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ABSTRACT

Multiple changes in Earth’s climate system have been observed over the past decades. Determining how

likely each of these changes is to have been caused by human influence is important for decision making with

regard to mitigation and adaptation policy. Here we describe an approach for deriving the probability that

anthropogenic forcings have caused a given observed change. The proposed approach is anchored into causal

counterfactual theory (Pearl 2009), which was introduced recently, and in fact partly used already, in the

context of extremeweather event attribution (EA).We argue that these concepts are also relevant to, and can

be straightforwardly extended to, the context of detection and attribution of long-term trends associated with

climate change (D&A). For this purpose, and in agreement with the principle of fingerprinting applied in the

conventional D&A framework, a trajectory of change is converted into an event occurrence defined by

maximizing the causal evidence associated to the forcing under scrutiny. Other key assumptions used in the

conventional D&A framework, in particular those related to numerical model error, can also be adapted

conveniently to this approach. Our proposal thus allows us to bridge the conventional framework with the

standard causal theory, in an attempt to improve the quantification of causal probabilities. An illustration

suggests that our approach is prone to yield a significantly higher estimate of the probability that anthro-

pogenic forcings have caused the observed temperature change, thus supporting more assertive causal claims.

1. Introduction

Investigating causal links between climate forcings and

the observed climate evolution over the instrumental era

represents a significant part of the research effort on cli-

mate. Studies addressing these aspects in the context of

climate change have been providing, over the past de-

cades, an ever-increasing level of causal evidence that is

important for decision-makers in international discus-

sions on mitigation policy. In particular, these studies

have produced far-reaching causal claims; for instance,

the latest IPCC report (AR5; IPCC2014) stated that ‘‘It is

extremely likely that human influence has been the

dominant cause of the observed warming since the mid-

20th century’’ (p. 4). An important part of this causal

claim, as well as many related others, regards the associ-

ated level of uncertainty. More precisely, the expression

‘‘extremely likely’’ in the latter quote has been formally

defined by the IPCC (Mastrandrea et al. 2010; see Table 1)

to correspond to a probability of 95%. The above quote

hence implicitly means that the probability that the ob-

served warming since the mid-twentieth century was not

predominantly caused by human influence but by natural

factors is roughly 1:20. Based on the current state of

knowledge, that means that it is not yet possible to fully

rule out that natural factors were the main causes of the

observed global warming. This probability of 1:20, as well

as all the probabilities associatedwith the numerous causal

claims that can be found in the past and present climate

literature and are summarized inAR5, is a critical quantity

that is prone to affect the way in which climate change is

apprehended by citizens and decisionmakers, and thereby

to affect decisions on the matter. It is thus of interest to

examine the method followed to derive these probabilities

and, potentially, to improve it.

The aforementioned studies buttressing the above

claimusually rely on a conventional attribution framework
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in which ‘‘causal attribution of anthropogenic climate

change’’ is understood to mean ‘‘demonstration that a

detected change is consistent with the estimated re-

sponses to anthropogenic and natural forcings com-

bined, but not consistent with alternative, physically

plausible explanations that exclude important ele-

ments of anthropogenic forcings’’ (Hegerl et al. 2007,

p. 668). While this definition has proved to be very

useful and relevant, it offers a description of causality

that is arguably overly qualitative for the purpose of

deriving a probability. In particular, it comes short of a

mathematical definition of the word cause and, in-

cidentally, of the probability to have caused that we in

fact wish to quantify. Hence, beyond these general

guidance principles, the actual derivation of these

probabilities is left to some extent to the interpretation

of the practitioner. In practice, causal attribution has

usually been performed by using a class of linear re-

gression models (Hegerl and Zwiers 2011):
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where the observed climate change y is regarded as a

linear combination of p externally forced response pat-

terns xf with f 5 1, . . . , p referred to as fingerprints, and

where « represents internal climate variability and obser-

vational error (all variables are vectors of dimension n).

The regression coefficient bf accounts for possible error

in climate models in simulating the amplitude of the

pattern of response to forcing f. After inference and un-

certainty analysis, the value of each coefficient bf and the

magnitude of the confidence intervals determine whether

or not the observed response is attributable to the asso-

ciated forcing. The desired probability of causation (i.e.,

the probability that the forcing of interest f has caused the

observed change y) is denoted hereafter P( f / y). It has

often been equated to the probability that the corre-

sponding linear regression coefficient is positive1:

P( f / y)5P(b
f
. 0). (2)

A shortcoming of the conventional framework sum-

marized in Eqs. (1) and (2) above is that a linear re-

gression coefficient does not have any causal meaning

from a formal standpoint. As acknowledged by Pearl

(2009), turning an intrinsically deterministic notion

such as causality into a probabilistic one is a difficult

general problem that has also long been a matter of

debate (Simpson 1951; Suppes 1970; Mellor 1995). Nev-

ertheless, the current approach can be theoretically

improved in the context of climate change where the

values of the probabilities of causation have such impor-

tant implications.

Our proposal to tackle this objective is anchored in a

coherent theoretical corpus of definitions, concepts, and

methods of general applicability that has emerged over

the past three decades to address the issue of evidencing

causal relationships empirically (Pearl 2009). This gen-

eral framework is increasingly used in diverse fields

(e.g., in epidemiology, economics, and social science) in

which investigating causal links based on observations

is a central matter. Recently, it has been introduced in

climate science for the specific purpose of attributing

weather- and climate-related extreme events (Hannart

et al. 2016), which we refer to simply as ‘‘extreme

events’’ hereafter. The latter article gave a brief over-

view of causal theory and articulated it with the con-

ventional framework used for the attribution of extreme

events, which is also an important topic in climate at-

tribution. In particular, Hannart et al. (2016) showed

that the key quantity referred to as the fraction of at-

tributable risk (FAR) (Allen 2003; Stone and Allen

2005), which buttresses most extreme event attribution

(EA) studies, can be directly interpreted within causal

theory.

However, Hannart et al. (2016) did not address how to

extend and adapt this theory in the context of the at-

tribution of climate changes occurring on longer time

scales. Yet, a significant advantage of the definitions of

causal theory is precisely that they are relevant no

matter the temporal and spatial scale. For instance, from

the perspective of a paleoclimatologist studying Earth’s

climate over the past few hundred millions of years,

global warming over the past 150 years can be consid-

ered as a climate event. As a matter of fact, the word

‘‘event’’ is used in paleoclimatology to refer to ‘‘rapid’’

changes in the climate system, but ones that may yet last

centuries to millennia. Where to draw the line is thus

arbitrary: one person’s long-term trend is another per-

son’s short-term event. It should therefore be possible

to tackle causal attribution within a unified methodo-

logical framework based on shared concepts and defi-

nitions of causality. Doing so would allow us to bridge

the methodological gap that exists between EA and

trend attribution at a fundamental level, thereby cov-

ering the full scope of climate attribution studies. Such a

unification would present in our view several advantages:

enhancing methodological research synergies between

D&A topics, improving the shared interpretability of

1 The notation P(bf . 0) corresponds to the confidence level

associated to the confidence interval [0, 1‘[ under a frequentist

approach, and to the posterior probability that bf is positive

under a Bayesian one.
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results, and streamlining the communication of causal

claims—in particular when it comes to the quantification

of uncertainty, that is, of the probability that a given

forcing has caused a given observed phenomenon.

Here, we adapt some formal definitions of causality

and probability of causation to the context of climate

change attribution. Then, we detail technical imple-

mentation under standard assumptions used in D&A.

The method is finally illustrated on the warming ob-

served over the twentieth century.

2. Causal counterfactual theory

While an overview of causal theory cannot be repeated

here, it is necessary for clarity and self-containedness to

highlight its key ideas and most relevant concepts for the

present discussion.

Let us first recall the so-called counterfactual defini-

tion of causality by quoting the eighteenth-century

Scottish philosopher David Hume: ‘‘We may define a

cause to be an object followed by another, where, if the

first object had not been, the second never had existed.’’

In other words, an eventE (E stands for effect) is caused

by an event C (C stands for cause) if and only if E would

not occur were it not for C. Note that the word event is

used here in its general, mathematical sense of a subset

of a sample space V. According to this definition, evi-

dencing causality requires a counterfactual approach by

which one inquires whether or not the event E would

have occurred in a hypothetical world, termed coun-

terfactual, in which the event C would not have oc-

curred. The fundamental approach of causality that is

implied by this definition is still entirely relevant in

the standard causal theory. It may also arguably be

connected to the guidance principles of the conventional

climate change attribution framework and to the opti-

mal fingerprinting models, in a qualitative manner. The

main virtue of the standard causality theory of Pearl

consists in our view in formalizing precisely the above

qualitative definition, thus allowing for sound quantita-

tive developments. A prominent feature of this theory

consists in first recognizing that causation corresponds

to rather different situations and that three distinct

facets of causality should be distinguished: (i) necessary

causation, where the occurrence of E requires that of C

but may also require other factors; (ii) sufficient causa-

tion, where the occurrence of C drives that of E but may

not be required for E to occur; and (iii) necessary and

sufficient causation, where (i) and (ii) both hold. The

fundamental distinction between these three facets can

be visualized by using the simple illustration shown in

Fig. 1.

While the counterfactual definition as well as the

three facets of causality described above may be un-

derstood at first in a fully deterministic sense, perhaps

the main strength of Pearl’s formalization is to propose

an extension of these definitions under a probabilistic

setting. The probabilities of causation are thereby de-

fined as follow:

PS(C/E)5PhEjdo(C),C,Ei, (3a)

PN(C/E)5PhEjdo(C),C,Ei, (3b)

PNS(C/E)5PhEjdo(C),Ejdo(C)i, (3c)

whereC andE are the complementaries ofC andE, and

where the notation do(. ) means that an intervention is

applied to the system under causal investigation. For

instance PS, the probability of sufficient causation, reads

from the above that the probability that E occurs when

C is interventionally forced to occur, conditional on the

fact that neither C nor E was occurring in the first place.

Conversely PN, the probability of necessary causation, is

defined as the probability thatEwould not occur whenC

is interventionally forced to not occur, conditional on

the fact that both C and E were occurring in the first

place. While we omit here the formal definition of the

intervention do(. ) for brevity, the latter can be under-

stood merely as experimentation: applying these defi-

nitions thus requires the ability to experiment. Real

experimentation, whether in situ or in vivo, is often ac-

cessible inmany fields but it is not in climate research for

obvious reasons. In this case, one can thus only rely on

numerical in silico experimentation: the implications of

this constraint are discussed further.

While the probabilities of causation are not easily

computable in general, their expression fortunately

FIG. 1. The three facets of causality. (a) Bulb E can never be lit

unless switch C1 is on, yet activating C1 does not always result in

lighting E as this also requires turning on C2: turning on C1 is thus

a necessary cause of E lighting, but not a sufficient one. (b) E is lit

any time C1 is turned on, yet if C1 is turned off Emay still be lit by

activating C2: turning on C1 is thus a sufficient cause of E lighting,

but not a necessary one. (c) Turning on C1 always lights E, and E

may not be lighted unlessC1 is on: turning onC1 is thus a necessary

and sufficient cause of E lighting.
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becomes quite simple under assumptions that are rea-

sonable in the case of external forcings (i.e., exogeneity

and monotonicity):

PN(C/E)5max(12 p/p, 0), (4a)

PS(C/E)5maxh12 (12 p)/(12 p), 0i, (4b)

PNS(C/E)5max(p2p, 0), (4c)

where p5PfEjdo(C)g is the so-called factual proba-

bility of the event E in the real world where C did occur

and p5PfEjdo(C)g is its counterfactual probability in

the hypothetic world as it is would have been had C not

occurred. One may easily verify that Eq. (4) holds in the

three examples of Fig. 1 by assuming that the switches

are probabilistic and exogenous. In any case, under such

circumstances, the causal attribution problem can thus

be narrowed down to computing an estimate of the

probabilities p and p. The latter only requires two ex-

periments: a factual experiment do(C) and a counter-

factual one do(C). Equation (3) then yields PN, PS, and

PNS from which a causal statement can be formulated.

Each of the three probabilities PS, PN, and PNS has

different implications depending on the context. For

instance, two perspectives can be considered: (i) the ex

post perspective of the plaintiff or the judge who asks

‘‘does C bear the responsibility of the event E that did

occur?’’ and (ii) the ex ante perspective of the planner or

the policymaker who instead asks ‘‘what should be done

w.r.t.C to prevent future occurrence ofE?’’. It is PN that

is typically more relevant to context (i) involving legal

responsibility, whereas PS has more relevance for con-

text (ii) involving policy elaboration. Both these per-

spectives could be relevant in the context of climate

change, and it thus makes sense to trade them off. Note

that PS and PN can be articulated with the conventional

definition recalled in introduction. Indeed, the ‘‘dem-

onstration that the change is consistent with (. . .)’’ im-

plicitly corresponds to the idea of sufficient causation,

whereas ‘‘(. . .) is not consistent with (. . .)’’ corresponds

to that of necessary causation. The conventional defi-

nition therefore implicitly requires a high PS and a high

PN to attribute a change to a given cause.

PNS may be precisely viewed as a probability that

combines necessity and sufficiency. It does so in a con-

servative way since we have by construction that

PNS#min(PN, PS). In particular, this means that a low

PNS does not imply the absence of a causal relationship

because either a high PN or a high PS may still prevail

even when PNS is low. On the other hand, it presents the

advantage that any statement derived from PNS as-

serting the existence of a causal link holds both in terms

of necessity and sufficiency. This property is thus prone

to simplify causal communication, in particular toward

the general public, since the distinction no longer needs

to be explained. Therefore, establishing a high PNSmay

be considered as a suitable goal to evidence the exis-

tence of a causal relationship in a simple and straight-

forward way. In particular, the limiting case PNS5 1

corresponds to the fully deterministic, systematic, and

single-caused situation in Fig. 1c—that is, undeniably

the most stringent way in which one may understand

causality.

3. Probabilities of causation of climate change

We now return to the question of interest: for a given

forcing f and an observed evolution of the climate sys-

tem y, can y be attributed to f? More precisely, what is

the probability P( f / y) that f has caused y? We pro-

pose to tackle this problem by applying the causal

counterfactual theory to the context of climate change,

and more specifically by using the three probabilities of

causation PN, PS, and PNS recalled above. This section

shows that it can be done to a large extent similarly to

the approach of Hannart et al. (2016) for EA. In par-

ticular, as in EA, the crucial question to be answered as a

starting point consists of narrowing down the definitions

of the cause event C and of the effect eventE associated

with the question at stake—where the word event is used

here in its general mathematical sense of subset.

a. Counterfactual setting

For the cause event C, a straightforward answer is

possible: we can follow the exact same approach as in

EA by defining C as ‘‘presence of forcing f ’’ (i.e., the

factual world that occurred) and C as ‘‘absence of

forcing f ’’ (i.e., the counterfactual world that would

have occurred in the absence of f ). Indeed, forcing f can

be switched on and off in numerical simulations of the

climate evolution over the industrial period, as in the

examples of Fig. 1 and as in standard EA studies. In-

cidentally, the sample space V consists of the set of all

possible climate trajectories in the presence and absence

of f, including the observed one y. In other words, all

forcings other than f are held constant at their observed

values as they are not concerned by the causal question.

In practice and by definition, the factual runs of course

always correspond to the historical experiment (HIST),

using the Climate Model Intercomparison Project’s

(CMIP) terminology as described by Taylor et al.

(2012). The counterfactual runs are obtained from the

same setting as historical but switching off the forcing of

interest. For instance, if the forcing consists of the an-

thropogenic forcing then the counterfactual runs cor-

respond to the historicalNat (NAT) experiment, that is,

V5 fHIST runs;NAT runsg. Likewise, if the forcing
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consists of the CO2 forcing, then the counterfactual

runs corresponds to the ‘‘all except CO2’’ experiment.

However, no such runs are available in CMIP5 (https://

cmip.llnl.gov/cmip5/docs/historical_Misc_forcing.pdf; see

section 6 for discussion). Last, it is worth underlining that

the historicalAnt experiment, which combines all anthro-

pogenic forcings, thus corresponds to the counterfactual

setting associated with the natural forcings. Therefore, runs

from the historicalAnt experiment are relevant for the at-

tribution of the natural forcings only; they are not relevant

for the attribution of the anthropogenic forcings under the

present counterfactual causal theory.

These definitions of C and V have an important im-

plication w.r.t. the design of numerical experiments in

climate change attribution. In contrast with the design

usually prevailing in D&A (forcing f only), the latter

experiments are required to be counterfactual (i.e., all

forcings except f ). We elaborate further on this remark

in section 6.

b. Balancing necessity and sufficiency

To define the effect event E, we propose to follow the

same approach as in EA, where E is usually defined

based on an ad hoc climatic index Z exceeding a

threshold u:

E5 fZ$ ug . (5)

Thus, defining E implies choosing an appropriate vari-

able Z and threshold u that reflect the focus of the

question while keeping in mind the implications of the

balance between the probabilities of necessary and

sufficient causation. We now illustrate this issue and lay

out some proposals to address it.

Consider the question ‘‘Have anthropogenic CO2

emissions caused global warming?’’. Following the

above, the event ‘‘global warming’’ may be loosely de-

fined as a positive trend on global Earth surface tem-

perature, that is, E5 fZ$ 0g, where Z is the global

surface temperature linear trend coefficient and the

threshold u is zero. In that case, E nearly always occurs

in the factual world (p ’ 1) but it is also frequent in the

counterfactual one (pmedium), and thus the emphasis is

mostly on PS (i.e., on sufficient causation), while PN and

PNS will have moderate values (Figs. 2b,e). But if global

warming is more restrictively defined as a warming trend

comparable to or greater than the observed trend, that

is, E5 fZ$ zg, where u5 z is the observed trend, then

the event becomes nearly impossible in the counterfac-

tual world (p ’ 0) but remains frequent in the factual

one (pmedium), and thus the emphasis is on PN (i.e., on

FIG. 2. Probabilities of causation in three different climate attribution situations: (a)–(c):

factual PDF (red line) and counterfactual PDF (blue line) of the relevant index Z, observed

value z of the index (vertical black line) and (d)–(f): PN, PS, and PNS for the event fZ$ug as
a function of the threshold u, showing attribution of (left) the Argentinian heatwave of

December 2013, (middle) twentieth-century temperature change, and (right) precipitation

change over the satellite era (Marvel and Bonfils 2013).
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necessary causation) while the values of PS and PNSwill

this time be low. Therefore, the above two extreme

definitions both yield a low PNS. But under a more

balanced definition of global warming as a trend ex-

ceeding an intermediate value u* 2 [0, z], then the event

nearly always occurs in the factual world (p ’ 1) and yet

remains very rare in the counterfactual one (p ’ 0).

Hence PNS is then high: both necessary and sufficient

causation prevail. We propose to take advantage of this

optimal value to define the event ‘‘global warming’’ as

the global trend index Z exceeding the optimal thresh-

old u* such that the amount of causal evidence, in a PNS

sense, is maximized:

u*5 argmax
u,z

PNS(C/ fZ$ ug) , (6)

where the condition u, z insures that the event has ac-

tually occurred. When used on real data (see section 6),

this approach yields a high value of PNS5 0:95 for the

above question (Figs. 2b,e).

Let us now consider the question ‘‘Did anthropogenic

CO2 emissions cause the Argentinian heatwave of

December 2013?’’ (Hannart et al. 2015). Here, the

event can be defined as E5 fZ$ ug, where Z is surface

temperature anomaly averaged over an ad hoc space–

time window. Like in the previous case, the causal ev-

idence again shifts from necessary and not sufficient

(Figs. 2a,d) when u is equal to the observed value of

the index z 5 24.58C (unusual event in both worlds but

much more so in the counterfactual one) to sufficient

and not necessary when u is small (usual event in both

worlds but much more so in the factual one). Like in the

previous case, a possible approach here would be to

balance both quantities by maximizing PNS in u as in

Eq. (6). However, this would lead here to a substantially

lower threshold that no longer reflects the rare and ex-

treme nature of the event ‘‘heatwave’’ under scrutiny.

Furthermore, this would yield a well-balanced but fairly

low level of causal evidence (PNS5 0:35). Thus maxi-

mizing PNS is not relevant here. Instead, maximizing

PN, even if that is at the expense of PS, is arguably more

relevant here since we are dealing with extreme events

that are rare in both worlds, thereby inherently limit-

ing the evidence of sufficient causation. This maximiza-

tion corresponds to u*5 argmaxu,z PN(C/ fZ$ug),
which often yields the highest observed threshold

u5 z. Therefore, PN (i.e., the FAR) is an appropriate

metric for the attribution of extreme events, and a high

threshold umatching with the observed value z should

be used in order to maximize it. In contrast with ex-

treme events, long-term changes are prone to be as-

sociated with much powerful causal evidence that

simultaneously involves necessary and sufficient causation,

and may yield high values for PN, PS, and PNS. PNS is

thus an appropriate summary metric to consider for the

attribution of climate changes, in agreement with D&A

guidance principles (Hegerl et al. 2010). An optimal

intermediate threshold can be chosen by maximizing

PNS.

c. Building an optimal index

In the above example where global warming is the

focus of the question, the variable of interest Z to define

the event can be considered as implicitly stated in the

question, insofar as the term ‘‘global warming’’ implic-

itly refers to an increasing trend on global temperature.

However, in the context of climate change attribution,

we often investigate the cause of ‘‘an observed change

y’’ with no precise a priori regarding the characteristics

of the change that are relevant w.r.t. causal evidencing.

Furthermore, y may be a large dimensional space–time

vector. Thus the definition of the index Z in this case is

more ambiguous.

We argue that in such a case, the physical character-

istics of y that are implicitly considered relevant to the

causal question are precisely those that best enhance the

existence of a causal relationship in a PNS sense. This

indeed corresponds to the idea of ‘‘fingerprinting’’ used

thus far in climate change attribution studies (as well as

in criminal investigations, hence the name): we seek a

fingerprint—that is, a distinctive characteristic of y that

would never appear in the absence of forcing f (i.e.,

p ’ 0) but systematically does in its presence (i.e.,

p ’ 1). If this characteristic shows up in observations,

then the causal evidence is conclusive. A fingerprint may

thus be thought of as a characteristic that maximizes the

gap between p and p and thereby maximizes PNS, by

definition.

As an illustration, Marvel and Bonfils (2013) focus

on the attribution of changes in precipitation, and sub-

sequently address the question ‘‘Has anthropogenic

forcing caused the observed evolution of precipitation at a

global level?’’. Arguably, this study illustrates our point in

the sense that it addresses the question by defining a fin-

gerprint index Z that aims precisely at reflecting the fea-

tures of the change in precipitation that are thought to

materialize frequently (if not systematically) in the factual

world and yet are expected to be rare (if not impossible)

in the counterfactual one, based on physical consider-

ations. In practice, the index Z defined by the authors

consists of a nondimensional scalar summarizing themain

spatial and physical features of precipitation evolution

w.r.t. dynamics and thermodynamics. The factual and

counterfactual PDFs ofZ are then derived from theHIST

and NAT runs respectively (Fig. 2c). From these PDFs,

one can easily obtain an optimal threshold u* for the
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precipitation index Z by applying Eq. (6) (Fig. 2f). This

yields PNS5 0:43, meaning that anthropogenic forcings

have about as likely as not caused the observed evolution of

precipitation.

A qualitative approach driven by physical consider-

ations, such as the one of Marvel and Bonfils (2013), is

perfectly possible to define a fingerprint index Z that

aims at maximizing PNS. However, a quantitative ap-

proach can also help in order to define Z optimally, and

to identify the features of y that best discriminate be-

tween the factual and counterfactual worlds. Indeed, the

qualitative, physical elicitation of Z may be difficult

when the joint evolution of the variables at stake is

complex or not well understood a priori. Furthermore,

one may also wish to combine lines of evidence by

treating several different variables at the same time in y

(i.e., precipitation and temperature; Yan et al. 2016). Let

us introduce the notation Z5f(Y) where Y is the

space–time vectorial random variable of size n of which

observed realization is y, and f is a mapping from R
n to

R. Extending Eq. (6) to the simultaneous determination

of the optimal mapping f* and optimal threshold u*, we

propose the following maximization:

(u*,f*)5 argmax
u,f(y),f2F PNS(C/ff(Y)$ ug). (7)

In words, we thus propose to choose the value of the

threshold, but also to choose the index f among

the set all possible indexes F, so as to maximize PNS.

The event E*5 ff*(Y)$ u*g defined above in Eq. (7)

may thus be referred to as the optimal fingerprint w.r.t.

forcing f. The maximization performed in Eq. (7) also

suggests that our approach shares some similarity with

the method of Yan et al. (2016), insofar as the variables

of interest are in both cases selected mathematically by

maximizing a criterion that is relevant for attribution

[i.e., potential detectability in Yan et al. (2016); PNS in

the present article] rather than by following qualitative,

physics- or impact-oriented, considerations.

4. Implementation under the standard framework

We now turn to the practical aspects of implementing

the approach described in section 3 above, based on the

observations y and on climate model experiments. We

detail these practical aspects in the context of the stan-

dard framework briefly recalled in section 1, namely

multivariate linear regression under a Gaussian setting.

Note that the assumptions underlying the latter con-

ventional framework could be challenged (e.g., pattern

scaling description of model error and Gaussianity).

However, the purpose of this section is not to challenge

these assumptions. It is merely to illustrate in detail

how these assumptions can be used within the general

causal framework proposed. Furthermore, the details of

the mathematical derivation shown in this subsection

cannot be covered exhaustively here in order to meet

the length constraint. However, some important steps

of the derivation are described in appendix A, and the

complete details and justification thereof can be found

in the references given in the text.

a. Generalities

The maximization of Eq. (7) requires the possibility

to evaluate the probabilities of occurrence p and p,

in the factual and counterfactual world, of the event

ff(Y)$ ug, for any f and u. For this purpose, it is

convenient to derive beforehand the factual and coun-

terfactual PDFs of the random variableY, denoted [Yjf ]
and [Yjf ] respectively. Assuming their two first mo-

ments are finite, we introduce

E(Yjf )5m , V(Yjf )5S ,

E(Yjf )5m , V(Yjf )5S:
(8)

The means m and m represent the expected response in

the factual and counterfactual worlds; it is intuitive that

their difference m2m will be key to the analysis. The

covariances S and S represent all the uncertainties at

stake; they must be carefully determined based on ad-

ditional assumptions. To avoid repetition in presenting

these assumptions, we will detail them for the factual

world only, but they will be applied identically in

both worlds.

As recalled above, in situ experimentation on the

climate system is not accessible, thus we are left with in

silico experimentation as the only option. While the

increasing realism of climate system models renders

such an in silico approach plausible, it is clear that

modeling errors associated to their numerical and

physical imperfections should be taken into account into

S. In addition, sampling uncertainty and observational

uncertainty, which are commonplace sources of un-

certainty in dealing with experimental results in an

in situ context as well, should also be taken into account.

Finally, internal climate variability also needs to be

factored in. The latter four sources of uncertainty can be

represented by decomposing S into a sum of four terms:

S5C1Q1R1S , (9)

where the component C represents climate internal

variability, Q represents model uncertainty, R repre-

sents observational uncertainty, and S represents sam-

pling uncertainty. Assumptions regarding the latter

four sources of uncertainty are also key in the conventional
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Gaussian linear regression framework recalled in section 1.

We therefore propose to take advantage of some as-

sumptions, data, and procedures that have been pre-

viously introduced under the conventional framework,

and adapt them to specify m, C, Q, R, and S. The sta-

tistical model specification below can thus be viewed as

an extension of developments under the conventional

framework, in particular those exposed in Hannart

(2016). The various parameters and data involved, as

well as their conditioning, are summarized in the hi-

erarchical model represented in Fig. 3, which we now

describe.

b. Model description

As in the conventional linear regression formulation

recalled in Eq. (1), we assume that the random variable

Y is Gaussian with mean xb and covariance C1R:

[Yjb, x,C,R]5N (xb,C1R). (10)

In the conventional framework, climate models are

assumed to correctly represent the response patterns

x but to err on their amplitude. Recognizing that the

scaling factors b thereby aim at representing the er-

ror associated to models, we prefer to treat b as a

random variable instead of a fixed parameter to be

estimated. The latter factors are also assumed to be

Gaussian:

[bjv]5N (e,v2I), (11)

where we assume that the expected value of b is

e5 (1, . . . , 1)0, and v is a scalar parameter that will be

determined further in this section. Combining Eqs. (10)

and (11) yields (see appendix A)

[Yjm, x,C,R,v]5N (m,C1R1v2xx0), (12)

where m5 xe5�p

i51xi. Equation (12) thus shows that

it is possible to translate the pattern scaling term

xb from the mean of Y to the covariance of Y. We

believe such a mean-covariance translation is rele-

vant here, since the pattern scaling assumption is

meant to represent a source of uncertainty. Fur-

thermore, the covariance Q associated with the latter

source of uncertainty can be represented by the

component v2xx0, which results from the random

scaling of the individual responses x1, x2, . . . , xp.

Furthermore, the expected value of Y, denoted m, is

equal to the sum of the latter individual responses.

Under the additivity assumption prevailing in the

conventional framework, m thus corresponds to

the model response under the scenario where the

p forcings are present. Hence, m can be obtained

by estimating directly the combined response as

opposed to estimating the individual responses

x1, x2, . . . , xp one by one and summing them up.

Such a direct estimation of m is indeed advanta-

geous from a sampling error standpoint, as will be

made clear immediately below.

The PDF of Y in Eq. (12) involves three quanti-

ties, m, x, and C, that need to be estimated from a fi-

nite ensemble of model runs denoted E, which of

course introduces sampling uncertainty. Assuming

independence among runs, it is straightforward to show

that (appendix A)

[mjC,E]5N
�
m̂,

1

r
C

�
, [x

i
jC,E]

;N
�
x̂
i
,
1

r
i

C

�
for i5 1, . . . , p, (13)

where x̂i is the ensemble average for the individual

response i, m̂ is the ensemble average for the com-

bined response, ri is the number of runs available

for the individual response to forcing i; and r is

the number of combined forcings runs. Combining

Eqs. (12) and (13), and after some algebra, this be-

comes (appendix A)

[YjC,R,E,v]5N(m̂,C1R1v2x̂x̂01 lC), (14)

with l5 1/r1v2�i1/ri, and where the sampling un-

certainty S on the responses m and x thus corresponds

to the term lC. On the other hand, the internal vari-

ability component C also has to be estimated from the

r0 preindustrial control runs, which introduces addi-

tional sampling uncertainty. The sampling uncertainty

on C can be treated by following the approach of

Hannart (2016), which introduces an inverse Wishart

conjugate prior for C. This leads to an inverse Wishart

posterior for C that has the following expression

(appendix A):

[CjE]5 IW(C, n̂), (15)

FIG. 3. Structural chart of the statistical model introduced in

section 4, showing the underlying hierarchy of parameters (i.e.,

unobserved quantities; circles) and data used for inference (i.e.,

observed quantities; squares).
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where the estimated covariance Ĉ consists of a so-called

shrinkage estimator:

Ĉ5 âD̂1 (12 â)V̂ , (16)

where V̂ is the empirical covariance of the control en-

semble, D is a shrinkage target matrix taken here to be

equal to diag(V̂) (i.e., D̂ii 5 V̂ii and D̂ij 5 0 for i 6¼ j),

the shrinkage intensity â is obtained from the marginal

likelihood maximization described in Hannart and

Naveau (2014), and n̂5 21 r0/(12 â).

Combining Eqs. (14) and (15), and after some algebra

and an approximation, this results in (appendix A)

[YjE,v,s]5Sthm̂,s2I1v2x̂x̂0 1 (11 l)Ĉ, n̂i, (17)

where we adopted the simplified parametric form

R5s2I for the covariance of observational error, and

where St(m, S, n) is the multivariate t distribution with

meanm, varianceS, andn degreesof freedom.Equation (17)

implies that taking into account the sampling uncertainty on

C does not affect the total variance of Y. Instead, it only

affects the shape of the PDF of Y, which has thicker tails

than the Gaussian distribution. With these parameteri-

zations, our model for Y is thus a parametric Student’s t

model with two parameters (s, v).

After computing the estimators m̂, x̂, Ĉ, and n̂ using

the ensemble of model experiments as described above,

the parameters (s, v) are estimated by fitting the above

model to the observation y based on likelihood maxi-

mization. The log-likelihood of the model has the fol-

lowing expression:

‘(s,v; y)52
1

2
logj(11l)Ĉ1s2I1v2x̂x̂0j

2
1

2
(n̂1 n) log

�
11

1

n̂2 2
(y2 m̂)0f(11 l)Ĉ

1s2I1v2x̂x̂0g21
(y2 m̂)

�
.

(18)

The estimators ŝ and v̂ are then obtained numerically

using a standard maximization algorithm (e.g., gradient

descent). With m̂ being obtained from factual runs (i.e.,

HIST runs) and x̂ containing all the forcings including f,

this procedure thus yields the PDF of Y in the factual

world:

[Yjf ]5St(m̂, Ŝ, n̂),
Ŝ5 (11 l̂)Ĉ1 ŝ2I1 v̂2x̂x̂0. (19)

Next, to obtain [Yjf ], one simply needs to change the

mean m̂ to bm obtained as the ensemble average for the

counterfactual experiment ‘‘all forcings except f.’’ Some

changes also need to be made regarding the covariance.

Indeed, since forcing f is absent in the counterfactual

world, the model error covariance component v̂2x̂f x̂
0
f ,

corresponding to the random scaling of the response

x̂f to forcing f, must be taken out of the covariance.

Furthermore, if the number of counterfactual runs r

differs from the number of factual runs r, the sampling

uncertainty Ĉ/r associated with estimating m also has to

be modified. The PDF of Y in the counterfactual world

can thus be written

[Yjf ]5St(bm, bS, n̂),
b
S5 Ŝ2 v̂2x̂

f
x̂0f 1

�
1

r
2

1

r

�
Ĉ . (20)

As noted above, when f is anthropogenic forcing, the

counterfactual experiment NAT is usually available in

CMIP runs, allowing for a straightforward derivation of bm.
But for other forcings, by the design of CMIP experi-

ments, counterfactual runs are usually not available. A

possible workaround then consists in applying the ad-

ditivity assumption to approximate bm with m̂2 x̂f . For

instance, if CO2 is the forcing of interest, the counter-

factual response to all forcings except CO2 emissions can

be approximated by subtracting the CO2 individual re-

sponse xf from the all-forcings response. However in

that case, the sampling uncertainty term Ĉ/rf corre-

sponding to the estimation of x̂f must be added to the

covariance
b
S.

c. Derivation of the probabilities of causation

With the two PDFs of Y in hand, an approximated

solution to the maximization of Eq. (7) can be conve-

niently obtained by linearizing f, yielding a closed

mathematical expression for the optimal index f*(Y):

f*(Y)5 (m̂2 bm)0Ŝ21Y . (21)

Equation (21) is a well-known result of linear discrimi-

nant analysis (LDA) (McLachlan 2004). Details of ap-

proximations made and of the mathematical derivation

of Eq. (21) are given in appendix B. The optimal index

Z*5f*(Y) can thus be interpreted as the projection of

Y onto the vector Ŝ21(m̂2 bm), which will be denoted f*

hereinafter; that is, f*(Y)[f*0Y.

To obtain PNS, we then need to derive the factual and

counterfactual CDFs of Z5f*(Y), denoted G and G

respectively. Since no closed form expression of these

CDFs is available, we simulate realizations thereof.

Drawing two samples of N random realizations of Y

from the Student t distributions [Yjf ] and [Yjf ] is
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straightforward, by treating the Student t as a compound

Gaussian chi-squared distribution. Samples of Z are

then immediately obtained by projecting onto f* and

the desired CDFs can be estimated using the standard

kernel smoothing estimator (Bowman and Azzalini

1997), yielding Ĝ(u) and bG(u) for all u 2 R. Finally,

PNS* follows as

PNS*5 bG(u*)2 Ĝ(u*) (22)

and

PN*5 12
12 bG(u*)

12 Ĝ(u*)
, PS*5 12

Ĝ(u*)bG(u*)
, (23)

where u*5 argmaxu,zfbG(u)2 Ĝ(u)g.
d. Reducing computational cost

When the dimension of y is large, the above described

procedure can become prohibitively costly if applied

straightforwardly, due to the necessity to derive the inverse

and determinant of Ŝ at several steps of the procedure.

However, the computational cost of these operations

can be drastically reduced by applying the Sherman–

Morrison–Woodbury formula (Woodbury 1950), which

states that the inverse of a low rank correction of some

matrix can be computed by doing a low rank correction

to the inverse of the original matrix. Omitting the nota-

tion :̂ for more clarity, we have

S
21 5A21 2v2A21x(I1v2x0A21x)21x0A21, (24)

where A5 (11l)C1s2I can be inverted using the

same formula:

A21 5B21 2
1

r
0

(11 l)(12 a)

3B21x
0

�
I1

1

r
0

(11 l)(12 a)x00B
21x

0

�21

x00B
21 ,

(25)

where B5 (11 l)aD1s2I. Likewise, we apply the

Sylvester formula (Sylvester 1851) twice to compute the

determinant of S:

jSj5 jAjjI1v2x0A21xj

5 jBj
����I1 1

r
0

(11 l)(12 a)x00B
21x

0

����jI1v2x0A21xj .

(26)

Independently of n, the matrix I1v2x0A21x is of size

p and matrix I1 1/r0(11 l)(12 a)x00B
21x0 is of size r0,

and B is diagonal. Obtaining their inverse and de-

terminant is therefore computationally cheap. Hence,

the inverse and determinant of S can be obtained at a

low computational cost by applying first Eq. (25) to

determine A21 and second Eqs. (24) and (26).

5. Illustration on temperature change

Our methodological proposal is applied to the ob-

served evolution of Earth’s surface temperature during

the twentieth century, with the focus being restrictively

on the attribution to anthropogenic forcings. More

precisely, y consists of a spatial–temporal vector of

size n 5 54, which contains the observed surface tem-

peratures averaged over 54 time–space windows. These

windows are defined at a coarse resolution: Earth’s

surface is divided into six regions of similar size (three

in each hemisphere) while the period 1910–2000 is di-

vided into nine decades. The decade 1900–10 is used

as a reference period, and all values are converted to

anomalies w.r.t. the first decade. The HadCRUT4 ob-

servational dataset (Morice et al. 2012) was used to

obtain y. With respect to climate simulations, the runs

of the IPSL-CM5A-LR model (Dufresne et al. 2013)

for the NAT, ANT, HIST, and PIcontrol experiments

were used (see appendix C for details) and converted

to the same format as y after adequate space–time

averaging.

Following the procedure described in section 4, we

successively derived the estimated factual response m̂

using the r HIST runs, the estimated counterfactual re-

sponse bm using the r NAT runs, the estimated individual

responses x1 and x2 using the r1 NAT runs and r2 ANT

runs respectively [p5 2 and x5 (x1, x2)], and the esti-

mated covariance Ĉ from the r0 PIcontrol runs. Then, we

derived ŝ and v̂ by likelihood maximization to obtain Ŝ

and
b
S.

An assessment of the relative importance of the four

components of uncertainty was obtained by deriving the

trace of each component (i.e., the sum of diagonal

terms) normalized to the trace of the complete co-

variance. Climate variability is found to be the dominant

contribution, followed by model uncertainty, obser-

vational uncertainty, and sampling uncertainty (not

shown). The split between model and observational

uncertainty is to some extent arbitrary as we have no

objective way to separate them based only on y; that

is, the model could be equivalently formulated as

Q5 v2xx0 1 (12a)s2I and R5as2I. An objective

separation would require an ensemble representing

observational uncertainty, allowing for a preliminary es-

timation of R.

The optimal vector f*, designed to capture the

space–time patterns that best discriminate the HIST

evolution and the NAT one, was then obtained from

5516 JOURNAL OF CL IMATE VOLUME 31



Eq. (21). To identify which features of Y are captured

by this optimal mapping, the coefficients (f
1
*, . . . , fn*)

were averaged spatially and temporally, and were

plotted in Fig. 4. First, it can be noted that the

coefficients’ global average hf*i5�n

i51fi* is large

and positive: a major discriminant feature is merely

global mean temperature, as expected. Second,

the coefficients also exhibit substantial variation

around their average hf*i in both space and time.

Spatial variations of f* unsurprisingly suggest that,

beyond global mean temperature, other discrimi-

nant features include the warming contrast prevailing

between the two hemispheres and/or between low

and high latitudes (the low resolution prevents a

clear separation), as well as between ocean and

land (Fig. 4a). Temporal variations of f* suggest

that discriminant features include the linear trend in-

crease, as expected, but also higher-order tempo-

ral variations (Fig. 4b).

The PDFs of the optimal index Z5f*0Y were de-

rived and are plotted in Fig. 5, together with PNS

as a function of the threshold u. The maximum

of PNS determines the desired probability of

causation:

P(ANT/ y)5 0:9999. (27)

In IPCC terminology, this would mean that anthro-

pogenic forcings have virtually certainly caused the

observed evolution of temperature, according to our

approach. More precisely, the probability that the

observed evolution of temperature is not caused by

anthropogenic forcings is then one in ten thousand

(1:10 000) instead of one in twenty (1:20). Therefore,

the level of causal evidence found here is substantially

higher than the level assessed in the IPCC report. This

discrepancy will be discussed in section 6.

Before digging into this discussion, it is interesting

to assess the relative importance of the ‘‘trivial’’ causal

evidence coming from the global increase in tempera-

ture, and of the less obvious causal evidence coming

from space–time features captured by f*. For this

purpose, we merely split f* into the sum of a global

average contribution �n

i51hf*iYi and of the remaining

variations�n

i51(fi*2 hf*i)Yi. The PDFs of the resulting

indexes are plotted in Figs. 5a and 5b. Their bivariate

PDF can also be visualized with the scatterplot of

Fig. 5c. The following two probabilities of causation are

obtained:

P(ANT/ hyi)5 0:9781,P(ANT/ y2 hyi)5 0:9994,

(28)

where hyi refers to the globally averaged evolution

and y2 hyi refers to other features of evolution.

Therefore, while the globally averaged warming

provides alone a substantial level of evidence

[i.e., P(ANT/hyi)5 0:9781], these results suggest

that the overwhelmingly high overall evidence

[i.e., P(ANT/ y)5 0:9999] is primarily associated with

FIG. 4. Illustration of twentieth-century temperature change: op-

timal mapping f*, showing components off* averaged (a) spatially

and (b) temporally.

FIG. 5. Illustration of twentieth-century temperature change:

results. (a) Factual PDF (red line) and counterfactual PDF (blue

line) of the global mean index, observed value (thin vertical black

line), and PNS as a function of the threshold u (thick black line).

(b) As in (a), but for the space–time pattern index. (c) Scatterplot

of factual (red dots) and counterfactual (blue dots) joint re-

alizations of the global mean index (horizontal axis) and of the

space–time pattern index (vertical axis). (d) As in (a), but for the

optimal index Z5f*(Y).
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nonobvious space–time features of the observed

temperature change.

6. Discussion

a. Comparison with previous statements

The probabilities of causation obtained by using

our proposal may depart from the levels of un-

certainty asserted by the latest IPCC report, and/or by

previous work. For instance, when y corresponds to

the evolution of precipitation observed over the en-

tire globe during the satellite era (1979–2012), we

have shown in section 3 that, using the dynamic–

thermodynamic index built by Marvel and Bonfils

(2013), the associated probability of causation

P(ANT/ y) is found to be 0.43. This probability is

thus significantly lower than the one implied by the

claim made in this study that ‘‘the changes in pre-

cipitation observed in the satellite era are likely to be

anthropogenic in nature’’ wherein likely implicitly

means P(ANT/ y)$ 0:66.

In contrast with the situation prevailing for precipi-

tation, when y corresponds to the observed evolution of

Earth’s surface temperature during the twentieth cen-

tury, and in spite of using a very coarse spatial resolu-

tion, we found a probability of causation P(ANT/ y)5
0:9999, which considerably exceeds the 0.95 probability

implied by the latest IPCC report. Such a gap deserves to

be discussed.

First, the probability of causation defined in our

approach is of course sensitive to the assumptions that

are made on the various sources of uncertainty, all

of which are here built into S. Naturally, increasing

the level of uncertainty, for instance through an in-

flation factor applied to S, reduces the probabil-

ity of causation (Fig. 6). In the present illustration,

uncertainty needs to inflated by a factor of 2.4 to

obtain P(ANT/ y)5 0:95 in agreement with the IPCC

statement. Therefore, a speculative explanation for

the gap is that experts may be adopting a conservative

approach by implicitly inflating uncertainty, although

not explicitly, perhaps in an attempt to account for

additional sources of uncertainty that are not well

known. In the present case, such an inflation should

amount to 2.4 to explain the gap. This number is ar-

guably too high to provide a satisfactory standalone

explanation, yet overall such a conservativeness may

partly contribute to the discrepancy when it comes to

temperature. In any case, this highlights the need for a

more explicit and consistent use of conservativeness—

if any.

Besides the effect of inflating the individual vari-

ances, it is important to note that the probability of

causation may also be greatly reduced when the cor-

relation coefficients of the covariance S, whether

spatial or temporal, are inflated. This less straight-

forward effect can be explained by the fact that higher

correlations imply greater spatial and temporal co-

herence of the noise, which is thus more prone to

confounding with a highly coherent signal, and

thereby reduces the probability of causation. Con-

servativeness may thus be associated with an infla-

tion of correlations, in addition to an inflation of

variances.

Another possible explanation for the discrepancy

is more technical. Many previous attribution studies

buttressing the IPCC statement regarding tempera-

ture are based on an inference method for the linear

regression model of Eq. (1) which is not optimal w.r.t.

maximizing causal evidence—despite it being often

referred to as ‘‘optimal fingerprinting.’’ More pre-

cisely, the inference on the scaling factors b and the

associated uncertainty quantification are obtained

FIG. 6. PNS as a function of the inflation factor applied

to all uncertainty sources: global mean alone (light green

line), space–time pattern (dark green line), and total (thick

black line).

TABLE 1. Correspondence between language and probabilities in

IPCC calibrated terminology (Mastrandrea et al. 2010).

Term Probability

Virtually certain $0:99

Extremely likely $0:95

Very likely $0:90

Likely $0:66

About as likely as not .0:33 and ,0:66

Unlikely #0:33

Very unlikely #0:10

Exceptionally unlikely #0:01
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by projecting the observation y as well as the pat-

terns x onto the leading eigenvectors of the covari-

ance C associated with climate internal variability.

Such a projection choice sharply contrasts with the

projection used in our approach, which is indeed

performed onto the vector f*5S
21
(m2m). Denoting

(v1, . . . , vn) the eigenvectors of S and (l1, . . . , ln) the

corresponding eigenvalues, the expression of f* can

be written

f*5 �
n

k51

hv
k
jm2mi
l
k

� v
k
. (29)

Equation (29) shows that projecting onto f* does not

emphasize the leading eigenvectors of S, in contrast

to the aforementioned standard projection. Instead,

it emphasizes the eigenvectors that simultaneously

present a low eigenvalue lk and a strong alignment

with the contrast between the two worlds m2m. As a

matter of fact, the ratio hvkjm2mi/lk can be inter-

preted as the signal-to-noise ratio associated to the

eigenvector vk, where the eigenvalue lk quantifies

the magnitude of the noise and hvkjm2mi that of the
causal signal. Projecting onto f* thus maximizes the

signal-to-noise ratio. In contrast, since C is a large

contribution to S (the dominant one in our illustration),

a projection onto the leading eigenvectors of C naturally

tends to amplify the noise, and to partly hide the relevant

causal signal m2m.

To assess whether or not these theoretical remarks

hold in practice, we revisited our illustration and

quantified the impact on P(ANT/ y) of using such a

projection onto the leading eigenvectors of C. For

this purpose, after computing the projection matrix

P on the 10 leading eigenvectors of C, our procedure

was applied identically, but this time using the pro-

jected vector f15Pf*. Results are shown in Fig. 7,

again after splitting the contribution of global mean

change and patterns of change. Unsurprisingly, the

probability of causation associated to the global

mean change remains unmodified at 0.978. How-

ever, the probability of causation associated with

the space–time features of warming drops from

0.9994 to 0.92. Indeed, the features that most dis-

criminate the two worlds, and are summarized in f*,

do not align well with the leading eigenvectors of

C. They are thus incompletely reflected by the pro-

jected vector f1 (Fig. 8). Furthermore, the un-

certainty of the resulting index Z15f10Y is high

by construction, as the magnitude of climate vari-

ability is maximized when projecting onto its lead-

ing modes. This further contributes to reducing

P(ANT/ y) to 0.992.

b. Counterfactual experiments

Our methodological proposal has an immediate im-

plication w.r.t. the design of standardized CMIP exper-

iments dedicated to D&A: a natural option would be

to change the present design ‘‘forcing f only’’ into a

counterfactual design ‘‘all forcings except f.’’ Indeed,

P( f / y) is driven by the difference m2mf between

the factual response m (i.e., historical experiment) and

the counterfactual response mf (i.e., all forcings except

f experiment). Under the assumption that forcings do

FIG. 7. As in Fig. 5, but for the mapping f1 projected onto the

leading eigenvectors of C.
FIG. 8. As in Fig. 4, but for the mapping f1 projected onto the

leading eigenvectors of C.
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not interact with one another and that the combined

response matches with the sum of the individual re-

sponses, the difference m2mf coincides with the indi-

vidual response xf (i.e., forcing f only experiment).

While this hypothesis is well established for temperature

at large scale (Gillett et al. 2004), it appears to break

down for other variables (e.g., precipitation; Shiogama

et al. 2013) or over particular regions (e.g., the southern

extratropics; Morgenstern et al. 2014) where forcings

appear to significantly interplay. Such a lack of additivity

would inevitably damage the results of the causal anal-

ysis. It is thus important in our view to better understand

the domain of validity of the forcing-additivity as-

sumption and to evaluate the drawbacks of the present

‘‘one forcing only’’ design versus its advantages. Such an

analysis does require ‘‘forcing f only’’ experiments, but

also ‘‘all forcings except f ’’ experiments in order to allow

for comparison. This effort would hence justify including

in the Detection and AttributionModel Intercomparison

Project (DAMIP) set of experiments an ‘‘all forcings

except f ’’ experiment—which is presently absent even in

the lowest priority tier thereof—at least for the most

important forcings such as anthropogenic CO2.

c. Benchmarking high probabilities

Section 5 showed that the proposed approach may

sometimes yield probabilities of causation that are very

close to one. How can we communicate such low levels

of uncertainty? This question arises insofar as the term

‘‘virtual certainty’’ applies as soon as PNS exceeds 0.99

under the current IPCC language (Table 1). Thus, this

terminology would be unfit to express in words a PNS

increase from 0.99 to 0.9999, say—even though such an

increase corresponds to a large reduction of uncertainty

by a factor of 100. One option to address this issue is to

use instead the uncertainty terminology of theoretical

physics, in which a probability is translated into an ex-

ceedance level under the Gaussian distribution, mea-

sured in numbers of s from the mean (where s denotes

standard deviation), that is, F21(PNS)s with F the CDF

of the standard Gaussian distribution. Under such ter-

minology, ‘‘virtual certainty’’ thus corresponds to a level

of uncertainty of 2.3s, while P(ANT/ y)5 0:9999

found in section 5 reaches 3.7s. It is interesting to note

that the level of uncertainty officially requested in

theoretical physics to corroborate a discovery as such

(e.g., the existence of the Higgs boson) is 5s. By ap-

plying such standards, one may actually consider that

P(ANT/ y)5 0:9999 is still too low a probability to

corroborate that human influence has indeed been the

cause of the observed warming. Whether or not such

standards are relevant in the particular context of

climate change—which relates to defining the proper

level of aversion to false discovery suitable in that

context—is a disputable matter. In any case, in-

creasing P(ANT/ y) beyond the ‘‘virtual certainty’’

threshold of 0.99 by building more evidence into the

analysis, is possible and may still be considered as a

relevant research goal.

d. Alternative assumptions

The mathematical developments of section 4 are but

an illustration of how our proposed causal approach, as

framed in section 3, can be implemented when one uses

the conventional assumptions of pattern scaling and

Gaussianity associated to the standard linear regression

setting. In that sense, section 4 thus shows that the

proposed causal framing is perfectly compatible with the

conventional linear regression setting: it should be

viewed as an extension of, rather than an alternative to,

the latter setting. Nevertheless, it is important to un-

derline that the application of the causal framework of

section 3 is by no means restricted to the conventional

linear regression setting. One may, for instance, chal-

lenge some aspects of the latter (e.g., the pattern scaling

description of model error) and formulate an alternative

parameterization of the covariance S. This does not

affect the relevance of the maximization of Eq. (7),

which can be implemented similarly.

e. Attribution as a classification problem

Last, it should be noted that the maximization of

Eq. (7) can be viewed as a binary classification problem.

Indeed, as illustrated in Fig. 5, solving Eq. (7) is equiv-

alent to building a function of observations that allows

us to optimally discriminate between two ‘‘classes’’: the

factual class and the counterfactual class. Under this

perspective, PNS is related to the percent of correct

classification decisions made by the classifier and is

thus a measure of its skill.

Viewing the fingerprinting index f* as a classifier

offers a fruitful methodological angle in our opinion.

Indeed, classification is a classic and widespread

problem in statistics and machine learning for which

numerous solutions are readily available. For in-

stance, under the restrictive assumptions of section 4—

among them the Gaussian assumption—one obtains

a linear classifier under a closed form expression,

which is well known in linear discriminant analysis

(McLachlan 2004). But more recent developments

have focused on the non-Gaussian situations where a

nonlinear classifier is more suitable, and can be formu-

lated for instance using as diverse approaches as random

forests, support vector machine, or neural nets (Alpaydin

2010). Testing such approaches for the present attribution

problem certainly offers promise. However, the difficulty
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of physically interpreting such complex classifiers repre-

sent a challenge in such approaches.

7. Summary and conclusions

We have introduced an approach for deriving the

probability that a forcing has caused a given observed

change. The proposed approach is anchored into

causal counterfactual theory (Pearl 2009), which has

been introduced recently in the context of event

attribution (EA). We argued that these concepts

are also relevant, and can be straightforwardly ex-

tended to the context of climate change attribu-

tion. For this purpose, and in agreement with the

principle of fingerprinting applied in the conventional

detection and attribution (D&A) framework, a trajectory

of change is converted into an event occurrence defined

by maximizing the causal evidence associated to the

forcing under scrutiny.Other key assumptions used in the

conventional D&A framework, in particular those re-

lated to numerical models error, can also be adapted

conveniently to this approach. Our proposal thus allows

us to bridge the conventional framework with the stan-

dard causal theory, in an attempt to improve the quanti-

fication of causal probabilities. Our illustration suggests

that our approach is prone to yield a higher estimate of

the probability that anthropogenic forcings have caused

the observed temperature change, thus supporting more

assertive causal claims.
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APPENDIX A

Derivation of the PDF of Y

To obtain Eq. (12) from Eq. (10) and (11), we in-

tegrate out b:

[Yjx,C,R]5
ð
b

[Yjb, x,C,R] � [bjv]db. (A1)

Given the quadratic dependence to b of the two terms

under the integral in the right-hand side of Eq. (A1), it is

clear that the PDF of the left-hand side is also Gaussian.

Thus, instead of computing the above integral, it is more

convenient to derive the mean and variance of this

PDF by applying the rule of total expectation and total

variance:

E(Yjx,C,R)5EfE(Yjb, x,C,R)jx,C,Rg
5E(xbjx,C,R)5 xE(b)5 xe

V(Yjx,C,R)5VfE(Yjb, x,C,R)jx,C,Rg
1E[V(Yjb, x,C,R)jx,C,R]

5V(xbjx,C,R)1E(C1Rjx,C,R)
5 xV(b)x0 1C1R5v2xx0 1C1R

[Yjx,C,R]5N (xe,C1R1v2xx0).

(A2)

Next, in order to account for the sampling uncertainty

on the estimation of m, we apply the Bayes theorem to

derive the PDF of m conditional on the ensemble E.

Denote m(1), . . . , m(r) the r simulated responses in E that

are assumed to be i.i.d. according to a Gaussian with

mean m and covariance C. We then have

[mjC,E]} P
r

j51
[m( j)jC] � [m]

} P
r

j51
N (m( j)jm,C)

5N
�
mjm̂, 1

r
C

�
, (A3)

where m̂ is the empirical mean of the ensemble, and we

use the improper prior [m]} 1. The exact same approach

yields [xijC, E]}Pri
j51N (x

(j)
i jxi, C)5N (xijx̂i, 1/riC).

To integrate out m, we proceed by following the same

reasoning as above for integrating out b. Since the re-

sulting PDF is clearly Gaussian, it suffices to derive its

mean and variance:

E(Yjx,C,R,E)5EfE(Yjm, x,C,R,E)jx,C,R,Eg
5E(mjx,C,R,E)5 m̂

V(Yjx,C,R,E)5VfE(Yjm, x,C,R,E)jx,C,R,Eg
1EfV(Yjm, x,C,R,E)jx,C,R,Eg

5V(mjx,C,R)1E(v2xx0

1C1Rjx,C,R,E)

5
1

r
C1v2xx0 1C1R:

(A4)

Likewise, to integrate out x, we derive the total mean

and total variance:

15 JULY 2018 HANNART AND NAVEAU 5521



E(YjC,R,E)5EfE(Yjx,C,R,E)jC,R,Eg
5E(m̂jC,R,E)5 m̂

V(YjC,R,E)5VfE(Yjx,C,R,E)jC,R,Eg
1EfV(Yjx,C,R,E)jC,R,Eg

5 01

�
11

1

r

�
C1R1E(v2xx0jC,E)

5

�
11

1

r

�
C1R1v2�

i

E(x
i
x0ijC,E)

5

�
11

1

r

�
C1R1v2�

i

V(x
i
jC,E)

1v2�
i

E(x
i
jC,E)E(x

i
jC,E)0

5

�
11

1

r

�
C1R1v2�

i

1

r
i

C1v2�
i

x̂
i
x̂0j

5

�
11

1

r
1v2�

i

1

r
i

�
C1R1v2x̂x̂0

5C1R1v2x̂x̂0 1 lC

(A5)

withl5 1/r1v2�i1/ri. Note that [YjC, R, E] is no longer
Gaussian after integrating out x because x appears in the

covariance of [Yjx, C, R, E]. However, for simplicity, we

approximate it to be Gaussian.

The sampling uncertainty on the covariance matrix C

is addressed by using an approach described in Hannart

and Naveau (2014), the main ideas of which are suc-

cinctly recalled here. The reader is referred to the

publication for details and explicit calculations. In

summary, we apply the Bayes theorem in order to de-

rive [CjE], as for m and x. However, we use this time an

informative conjugate prior on C, as opposed to an

improper prior:

[CjD, a]5 IW(D, a), (A6)

where D denotes the a priori mean of C and a is a scalar

parameter that drives the a priori variance. Further-

more, the mean and variance parameters (D, a) of this

informative prior are estimated from E by maximizing

the marginal likelihood ‘(a, D) associated with this

Bayesian model:

‘(a,D)5
	 a r

0

12 a
1 n1 1



log
��� a

12 a
D
���2	 r

0

12 a
1 n1 1



log
���V̂1

a

12 a
D
���

12log

�
G
n

�
1

2

	 r
0

12 a
1 n1 1


��
G
n

�
1

2

	 a r
0

12 a
1 n1 1


��
.

(A7)

whereGn is the n-variate gamma function and V̂5 x0x
0
0/r0

is the empirical covariance. The estimators (â, D̂) sat-

isfy to

(â, D̂)5 argmax
a2[0,1 ],D2ℱ ‘(a,D), (A8)

where ℱ is a set of definite positive matrices chosen to

introduce a regularization constraint on the covariance.

Here we choose ℱ 5fdiag(d1, . . . , dn)jd1.0, . . . , dn.0g
as the set of definite positive diagonal matrices, and we

derive an approximated solution to Eq. (A8) with

D̂5 diag(V̂) and â5argmaxa2[0,1 ]‘(a, D̂). Because the

priorPDF is fittedon thedata, this approach canbe referred

to as ‘‘empirical Bayesian.’’ The ‘‘fitted’’ prior [CjD̂, â] is
then updated using the ensemble E, and the obtained

posterior has a closed form expression due to conjugacy:

[CjE, D̂, â]} [EjC] � IW(D̂, â)5 IW(Ĉ, â0), (A9)

where Ĉ5 âD̂1 (12 â)V̂ and â0 5 1/(22 â). We can

then use the above posterior to integrate out C in the

PDF of Y, in order to obtain [YjE, R, D̂, â]:

[YjE,R, D̂, â]5
ð
C

[YjC,R,E] � [CjE, D̂, â]dC. (A10)

The integral above does not have a closed form ex-

pression because the variance S5R1v2x̂x̂0 1 (11 l)C

of [YjC, R, E] is not proportional to C. To address this

issue, we approximate [SjE, D̂, â] by IWfR1v2x̂x̂0 1
(11 l)Ĉ, â0g. This assumption is conservative in the

sense that it extends the sampling uncertainty on C to

R1v2x̂x̂0 1 (11 l)C even though R1v2x̂x̂0 is a con-

stant. It yields a closed form expression of the above

integral thanks to conjugacy:

[YjE,R, D̂, â]5Stfm̂,R1v2x̂x̂0 1 (11 l)Ĉ, n̂g. (A11)

APPENDIX B

Optimal Index Derivation

Let us solve the optimization problemof Eq. (7) under

the above assumptions. For simplicity, we restrict our
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search to so-called half-space events, which are defined

by E5 fY 2 Vf jf0Y$ ug, where f0Y is a linear index

with f a vector of dimension n, and u is a threshold. Let

us consider PNS as a function of f and u:

PNS(f, u)5P(f0Y$ ujf )2P(f0Y$ ujf ) . (B1)

For simplicity, we will use an expression of PNS(f, u) in

the treatment of the optimization problem which approx-

imates [f0Yjf ] by a Gaussian PDF, even though it is a

Student t PDF from the calculations of section 4. Note that

this approximation is made restrictively here for deriving

an optimal index. Once this index is obtained, it is the then

the true Student t PDF of Y that will be used to derive the

desired value of PNS. Therefore, the implication of this

approximation is to yield an index that is suboptimal and

thereby underestimates the maximized value PNS*:

PNS(f,u)5F

 
u2f0mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0Sf

q
!
2F

 
u2f0mffiffiffiffiffiffiffiffiffiffiffi

f0Sf
p !

, (B2)

where F is the standard Gaussian CDF. The first-order

condition in u, ›PNS(f, u)/›u5 0, thus yields

exp

*
2
(u2f0m)2

2f0Sf

+
5 exp

*
2
(u2f0m)2

2f0Sf

+
. (B3)

Next, we introduce a third approximation S ’ S to

solve Eq. (B3), yielding

u*5
1

2
f0(m1m)

0PNS(f,u*)5 2F

*
f0(m2m)

2
ffiffiffiffiffiffiffiffiffiffiffi
f0Sf

p +
2 1. (B4)

Then, the first-order condition inf, ›PNS(f, u*)/›f5 0,

yields

(f0Sf)(m2m)5 hf0(m2m)iSf0f*5S21
(m2m) ,

(B5)

which proves Eq. (21). Figure 5c illustrates this solution and

also shows that the optimization problem of Eq. (7) may be

viewed as a classification problem. Our proposal to solve

Eq. (7) is in fact similar to a commonplace classification

algorithm used inmachine learning and known as a support

vector machine (SVM) (Cortes and Vapnik 1995).

APPENDIX C

Data Used in Illustration

As in Hannart (2016), observations were obtained from

the HADCRUT4 monthly temperature dataset (Morice

et al. 2012), while GCMmodel simulations were obtained

from the IPSL CM5A-LR model (Dufresne et al. 2013),

downloaded from the CMIP5 database. An ensemble of

runs consisting of two sets of forcingswas used, the natural

set of forcings (NAT) and the anthropogenic set of forc-

ings (ANT) for which three runs are available in each case

over the period of interest and from which an ensemble

average was derived. On the other hand, a single pre-

industrial control run of 1000 years is available and was

thus split into 10 individual control runs of 100 years.

Temperature in both observations and simulations were

converted to anomalies by subtracting the time average

over the reference period 1960–91. The data were aver-

aged temporally and spatially using a temporal resolution

of 10 years. Averaging was performed for both observa-

tions and simulations by using restrictive values for which

observations were nonmissing, for a like-to-like compar-

ison between observations and simulations.
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