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Abstract

Phenomena such as air pollution levels are of greatest interest when observations are large,
but standard prediction methods are not specifically designed for large observations. We propose
a method, rooted in extreme value theory, which approximates the conditional distribution of
an unobserved component of a random vector given large observed values. Specifically, for Z =
(Z1, . . . , Zd)T and Z−d = (Z1 . . . , Zd−1)T , the method approximates the conditional distribution
of [Zd|Z−d = z−d] when ‖z−d‖ > r∗. The approach is based on the assumption that Z
is a multivariate regularly varying random vector of dimension d. The conditional distribution
approximation relies on knowledge of the angular measure of Z, which provides explicit structure
for dependence in the distribution’s tail. As the method produces a predictive distribution
rather than just a point predictor, one can answer any question posed about the quantity being
predicted, and in particular one can assess how well the extreme behavior is represented.

Using a fitted model for the angular measure, we apply our method to nitrogen dioxide
measurements in metropolitan Washington DC. We obtain a predictive distribution for the air
pollutant at a location given the air pollutant’s measurements at four nearby locations and given
that the norm of the vector of the observed measurements is large.
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Figure 1: Locations of the NO2 monitors used in the Washington DC study. Locations are Alexandria (alx),
McMillan (mc), River Terrace (rt), Takoma School (ts), and Arlington (arl). Also shown is the boundary of
the District of Columbia. Measurements for September 9, 2002 are shown for the four locations we use for
predicting the measurement at Arlington.

Keywords: Multivariate regular variation, Threshold exceedances, Angular or spectral mea-
sure, Air pollution, Nitrogen dioxide monitoring.

1 Introduction and Motivation

Nitrogen dioxide (NO2) is an air pollutant which is among those monitored by the US Environmental
Protection Agency (EPA). Figure 1 shows NO2 measurements at four locations in the Washington
DC metropolitan area on September 9, 2002. This day’s measurements are particularly large: each
of the four measurements exceeds the 0.97 quantile of the empirical distribution for its location.
Certainly, air pollution levels are of most interest when pollution levels are high. It is natural to
ask, given the measurements at these four locations and given that they are large, what can be said
about pollution levels at nearby unmonitored locations?

Linear prediction methods are questionable when the data are non-Gaussian, and a better approach
may be to approximate the conditional density. Extreme value theory leads one to describe the joint
tail with non-Gaussian distributions, and dependence in the tail is typically not well described by
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covariances upon which linear prediction methods rely. In applications like the above air pollution
example where interest lies in the large occurrences, approximating a conditional density allows
one to answer important questions such as “Given that nearby locations’ measurements are large,
what is the probability a certain unmonitored location exceeds some critical level?” or “Given that
nearby locations’ measurements are large, what is a reasonable probabilistic upper bound for the
air pollution level at an unmonitored location?”

Our method to approximate the conditional density is based on extreme value theory and is there-
fore specifically designed for instances when the observations are large. Extreme value theory
provides a framework for describing the dependence found in the joint upper tail of the distribu-
tion, and at the same time, does not require knowledge of the entire joint distribution. In particular,
we will assume that the joint distribution of the observations and the random variable we wish to
predict are multivariate regularly varying, and we use the angular measure of this random vector
to approximate the conditional density. By approximating the conditional density, we are able to
address questions of the type posed above about the unobserved random variable.

In the next section, we provide some necessary background on extreme value theory. In Section 3 we
discuss prediction for extremes; we review previous related work in Section 3.1 and then introduce
our method in Section 3.2. In Section 4, we apply the prediction method to the Washington DC
air pollution data. We conclude with a summary and discussion section.

2 Characterizing Extremes, Multivariate Regular Variation, and
the Angular Measure

Extreme value analysis is the branch of statistics and probability theory whose aim is to describe the
upper tail of a distribution. In this section we give a very brief overview of the discipline, particularly
focusing on multivariate regular variation and the angular measure. There are a number of excellent
resources if one wishes to delve more into the theory or practice of extreme value analysis. The
book by de Haan and Ferreira (2006) gives a comprehensive overview of extreme value theory in
the univariate, multivariate, and stochastic process settings. Beirlant et al. (2004) also gives a
thorough treatment of the theory and gives a broad overview of recent statistical practice. Resnick
(2007) focuses on the heavy-tailed case for both the univariate and multivariate settings. Coles
(2001) gives an approachable introduction to statistical practice focusing primarily on maximum
likelihood inference.

2.1 Extreme Value Analysis

Extreme value analysis is founded on asymptotic results that characterize a distribution’s upper
tail by a limited class of functions. Statistical practice fits this class of functions to a subset of
data which are considered extreme. Two approaches for choosing this subset of extreme data are
commonly used: in the first, block (e.g., annual) maxima are extracted, in the second, observations
which exceed a threshold are retained.
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In the univariate case, asymptotic results lead one to model block maximum data with a gen-
eralized extreme value (GEV) distribution which consolidates the three extremal types (Fisher
and Tippett, 1928; Gnedenko, 1943) into one parametric family. Threshold exceedance data are
generally modeled via the generalized Pareto distribution (GPD) or an equivalent point process
representation.

Statistical modeling of multivariate extremes is more complicated. Given a sequence of iid random
vectors Yi = (Yi,1, . . . , Yi,d)T , i = 1, 2, . . ., classical multivariate extreme value theory considers the
vector of renormalized element-wise maxima Mn−cn

bn
where the division is taken to be element-wise,

Mn = (
∨n
i=1 Yi,1, . . . ,

∨n
i=1 Yi,d)

T , and
∨

denotes the maximum function. The theory shows the dis-
tribution of Mn−cn

bn
converges to a multivariate max-stable distribution (equivalently, multivariate

extreme value distribution), which we characterize below. For threshold exceedance data, one must
first define what it means for a random vector to exceed a threshold. Rootzen and Tajvidi (2006)
define a multivariate GPD which is well-suited to describe threshold exceedances in which the
threshold has been defined for each vector element. For the work below, we employ the framework
of multivariate regular variation (Resnick, 2007) to describe threshold exceedances.

2.2 Multivariate Regular Variation

Multivariate regular variation is a notion that is used for modeling multivariate heavy-tailed data.
This behavior is best seen via a natural decomposition into pseudo-polar coordinates. If non-
negative Z = (Z1, . . . , Zd)T is a multivariate regularly varying random vector, then the radial
component ‖Z‖ decays like a power function; that is, P(‖Z‖ > t) = L(t)t−α, where L(t) is a slowly
varying function1 at ∞ and α > 0 is termed the tail index. The angular component, ‖Z‖−1Z, is
described by a probability measure that lives on the unit sphere and which becomes independent
of the radial component as the radial component drifts off to infinity. Central ideas in the more
detailed treatment that follows are (1) the convergence to a measure Λ that serves as the intensity
measure for a limiting point process, (2) that the limiting intensity measure is a product measure
when described in terms of radial and angular components, and (3) the angular measure H which
describes the distribution of the angular components.

There are several equivalent definitions of multivariate regular variation of a random vector. We
say the non-negative random vector Z is regularly varying if

P(t−1Z ∈ ·)
P(‖Z‖ > t)

v−→ Λ(·) (1)

as t→∞, where v denotes vague convergence on C = [0,∞]d \ {0} and ‖ · ‖ is any norm2 (Resnick,
2007, Ch. 3). For any measureable set A ⊂ C and scalar s > 0, the measure Λ has the scaling
property

Λ(sA) = s−αΛ(A), (2)

1L(t) is slowly varying if limt→∞
L(st)
L(t)

= 1. Roughly, L(t) cannot go to zero or infinity faster than any power
function.

2The compact sets in C are all closed sets in [0,∞]d, that do not contain 0, i.e. the closed sets bounded away from
0.
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from which one sees the power-function-like behavior. Choosing a sequence an such P(‖Z‖ > an) ∼
n−1, one can obtain the sequential version of (1)3:

nP
(
Z

an
∈ ·
)

v−→ Λ(·). (3)

The transformation to polar coordinates R = ‖Z‖ and W = ‖Z‖−1Z naturally arises from the
scaling property (2). If Sd−1 = {z ∈ C | ‖z‖ = 1} denotes the unit sphere under the chosen norm,
then one can show there exists a probability measure H on Sd−1 such that for any H-continuity
Borel subset B of Sd−1,

nP
(
R

an
> r,W ∈ B

)
−→r−αH(B). (4)

Following Resnick (2007), we refer to H as the angular measure, although it is also referred to as
the spectral measure. The advantage of the polar transformation is that the radial component R
acts independently of the angular component W whose behavior is captured by H.

From (4), one can characterize the tail behavior of Z if one knows (or can estimate) α and H.
However, without further assumptions, this proves to be difficult as H can be any probability
measure on Sd−1. For simplification purposes, in multivariate extremes it is often assumed that the
components Zj , j = 1, . . . , d of the random vector have a common marginal distribution, not just the
common tail index that is implied by the general conditions of multivariate regular variation (e.g.,
Resnick (2002, Section 2)). There is no loss in generality by assuming specific margins (Resnick,
1987, Prop. 5.10). For the remainder, we will assume Z = (Z1, . . . , Zd)T is regularly varying
with tail index α = 1 and that Zj , j = 1, . . . , d have a common marginal distribution. Under this
assumption, it follows that∫

Sd−1

w1dH(w) =
∫
Sd−1

wjdH(w), for j = 2, . . . , d, (5)

providing some structure to the angular measure H. Furthermore, when α = 1 it is particularly
useful to choose the L1 norm: ‖z‖ = z1 + . . . + zd, for which the unit sphere is the simplex
Sd−1 = {w ∈ C : w1+. . .+wd = 1}. With this norm, 1 =

∫
Sd−1

dH(w) =
∫
Sd−1

(w1+. . .+wd)dH(w)
and hence

∫
Sd−1

wjdH(w) = d−1. In practice, the assumption of common marginals (or, for that
matter, a common tail index) is rarely met. If the data that one intends to model arise from
a d-dimensional random vector Y for which the regularly varying α = 1 and common marginal
assumptions do not hold, we presume there exist probability integral transforms Tj such that
Tj(Yj) = Zj for j = 1, . . . , d. This preprocessing of the random variables is common in extreme
value analyses (e.g., Cooley et al. (2010); Coles and Tawn (1991)) and can be viewed analogously
to the preprocessing required to fit a stationary model to time series or spatial data.

One recognizes that (3) is the classic relationship characterizing convergence to a Poisson process,
and it is often useful to think in terms of point processes when describing multivariate regular
variation. From (3), the sequence of point processes Nn consisting of point masses located at
Zi/an, i = 1, 2, . . . n where Zi are iid copies of Z converges to a nonhomogeneous Poisson process
N with intensity measure Λ(·) on B(C) (Resnick, 2007, Section 6.2). We denote the corresponding
intensity function by Λ(dz), where Λ(A) =

∫
A Λ(dz). From (4), in terms of polar coordinates,

3Other normalizing sequences are sometimes used, see Resnick (2007, p. 174)
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Λ(dr×dw) = r−2drH(dw). If the angular measure H is differentiable, then we refer to the angular
density h(w), and Λ(dr × dw) = r−2h(w)drdw.

Multivariate regular variation is a useful way to characterize the joint upper tail of a random
variable Y for a number of reasons. First, interest in extreme behavior is often greatest in cases
when the tails are believed to be heavy (i.e., having asymptotic behavior like a power function),
and multivariate regular variation provides a mathematical framework for such behavior. Even
when the tails do not share a common tail index, marginal transformations as described above
can be employed to utilize the framework. Second and more importantly, the angular measure
H specifically describes the dependence found in the tails. Since our interest is in performing
prediction when the observations are large, it is natural to use a framework specifically designed
for describing tail dependence.

We perform prediction by approximating the conditional density. To do so, we will rely on a model
for the angular measure H, and this model must be able to be evaluated for any w ∈ Sd−1. There
have been several parametric models proposed for H which meet the moment conditions (5). An
early parametric model was the tilted Dirichlet model of Coles and Tawn (1991). Recently Cooley
et al. (2010) and Ballani and Schlather (2011) employed a geometric approach to construct new
parametric models. A semi-parametric model via a mixture of Dirichlet densities was introduced
by Boldi and Davison (2007). Model fitting is done by Coles and Tawn (1991), Cooley et al.
(2010), and Ballani and Schlather (2011) via a likelihood based on the point process representation
for multivariate regular variation, while Boldi and Davison (2007) use both a Bayesian MCMC
approach as well as an EM approach to fit their mixture model. Once fit, any of these models could
be used for H in the prediction procedure we outline in Section 3.2.

There is further justification for using the framework of multivariate regular variation for modeling
extreme values. The multivariate max-stable distributions obtained by the classical theory can
be characterized by the angular measure H. If one assumes that the marginals of the limiting
distribution are unit Fréchet (P(Z ≤ z) = exp(−z−1)); i.e., the domain of attraction of all regularly
varying random variables with α = 1), then

P(
Mn

bn
≤ z) d−→ exp

−d∫
Sd−1

d∨
j=1

(
wj
zj

)
dH(w)

 . (6)

Here the normalizing sequence bn = an/d to obtain the unit-Fréchet marginals. There have been
parametric models developed which give closed-form expressions for subfamilies of multivariate
max-stable distributions such as the asymmetric logistic (Tawn, 1990) and negative logistic (Joe,
1990), and these can be used to fit block maxima. Besides being max-stable, these distributions
are multivariate regularly varying and we later use the logistic model (Gumbel, 1960) to simulate
random vectors whose distribution function and limiting angular measure are both known in closed
form.
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3 Conditional Distribution Estimation and Prediction for Extremes

3.1 Previous Work in Prediction for Extremes

There has been a small amount of work which has tried to devise methods for performing predic-
tion for extremes. Davis and Resnick (1989, 1993) define a distance d between the components
of a bivariate max-stable random variable, and suggest a method of prediction which minimizes
the distance between the observed component and the predictor. Craigmile et al. (2006) offer a
geostatistical approach to the problem of determining exceedances in a spatial setting by adjusting
the loss function of the kriging predictor.

A recent important advance in the area of approximating a conditional distribution for extremes
is the work of Wang and Stoev (2011), and we view the work in this paper as complementary.
Wang and Stoev perform prediction for the case of max-stable random vectors. Let M (d+p)

n =
(M (d)

n ,M
(p)
n )T , where M (d)

n = (Mn,1, . . . ,Mn,d)T , M (p)
n = (Mn,1, . . . ,Mn,p)T , and where M (d+p)

n

is assumed to be a max-stable random vector with a known distribution. Given data m(d)
n =

(mn,1, . . . ,mn,d)T , Wang and Stoev obtain approximate draws from M
(p)
n | M (d)

n = m
(d)
n . They

accomplish this by sampling from spectrally-discrete max-stable models which can be represented
as a max-linear combination of independent random variables. Using a spectrally discrete model
would seem to be limiting, as it would imply that the corresponding angular measure would only
have mass at discrete locations. However, it is known that any multivariate max-stable distribution
can be approximated arbitrarily well by a max-linear model with a sufficient number of elements,
and Wang and Stoev claim that their computational method can handle max-linear combinations
on the order of thousands. Wang and Stoev (2011) apply their approach in the spatial setting and
the results show the discrete approximation performs quite well.

The method we propose in the next section differs from that of Wang and Stoev (2011) in a number
of important ways. Perhaps the most important difference is that, rather than performing prediction
in a max-stable setting which would lend itself to data that are block maxima, our prediction
method is best-suited for large observations; that is, the threshold exceedance case. Another
difference is that, rather than successively drawing from the conditional distribution as Wang and
Stoev do, we provide an analytic approximation to the conditional density given the observations
are sufficiently large. Additionally, rather than relying on an approximation which corresponds to
a discrete angular measure, our method instead relies on a parametric or semi-parametric model for
the angular measure. Both methods involve non-trivial computation, although our method requires
only the numerical computation of a one-dimensional integral, whereas Wang and Stoev’s approach
requires computation in fitting an adequate discrete approximation to the spectral measure and
then in drawing from the conditional distribution.

3.2 Approximating the Conditional Density when Observations are Large via
the Angular Measure

Let Z−d = (Z1, . . . , Zd−1)T , and define z−d analogously. Working with the L1 norm, our goal is to
approximate the distribution of [Zd | Z−d = z−d] when ‖z−d‖ > r∗ and r∗ is large. Let us assume
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that H is absolutely continuous with respect to Lebesgue measure on Sd−1 and let h denote the
corresponding density.

To approximate the conditional density, we employ the conditional pdf

fZd|Z−d
(zd | z−d) ≈

‖z‖−(d+1)h
(

z
‖z‖

)
∫∞
0 ‖z(t)‖−(d+1)h

(
z(t)
‖z(t)‖

)
dt
, (7)

where z = (z1, . . . , zd−1, zd)T and z(t) = (z1, . . . , zd−1, t)T . This approximation arises from the
point process representation for a regularly varying random vector as we show below. Consequently,
the approximate conditional distribution utilizes the angular measure H, which characterizes the
dependence in Z’s components when ‖Z‖ is large.

The first step in justifying the approximation (7) is to characterize the limiting measure Λ(·) in
terms of Cartesian rather than polar coordinates.

Proposition 1 Assume Z is d-dimensional multivariate regularly varying with common marginal
distributions, tail index α = 1, and angular density h. Let Nn denote the sequence of point processes
consisting of the point masses located at {Zi/an, i = 1, 2, . . . n} where Zi are iid copies of Z, and
let N be the limiting point process as n → ∞. Denote the intensity measure of N by Λ(·). Then
Λ(dz) = ‖z‖−(d+1)h(z‖z‖−1)dz.

Proof: The proof is a simple change-of-variables argument. Define the transformation p : (0,∞)×
Sd−1 7→ C by z := p(r,w) = rw and note that p is the inverse of the usual Cartesian-to-polar
coordinate transform. To make the change of variables we need |det Jp−1 |. It is known that
|det Jp| = r(d−1) (Hogg et al. (2005), Example 3.37 (specific for the L1-norm) and Song and Gupta
(1997), Lemma 1.1 (for the general Lp-norm)). Thus |det Jp−1 | = ‖z‖−(d−1).

Let A be an arbitrary set bounded away from {0}, and consider Λ(A).

Λ(A) =
∫

(r,w)∈p(A)
r−2h(w)dr

=
∫

z∈A
‖z‖−2h(z‖z‖−1)‖z‖−(d−1)dz

=
∫

z∈A
‖z‖−(d+1)h(z‖z‖−1)dz

Thus Λ(dz) = ‖z‖−(d+1)h(z‖z‖−1)dz. �

Remark: The result is similar to Theorem 1 in Coles and Tawn (1991), which allows one to
start with a known multivariate max-stable distribution with unit Fréchet marginals and find its
corresponding angular measure. Coles and Tawn state “the drawback to the use of theorem 1 is
that it can be applied only to MEVDs, of which very few have been obtained” [page 381]. It is
important to note that our aim is somewhat the reverse of Coles and Tawn: we wish to start with
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an angular measure, and obtain an approximation for the (conditional) density given the observed
values are large.

Now, for any r0 > 0 and z ∈ Rd such that ‖z‖ > r0, let

FZ/an
(z, r0) = P

(
Z

an
∈ [z,∞)

∣∣∣∣ ‖Z‖an > r0

)
.

Then,

FZ/an
(z, r0) =

P
(

Z
an
∈ [z,∞), ‖Z‖an

> r0

)
P
(
‖Z‖
an

> r0

)
=

nP
(

Z
an
∈ [z,∞)

)
nP
(
‖Z‖
an

> r0

)
→ Λ([z,∞))

Λ({z | ‖z‖ > r0})
, from (3)

= r0Λ([z,∞)), because
∫
r>r0

r−2dr = r−1
0 (8)

= r0

∫
[z,∞)

‖z‖−(d+1)h(z‖z‖−1)dz, see Proposition 1. (9)

We wish to speak of fZ/an
(z, r0), a joint density of Z/an given ‖Z‖/an > r0. Heuristically from

(9), we will assume that

fZ/an
(z, r0)→ r0‖z‖−(d+1)h(z‖z‖−1); for ‖z‖ > r0 (10)

as n → ∞. More specifically, the convergence would be guaranteed if d
dzFZ/an

(z, r0) converged
uniformly to r0‖z‖−(d+1)h(z‖z‖−1), allowing us to switch the order of the limits associated with
differentiation and as n → ∞. See also Theorem 6.4 in Resnick (2007) in which regularly varying
densities are described.

Example: Bivariate Logistic Distribution
Let Z have cdf P(Z1 ≤ z1, Z2 ≤ z2) = exp[−(z−1/β

1 + z
−1/β
2 )β] for β ∈ (0, 1]. Z is then said to have

a bivariate logistic distribution, which is a known multivariate max-stable distribution, and which
(more importantly for our purposes) is also regularly varying with common unit-Fréchet marginals
P(Zj ≤ z) = exp(−z−1) for j = 1, 2. Coles and Tawn (1991) show that the angular density of the
bivariate logistic is given by

h(w) =
1
2

(
1
β
− 1
)

(w1w2)−1/β−1
(
w
−1/β
1 + w

−1/β
2

)β−2
.

For a bivariate regularly varying random vector with unit Fréchet margins, it can be shown that
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an = 2n is a normalizing sequence such that P(‖Z‖ > an) ∼ n−1. Now,

P
(
Z

2n
∈ [z,∞)

)
= P(Z1 > 2nz1, Z2 > 2nz2)

= 1− exp(−(2nz1)−1)− exp(−(2nz2)−1) (11)

+ exp
[
−
(

(2nz1)−1/β + (2nz2)−1/β
)β]

= (2nz1)−1 + (2nz2)−1 −
(

(2nz1)−1/β + (2nz2)−1/β
)β

+ o(n−1)

and hence for ‖z‖ > r0,

FZ/2n(z, r0)→ 1
2
r0

(
z−1
1 + z−1

2 − (z−1/β
1 + z

−1/β
2 )β

)
.

Differentiating this, we obtain the density

fZ/2n(z, r0) → 1
2
r0
(
β−1 − 1

) (
z
−1/β
1 + z

−1/β
2

)β−2
z
−1/β−1
1 z

−1/β−1
2

=
1
2
r0
(
β−1 − 1

)
(z1 + z2)−3

((
z1

z1 + z2

)−1/β

+
(

z2
z1 + z2

)−1/β
)β−2

×
(

z1
z1 + z2

)−1/β−1( z2
z1 + z2

)−1/β−1

= r0‖z‖−3h(z‖z‖−1),

which agrees with (10). Similar arguments could be made for logistic models of dimension d > 2,
but the inclusion/exclusion argument made in (11) becomes tedious.

Now, let us assume n is fixed, but large enough such that fZ/an
(z, r0) ≈ r0‖z‖−(d+1)h(z‖z‖−1).

We wish to approximate fZ(z, r∗), the density of Z given that ‖Z‖ > r∗ where r∗ is large. To
obtain an approximation, we do a change-of-variables from Z/an to Z, which yields

fZ(z, r∗) ≈ r0‖z/an‖−(d+1)h(z‖z‖−1)a−dn
= r∗‖z‖−(d+1)h(z‖z‖−1), (12)

where r∗ = anr0, and thus is large.

Finally, consider the conditional distribution of [Zd | Z−d = z−d] when ‖z−d‖ > r∗ and r∗ is large.
Integrating to normalize the conditional density yields (7).

3.3 An Approximation Example

We investigate our approximation method via an example with a known distribution and angular
measure. The trivariate logistic is a random vector with distribution P(Z1 ≤ z1, Z2 ≤ z2, Z3 ≤
z3) = exp[−(z−1/β

1 + z
−1/β
2 + z

−1/β
3 )β)] for β ∈ (0, 1]. The angular measure of the trivariate logistic

is given by

h(w) =
1
3

(
1
β
− 1
)(

2
β
− 1
)

(w1w2w3)−1/β−1
(
w
−1/β
1 + w

−1/β
2 + w

−1/β
3

)β−3
. (13)
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We first investigate the quality of the approximation as ‖z−d‖ increases and when β = 0.3. Since
both the distribution and the angular measure are known, we can compare the approximated
conditional density from (7) to the actual conditional density. The first three panels of Figure 2
show how the approximation improves as the magnitude of the observations grows. The top left
panel shows that when the observed values are small (z1 = 0.23, z2 = 0.24), the approximation to
the true conditional density is poor. However, as the next two panels show, when the observations
are sufficiently large, the approximation is quite good.

Next we use a simulation experiment to assess the skill in using (7) for approximating the conditional
density when the conditioning observations are extreme. From the R package evd (Stephenson,
2002), we simulate 5000 trivariate logistic random vectors with β = 0.3. Let Zi = (Zi,1, Zi,2, Zi,3)T ,
i = 1, . . . , 5000 denote the iid random variables and zi = (zi,1, zi,2, zi,3)T be the realized values, of
which only zi,1 and zi,2 are initially observed. We rank the realizations zi according to the sum
of the observed values zi,1 + zi,2. We then apply our approximation method to the largest 1000 of
these simulations which corresponds to the condition zi,1 + zi,2 > 8.7. As each simulated random
vector results in a unique conditional density approximation, we assess our method via a probability
integral transform (PIT) or rank histogram (Gneiting et al. (2007), Wilks 2006, Sec. 7.7.2). Let
fZi,3|Zi,1,Zi,2

(zi,3 | zi,1, zi,2) be the approximated conditional density given by (7). On simulation
i, if the observed values are large enough, we let pi =

∫ zi,3

−∞ fZi,3|Zi,1,Zi,2
(s | zi,1, zi,2)ds, where zi,3

is the (previously unobserved) value of Zi,3. We then construct a histogram for the values pi. If
the approximation is well-calibrated, then the PIT histogram should be flat, since there should be
equal probability of pi occurring in each bin. If the conditional density were correct, the counts
in each bin would have a binomial (n = 1000, p = .1) distribution and approximate quantiles for
the sampling distribution can be generated under this null hypothesis. The bottom right panel
indicates that the approximation seems to be quite good given that the observations are large, and
given that the angular measure is known.

4 Application to Nitrogen Dioxide Air Pollution Measurements

The nitrogen oxides (NOx) constitute one of the six common air pollutants for which the US EPA is
required to set air quality standards by the Clean Air Act. Of the various nitrogen oxides, nitrogen
dioxide (NO2) is the component of “greatest interest” and is used as an indicator of the entire
group of NOx

4. According to the EPA fact sheet (EPA, 2010), short term NO2 exposures have
been shown to cause adverse respiratory effects such as increased asthma symptoms. In January
2010, a new 1-hour NO2 standard was set at 100 parts per billion (ppb) to protect against adverse
health effects due to short-term exposure to NO2.

Under the guidelines set by the EPA’s Ambient Air Monitoring Program5, state and local agencies
are charged with establishing and maintaining a network of air pollution monitoring stations. The
EPA has made available data from these stations. Using an online tool6, we collected data from
five stations located in Washington DC and nearby Virginia which were all active during the entire
period from 1995-2010. The stations were Alexandria (site ID: 51-510-0009), McMillan (11-001-

4http://www.epa.gov/air/nitrogenoxides/
5http://epa.gov/airquality/qa/monprog.html
6http://www.epa.gov/airexplorer/monitor kml.htm
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Figure 2: Upper left, upper right, and lower left panels show three approximations of the conditional
density of the third component of a trivariate logistic random variable given the first two components. The
true conditional density is shown with the dotted line, the approximated density with the solid line. Note
the different scales for the horizontal axis for these three figures. The approximation is poor when the
observed values are small (upper left), but improves as these values become larger (upper right, lower left).
The bottom right panel shows the PIT histogram of the largest 1000 (as determined by z1 + z2) of 5000
total simulations. As the PIT histogram is flat, it shows that the approximation is good for these large
observations. Dotted lines indicate the approximate 0.05 and 0.95 quantiles for the sampling distributions
of each bin under the null hypothesis that the conditional distribution is correct.
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0043), River Terrace (11-001-0041), Takoma School (11-001-0025), and Arlington (51-013-0020).
The locations of these stations are shown in Figure 1.

Of course, air pollution measurements are of most interest when levels are believed to be high, and
monitors only record pollutant levels at specific locations. We test our prediction method when
observations are large on these five Washington-area stations. We aim to predict the NO2 level
at the Arlington station, given the NO2 measurement at the other four stations. We choose NO2

because all five stations measured this pollutant, and NO2 appears to have the heaviest tail of the
pollutants we examined.

From each of the five stations, we extract the daily maximum NO2 measurement; all of the stations
have over 5000 daily NO2 measurements recorded between Jan 1, 1995 - Jan 31, 2010 which
meet EPA’s daily summary quality requirements. From these, we keep only days in which all five
stations have measurements, resulting in 4497 daily measurements. Finally, because the data are
truncated to the nearest ppb, the empirical cdf appears quite discrete. Thus, we add a uniform
random variable on the interval [-0.5, 0.5] to the data so that they behave more like the underlying
continuous variable7.

Figure 3 shows the time series of the retained measurements at the Arlington station. Unlike other
pollutants such as ground-level ozone, there does not appear to be a strong seasonal effect for NO2.
Although a very weak seasonal signal is detectable for a moving-average smoothed time series,
this signal is hard to discern from a smoothed periodogram. It also appears that NO2 levels have
decreased at this site over the study period, and the other stations show a similar, but weaker,
trend. Checking for serial dependence in the data, we find the sample autocorrelation function of
the deseasonalized data shows a highly significant correlation only at lag 1 (ρ̂(1) = 0.35). Figure
4 shows scatter plots of the measurements at the Arlington station versus the four stations used
for prediction. The strong positive correlation between NO2 measurements shown in Figure 4 is
indicative of that found among all pairs with the strongest sample correlation being 0.83 between
Arlington and Alexandria and the weakest being 0.66 between Alexandria and McMillan. Figure 4
also shows that largest values can be coincident between stations. In our analysis that follows, we
assume that the dependence in the upper tail of the joint distribution of NO2 measurements is not
affected by the weak seasonality or the trend found in the data. We checked the trend assumption
by fitting angular measure models to the first half and second half of the multivariate time series
separately and found similar parameter estimates. We also ignore the serial dependence in the data,
predicting the Arlington station’s measurement using only the other four stations’ measurements
from that day.

Let Yt = (Yt,1, . . . , Yt,5)T represent the random vector of measurements on day t at the five locations.
Our first task is to estimate the angular measure which describes the tail dependence of the NO2

measurements at these locations. As formulated in Section 2.2, angular measure models assume a
common marginal distribution with tail index α = 1. To obtain common marginal distributions,
we use the following procedure. Mean residual life plots (Coles, 2001, Sec 4.3.1) are used to
select the 0.93 quantile as an appropriate threshold above which each location’s data could were
approximately Pareto-distributed. At each location, a generalized Pareto distribution (GPD) is fit
to the data above the threshold via maximum likelihood. Letting F̂j be the estimated marginal
distribution function formed by using the empirical distribution below the threshold and the fitted

7Data available at http://www.stat.colostate.edu/∼cooleyd/DataAndCode/PredExtremes/nitrogenDioxideMsmts.RData.
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Figure 3: Time series plot of the retained measurements at the Arlington station.
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Figure 4: Scatterplots of the measurements at the Arlington (arl) station verses the other four stations.
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Site # Location u ψ̂ ξ̂
1 alx 59.44 7.78(0.64) 0.07(0.06)
2 mc 56.80 8.29(0.70) 0.05(0.06)
3 rt 59.69 8.96(0.78) 0.10(0.07)
4 ts 55.51 6.67(0.55) 0.02(0.06)
5 arl 57.97 7.56(0.62) 0.07(0.06)

Table 1: Threshold and GPD estimates (and standard errors) of the tail for the five Washington DC area

locations. The GPD is parametrized P (Y > y|Y > u) =
(

1 + ξ y−uψ

)−1/ξ

+
. If ξ > 0, the tail index α = 1/ξ.

GPD above (appropriately weighted by the observed exceedance probability), each location’s data
are transformed to have a unit Fréchet distribution: Zt,j = (− log(F̂j(Yt,j))−1. Table 1 summarizes
the marginal tail estimates.

The data are divided into a training set and test set. The training set, consisting of two-thirds of
the available data (ntrain = 2998), is used to fit a five-dimensional angular measure model. The
test set, consisting of the other one-third (ntest = 1499), is used to test the prediction method.
Because of the decreasing trend, we construct the test set by extracting every third observation so
that both the training and test sets would reflect the behavior over the entire study period.

The pairwise beta model (Cooley et al., 2010) is an angular measure model for dimension d > 2
with parameters which help to control the amount of dependence between each pair of elements in
the random vector. We fit the pairwise beta via maximum likelihood, and the likelihood arises by
assuming that the point process relationship implied by (4) is exact for large observations (Coles
and Tawn, 1991; Cooley et al., 2010). The largest observations were determined by ‖zt‖; that is,
the radial component of the transformed data, and the largest 210 observations (0.93 quantile) were
used to fit the model.

The pairwise beta has angular density given by

h(w; γ,β) = Kd(γ)
∑

1≤j<k≤d
hj,k(w; γ, βj,k), for 0 < wj < 1 (14)

where hj,k(w; γ, βj,k) = (wj + wk)2γ−1(1− (wj + wk))γ(d−2)−d+2

×
Γ(2βj,k)
Γ2(βj,k)

(
wj

wj + wk

)βj,k−1( wk
wj + wk

)βj,k−1

,

and Kd(γ) =
2(d− 3)!
d(d− 1)

√
d

Γ(γd+ 1)
Γ(2γ + 1)Γ(γ(d− 2))

,

is a normalizing constant. The estimated parameters for the fitted model are given in Table 2. In
the pairwise beta model the magnitude of the βi,j parameter is related to the level of dependence
between the ith and j components; the fact that β̂1,5 is the largest indicates that the Alexandria
and Arlington stations show the strongest tail dependence.

For the test set, we assume that the Arlington station is not observed, and aim to approximate the
conditional density of this station’s NO2 measurement given the measurements at the other four
stations. Since our method is only valid when the observations are large, we perform prediction for

15



γ̂ β̂1,2 β̂1,3 β̂1,4 β̂1,5 β̂2,3 β̂2,4 β̂2,5 β̂3,4 β̂3,5 β̂4,5

0.37 0.51 0.64 0.56 6.11 0.76 1.64 0.96 0.56 0.98 1.01
(0.03) (0.18) (0.28) (0.19) (2.59) (0.44) (1.08) (0.51) (0.20) (0.51) (0.61)

Table 2: Parameter estimates (and standard errors) for the pairwise beta angular measure model fit to the
Washington D.C. NO2 data.

the 105 test-set observations with the largest values of ‖zt,−5‖. That is, we threshold at the empirical
0.93 quantile of the radial component (sum) of the transformed data at the observed locations.
Using the fitted pairwise beta angular measure, the conditional density fZt,5|Zt,−5

(zt,5 | zt,−5) was
approximated using the procedure described in Section 3.2 for each of these top 105 observations8.
The integration in the denominator of (7) was approximated using Simpson’s Rule. These were
then back-transformed to obtain the conditional densities on the original scale gYt,5|Yt,−5

(yt,5 | yt,−5).
Three of the approximated conditional densities can be found in the top row of Figure 5.

We compare our prediction method to two other approaches; best linear unbiased prediction (krig-
ing) and indicator kriging (Cressie, 1993; Schabenberger and Gotway, 2005). Kriging is a prediction
method that utilizes only mean and covariance information. At its most fundamental level, kriging
does not make a distributional assumption, it provides a point prediction which corresponds to the
best linear unbiased predictor in mean-square prediction error (MSPE), and additionally provides
an estimate of the MSPE. To obtain confidence intervals, typically a Gaussian assumption is made.
Furthermore, if one assumes the data arise from a Gaussian process, then the kriging estimate
and MSPE correspond to the conditional expectation and variance. Since our method generates
a conditional distribution, we will compare it to the conditional distribution provided by kriging
under a Gaussian assumption.

Our kriging procedure is in parallel to the angular measure procedure above. The training set is
used to formulate a model; here all 2298 observations are used to estimate the mean NO2 levels
at all five locations as well as to estimate the covariance matrix between the measurements at the
locations. It is important to note that no spatial covariance function is fit, as our training set allows
us to estimate the covariance matrix directly. Treating the mean and covariance as known, we then
use simple kriging Cressie (1993) to obtain a point prediction at the Arlington location given the
measurements at the other locations for the same 105 large observations in the test set. The MSPE
is calculated from the estimated covariances, we use it to obtain the estimated conditional density
at the Arlington location given the other measurements under a Gaussian assumption.

We also compare to indicator kriging (Cressie, 1993; Schabenberger and Gotway, 2005) which is
a non-parametric version of kriging designed to provide estimates of P(Yd > u|Y1, . . . , Yd−1) for a
given threshold u. When performing indicator kriging, one first needs an estimate of the covariance
matrix of the random variables corresponding to the indicators I(Yj > u) for all the j locations.
At time t, given observations yt,1, . . . , yt,d−1, these are converted into indicators, I(yt,j > u) and
ordinary kriging is used to estimate E[I(Yt,d > u) | I(yt,1 > u), . . . , I(yt,d−1 > u)] = P(Yt,d > u |
I(yt,1 > u), . . . , I(yt,d−1 > u)). Repeating the analysis for various values of u allows one to estimate
a conditional distribution, although there is no guarantee that the estimate will be monotonic.

8The code used to produce the results is available at
http://www.stat.colostate.edu/∼cooleyd/DataAndCode/PredExtremes/PredExtremesFiles.zip.
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Figure 5: Comparison of the approximated conditional densities at the Arlington site given the measure-
ments at the other sites: gYt,5|Yt,−5(yt,5|yt,−5) for three different days with high measurements. Top figure in
each column is the approximated conditional density via the angular measure, middle figure is from simple
kriging, and the bottom figure is from indicator kriging. Below each figure is the vector of actual measure-
ments at all five sites. The fifth element corresponds to the Arlington site which we are trying to predict
and which is plotted with a dot in the figures. The dotted line in the upper left corresponds to the marginal
distribution for the Arlington site.

Our indicator kriging analysis is again parallel to the angular measure and simple kriging analyses.
We let u vary from 10-105 ppm with a step size of 0.25 ppm which covers the range of observations.
The training set is used to estimate the covariance matrix of indicators at the various levels of u, and
then indicator kriging is performed on each of the sets of observations in the test set. To guarantee
that the conditional distribution is monotonic, we then perform a monotone quadratic smoothing
spline regression (Meyer, 2008) on the estimates P(Yt,d > u | I(yt,1 > u), . . . , I(yt,d−1 > u)) for all
the values of u. Densities are obtained by differentiating the smoothing spline.

Conditional densities obtained by the angular measure method, simple kriging, and indicator kriging
are shown in Figure 5 for three different days’ data. In these three figures the conditional density
approximated via the angular measure is less concentrated than the conditional density from simple
kriging, and that proves to be the case in general. The angular measure can also be somewhat
skewed or slightly bimodal depending on the combination of the observed measurements. Although
indicator kriging is performed for each pollution level u, the conditional density as approximated
by indicator kriging is very rough as there are only four locations.

We evaluate the performance of the three approaches using various methods. All comparisons
are done at the original scale. To test the overall fit of the approximated conditional density, we
again use the PIT histogram. Figure 6 shows the PIT histograms for all three methods. The PIT
histogram for the angular measure method is relatively flat with perhaps some indication that the
model is overestimating the probability in the lower tail resulting in too few observations falling in
the first decile of the approximated conditional density. This could be due to the angular density
model: the pairwise beta model fit to the data is certainly not the true model for the angular density
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Figure 6: PIT histograms for the angular measure approach (left), simple kriging (center) and indicator
kriging (right). Perfect estimation of the conditional density would be indicated by a flat histogram. Error
bars are obtained for each decile from a binomial distribution (n = 105, p = 0.10).

which is unknown. It could also be due to threshold choice, although the parameter estimates of
the pairwise beta model did not appear to be sensitive to the threshold. The kriging estimate
with the Gaussian assumption shows a classic u-shape associated with underdispersion (Wilks,
2006, Sec 7.7.2). This model underestimates the probability of the observation occurring in the
lower tail and also the upper tail. Indicator kriging also appears to underestimate the upper tail
of the distribution resulting in has too many observations appearing in the highest decile of the
approximated conditional distribution. Using the terminology of Gneiting and Raftery (2007), the
PIT histograms indicate that the angular measure method is better (probabilistically) calibrated,
particularly in the upper quantiles of the predictive distribution.

Another performance evaluation is to see how well each method estimates a quantile, and partic-
ularly, a high quantile. For instance, regulators might wish to have an accurate assessment of a
high quantile of an unmonitored location given large observations nearby. Such an estimate could
be used as a probabilistic upper bound, i.e., officials could state that they were 95% confident that
the level at the unmonitored location was below a reported level. For each of the 105 large obser-
vations, we use the approximated conditional density from all three methods to estimate the 0.99,
0.95, 0.90, 0.75, and 0.50 quantiles. We examine coverage by calculating the proportion of actual
observations that fell beneath these quantiles and also calculate each method’s quantile verification
score (QVS) (Gneiting and Raftery, 2007). Let g(m)

Yt,5|Yt,−5
(s | yt,−5) and G

(m)
Yt,5|Yt,−5

(s | yt,−5) be the
predictive density and cumulative distribution function for Yt,5 | Yt,−5 = yt,−5, where m denotes
the angular measure method (m = 1), kriging (m = 2), or indicator kriging (m = 3). We have
parameterized the QVS as in Friederichs and Hense (2007),

QV S(m) =
105∑
t=1

ρτ (yt,5 − q(m)
t,τ ),

where q(m)
t,τ = G

(m)←
Yt,5|Yt,−5

(τ), and ρτ (u) = τuI(u ≥ 0) + (τ − 1)uI(u < 0). A lower QVS score
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Quantile 0.99 0.95 0.90 0.75 0.50
Cvg QVS Cvg QVS Cvg QVS Cvg QVS Cvg QVS

Angular Measure 0.97 40.97 0.93 134.77 0.88 225.68 0.70 398.97 0.44 502.51
Simple Kriging 0.92 65.80 0.83 170.04 0.81 246.26 0.65 378.27 0.54 444.84

Indicator Kriging 0.90 67.80 0.86 153.41 0.83 238.63 0.73 377.20 0.49 452.68
Sampling Error (0.01) – (0.02) – (0.03) – (0.04) – (0.05)

Table 3: Gives the skill of the different methods for assessing high quantiles. Coverage (Cvg) column reports
the proportion of the observations at the Arlington location that fell beneath the quantile as calculated from
the estimated conditional density and QVS column reports the quantile verification score (lower is better).

indicates better skill, but the scale of the QVS score depends on the quantile to which it is being
applied. The QVS is a proper scoring rule, meaning that it is minimized if the predictive distribution
corresponds to the ‘true’ distribution. Both the coverage and QVS results for the tested quantiles
are shown in Table 3, as well as the sampling error assuming independent Bernoulli trials with p
equal to the given quantile. The angular measure method does a superior job of estimating the
high quantiles (0.99, 0.95, and 0.90) when the observations are large, whereas both simple kriging
and indicator kriging underestimate these high quantiles. The angular measure method seems to
be outperformed by indicator kriging for the 0.75 and 0.50 quantiles, although its coverage rates
fall well within acceptable ranges when sampling error is accounted for.

Each method’s conditional density is essentially a probabilistic forecast, and scoring rules have been
developed which provide an overall measure of the quality of probabilistic forecasts (Gneiting and
Raftery, 2007). We assess the methods using two different proper scoring rules: the logarithmic
score and the continuous rank probability score (CRPS). The logarithmic score for the prediction at
time t is given by − log(g(m)

Yt,5|Yt,−5
(yt,5 | yt,−5)) where yt,5 is the actual observation at the Arlington

station and g
(m)
Yt,5|Yt,−5

is the estimated conditional density via the angular measure approach (m =
1), kriging (m = 2), and indicator kriging (m = 3). The logarithmic score has an information-
theoretic basis and corresponds to the Kullback-Leibler divergence between the predictive density
g
(m)
Yt,5|Yt,−5

(s | yt,−5)) and the Kronecker delta function δs,yt,5 . We assess the methods by the mean
of the logarithmic scores

1
105

105∑
t=1

− log(g(m)
Yt,5|Yt,−5

(yt,5 | yt,−5))

over assumed independent realizations yt, t = 1, . . . , 105. The mean logarithmic score is 3.93 for
the angular measure approach, 4.24 for kriging, and infinity for indicator kriging, as 8 of the 105 of
the observations yt,5 fall outside the support of the predictive distribution. Since a lower score is
better, the angular measure method outperforms kriging and indicator kriging by this performance
measure.

The logarithmic score has been criticized as it is not ‘robust’ to cases when observations fall outside
the support of the distribution as in the indicator kriging case above. A popular alternative is the
CRPS. For our example, the CRPS for a particular day t is given by∫ ∞

−∞

(
G

(m)
Yt,5|Yt,−5

(s | yt,−5)− I{s ≥ yt,5}
)2
ds, (15)

and can be understood as a non-linear function of the area between each method’s predictive cdf
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G
(m)
Yt,5|Yt,−5

(s | yt,−5) and the heavyside function associated with the realized value yt,5. The CRPS
score rewards appropriate centering of the predictive distribution and narrowness of the predictive
distribution otherwise known as ‘sharpness’. We assess the three methods by the mean of the
CRPS scores for t = 1, . . . , 105. Given the PIT histograms and logarithmic scores, it is perhaps
surprising that the mean CRPS scores associated with the angular measure method, kriging, and
indicator kriging are 6.83, 6.36, and 6.21 respectively, indicating that by this performance measure,
the angular measure method is performing worst. While all three methods produce predictive
densities that are centered (i.e., the realized values exceed the predictive density’s median about
half of the time), the predictive densities from kriging and indicatior kriging are sharper than (but
not as well calibrated as) the density produced by the angular measure method (Figure 5).

The CRPS score can be written as an integral with respect to a threshold s as in (15) or equivalently

in terms the quantile function G
(m)
Yt,5|Yt,−5

−1
(p) and integrated with respect to p ∈ (0, 1) (Gneiting

and Ranjan, 2011). Further, the overall mean CRPS score can be decomposed into a mean CRPS
score at each p, then integrated with respect to p. Gneiting and Ranjan (2011) suggest plotting
the quantile score verses p as a diagnostic tool. When done for the three forecasts, the plot (not
shown)9 shows that the angular measure method outperforms the other methods for high quantiles,
but both kriging and indicator kriging outperform the angular measure method for quantiles near
0.5, likely due to the increased sharpness of these methods. Since the quantile scores are naturally
larger near values of 0.5, the overall mean CRPS scores for kriging and indicator kriging end up
lower. Gneiting and Ranjan (2011) also discuss a quantile weighted CRPS score∫ 1

0
2
(

I{yt,5 ≤ G(m)
Yt,5|Yt,−5

−1
(p)} − p

)(
G

(m)
Yt,5|Yt,−5

−1
(p)− yt,5

)
v(p)dp

where one can choose the weight function v(q) to emphasize quantiles of interest. Letting v(q) =
I{v(q) > 0.85}, the mean weighted CRPS scores for the angular measure method, kriging, and
indicator kriging are 0.50, 0.57, and 0.55.

5 Summary and Discussion

In this work, we obtain an approximation for the distribution of a component of a regularly vary-
ing random vector given that the observed components are large. We apply the approximation to
estimate the conditional distribution of an air pollutant given nearby measurements that are large.
Results show that our method outperforms traditional spatial prediction methods at capturing the
conditional distribution of the random variable when the observations are large. PIT histograms
show that our method is better calibrated, and the method proves to be much better suited for
obtaining probabilistic upper bounds of the pollutant level. For example, the estimated 95% quan-
tile provided by kriging and indicator kriging were too low and the actual exceedance rates were
17% and 14% respectively. The exceedance rate of the angular measure method’s estimated 95%
quantile was 7% and was within sampling error of 5%.

We believe that this is the first work to perform prediction using extremes techniques in a threshold
exceedance setting. The classic theory that leads to max-stable distributions and processes is quite

9http://www.stat.colostate.edu/∼cooleyd/Papers/PredExtremes/quantileScorePlot.pdf
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elegant and forms the foundation for all of extreme value theory. Statistical practice utilizing
multivariate max-stability generally requires one to obtain component-wise block maximum data,
and such data can be viewed as “artificial” in the sense that one models data vectors that are
likely to have never occurred, since the block maxima are likely to occur at different times. It
seems natural to try and attempt to describe large concurrent observations, and the framework of
multivariate regular variation allows this.

Our method relies on an adequate angular measure model. There has been some renewed interest
of late in constructing flexible models which meet the moment conditions (5) (Cooley et al., 2010;
Ballani and Schlather, 2011; Boldi and Davison, 2007). However, no model with a finite param-
eterization can completely describe the possible angular measures, and the existing models may
not prove to adequately model every multivariate data set. These models become unwieldy as the
dimension increases beyond moderate levels (d ≈ 5). Certainly there remains a need for flexible
multivariate extremes models.

Although we apply our method to multivariate time series data, we do not make use of any temporal
dependence in the data. Our method proceeds as if the sequence of multivariate random vectors
are iid. One could extend the method by allowing the marginal distributions to vary in time; such
extreme value models are regularly used (e.g., Beirlant et al. (2004, ch. 7)) and might be required
if, for instance, the seasonality of this data had been more influential.
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