima f.Zt ; Yt /g according to the proposed model (3), we can assume that, for the two last weeks, we only observe fYt g but
not fZt g (considered as our missing data). By construction, Zt is Gumbel distributed. To compute a return level for Zt , we can either use
the observed fZt g (no data during the two last weeks of the third month) or extend this time series by reconstructing the fZt g from the fYt g.
After this procedure was repeated 1000 times, Table 3 presents MSEs for return levels computed from the Gumbel distribution associated
with four return periods computed for four cases. The first case corresponds to the situation where only available observations have been
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Table 3. Mean square errors for return levels based on 1000 replica for ˛1 D 0:5 and ˛2 D 0:6
with 500 particles.

Return period (year/s) Incomplete data APF-PSN APF-OptN Whole data True value

1 0.68 0.60 0.59 0.57 5.9
5 1.03 0.92 0.91 0.87 7.5
10 1.21 1.08 1.07 1.02 8.2
50 1.67 1.51 1.50 1.41 9.8

used. In other words, the return levels have been computed with incomplete data. In the cases denoted by APF-PSN and APF-OptN , we
have reconstructed the two last weeks with the auxiliary filters (the Pitt and Shephard one and the optimal one). Then, we compute the return
levels with these extended data. The column whole data corresponds to return levels based on complete data. Obviously, results are better
when the return levels are computed from the whole dataset than from incomplete data. The question is, what could be gained by using the
APF-Opt filter? With these simulation results, we show that the MSEs with reconstructed data from the APF-OptN are rather comparable
with the MSEs with the whole data and consequently the benefit of using reconstruction by filtering approach is important.

As return levels represent a practical and theoretical summary of marginal extreme behaviors, this simulation study suggests that infer-
ences on the Gumbel parameters distribution or other characteristics of extremal behavior could benefit from such a reconstruction of missing
data within a dynamical system.

4. ANALYSIS OF MAXIMA OF N2O FROM MAXIMA OF CH4

We divide our data sets into two periods (January 2002–June 2006 and July 2006–December 2006). The first period is used to calibrate our
model parameters (" , ˛1, ˛2, $t D $, and Ht D H ). The second period focuses on the problem of reconstruction of daily maxima of N2O
(Z1WT will denote the corresponding centered series) from the daily maxima of CH4 (Y1WT ).

For the calibration period, the parameters " and ˛1 are estimated as in Toulemonde et al. (2010) and are consequently almost surely con-
sistent and asymptotically zero-mean Gaussian. The parameters " and ˛1 are respectively related to the variance of Zt and to the covariance
in (4). Natural estimators of these parameters have the following form:

b" D (!1
p

6 sZ

b̨1 D 1

s2
ZT

T !1X
tD1

Zt Zt!1

where s2
Z D PT

tD1 Z2
t =T . As $ D E.Yt /, a simple estimator b$ is Y D PT

tD1 Yt =T . Concerning H and ˛2, we use respectively
Equations (5) and (6) replacing moments by their empirical counterparts. This leads us to consider

bH D sYZ

s2
Z

b̨2 D sYZ

sY sZ

where s2
Y D PT

tD1.Yt ! Y /2=T and sYZ D PT
tD1 Zt .Yt ! Y /=T .
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Figure 9. Mean values of particles from APF-Opt500 (dotted line) and ponctual empirical IC80% for the series of N2O daily maxima in Gif-sur-Yvette from
June to December 2006.
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We obtain the following estimations: b" D 1:48, b̨1 D 0:53, b̨2 D 0:58, b$ D 1968, and bH D 30:8.
To reconstruct daily maxima of N2O that we have hidden for the period from July to December 2006, we apply our filter (APF-OptN ). In

Figure 9, the black line corresponds to the series of nitrous oxide and the dotted line corresponds to the filtered states (means of particle sets)
using the previous parameters estimation and the auxiliary filter with optimal weights and with 500 particles. We also compare our filter with
the auxiliary filter of Pitt and Shephard with 500 particles. If we compute the MSE as defined in Equation (9), we obtain a lower MSE with
the optimal weights (N D 500, MSE D 3:95) than with the Pitt and Shephard weights (N D 500, MSE D 4:19).

5. CONCLUSION
We have proposed a new state space model in order to reconstruct a series of hidden light-tailed maxima. In order to estimate the hidden
states, we compute the optimal weights of the auxiliary particle filter. In view of our simulation results and data analysis, this approach
outperforms the other filters such as the auxiliary filter of Pitt and Shephard. In this paper, we have focused on light-tailed maxima, which
is reasonable for many variables in atmospheric sciences. A possible extension concerns maxima stemming from heavy-tailed or bounded-
tailed distribution. In other words, this corresponds to an extension from Gumbel marginals to GEV marginals. Considering X as a random
variable from a GEV distribution with parameter !, " , and &, the quantity log.X ! !C "=&/ follows a Gumbel.log."=&/; &/ distribution
if & > 0 and the quantity ! log.!X C !! "=&/ follows a Gumbel.log.!&="/; !&/ distribution if & < 0. This leads us to a nonlinear state
space model also depending on ˛-stable random variables allowing Zt and Yt to be GEV distributed. Unfortunately, such a model is not
additive anymore, and its complexity restricts its interest from a practitioner’s point of view.

In an offline issue, estimating smoothing density would also be an interesting perspective. It corresponds to infer the distribution of the
current state at a current time given past, present, and some future observations. Even if particle filtering techniques can be used in this case,
it does not perform very well (Doucet and Johansen, 2011), and several particle smoothing methods for this problem mainly relying on the
forward filtering-backward smoothing formula could be adapted to our problem.

APPENDIX A. JUSTIFICATION OF THE DISTRIBUTIONS OF YT AND ZT

The distribution of Zt is directly deduced from the paper of Toulemonde et al. (2010).
Using the fact that Zt is Gumbel distributed with parameters !%" and " , and using the key relationship between the Gumbel distribution

and the positive ˛-stable distribution, it is straightforward to show that Yt is also Gumbel distributed with parameters $t ! Ht$"
˛2

and Ht
"
˛2

.
A rigorous proof based on the computation of the characteristic function is detailed as follows.

E.eiuYt / D E.eiu%t eiuHt Zt eiu't;˛2 /

D eiu%t E.eiuHt Zt /E.eiu't;˛2 /

Because Zt is Gumbel distributed with parameters !%" and " and #t;˛2 D !%"Ht .1=˛2 ! 1/ C Ht" log S˛2 , with S˛2 defined by (2),
we obtain

E.eiuYt / D eiu%t e!iu$"Ht).1 ! iuHt"/e!iu$"Ht .1=˛2!1/
)

!
1 ! iuHt"/

˛2

"

).1 ! iuHt"/

D eiuŒ%t !.$"Ht /=˛2#)

'
1 ! iuHt"

˛2

(

which corresponds to the characteristic function of a Gumbel random variable with parameters $t ! .%"Ht /=˛2 and .Ht"/=˛2.
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