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Abstract

The probabilistic framework of extreme value theory is well-known. The dependence among large events is char-
acterized by an angular measure on the positive quadrant of the unit sphere. The family of these angular measures
is non-parametric by nature. Nonetheless, any angular measure may be approached arbitrarily well by a mixture
of Dirichlet distributions. The semi-parametric Dirichlet mixture model for angular measures is theoretically valid
in arbitrary dimension, but the original parametrization is subject to a moment constraint rendering Bayesian infer-
ence very challenging in dimension greater than three. In this paper, a new parametrization is proposed which is
unconstrained and allows for a natural prior specification, which posterior consistency is verified. A reversible-jump
algorithm is implemented to approximate the posterior and tested up to dimension five. In this non identifiable setting,
convergence assessment is performed by integrating the sampled angular densities against Dirichlet test functions.

Keywords: multivariate extremes, semi parametric Bayesian inference, mixture models, reversible-jump algorithm

1. Introduction

Estimating the dependence among extreme events in a multivariate context has proven to be of great importance
for risk management policies. The main probabilistic framework of multidimensional extreme value theory is well-
known, but inference and model choice remain an active research field.

The dependence structure of multivariate extreme value distributions is characterized by the so-called spectral
measure (or angular measure), which is defined on the unit positive quadrant of the observations space. The non-
parametric nature of this angular measure is a strong argument in favor of fully non-parametric methods. Still, a
moment constraint has to be satisfied and this restriction makes modeling and inference complex.

In a frequentist context, an empirical spectral measure estimator has been proposed by Einmahl et al. (2001) and
amended by Einmahl and Segers (2009), for the two dimensional case. Weak convergence of a rescaled version of the
empirical measure is proven, but the intricate form of the limit law does not provide, to our understanding, a simple
way to derive asymptotic confidence bounds. Within a Bayesian framework, the only article (to your knowledge)
dealing with a fully non-parametric model was restricted to the bi-variate case (Guillotte et al., 2011). In a semi-
parametric context, Boldi and Davison (2007) proposed a Dirichlet mixture (DM ) model with varying number of
mixture components, which is designed for any sample space’s dimension and weakly dense in the set of admissible
angular measures. As posteriors were very difficult to sample from, Boldi and Davison (2007) resorted to maximum-
likelihood methods based on an EM algorithm and they concluded that “one practical drawback with the approach
stems from the use of simulation algorithms, which may converge slowly unless they have been tuned. A second is
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that the number of parameters increases rapidly with the number of mixture components, so model complexity must
be sharply penalized through an information criterion or a prior on the number of mixture components". One other key
point about this past work is that Bayesian estimation in dimension greater than three was rendered very delicate by
the low convergence rate of the reversible-jump Metropolis algorithm used to approximate the posterior distribution.
Most of the difficulties they encountered were linked to the above mentioned moment constraint. Still, a workable
spectral estimator based on Dirichlet distributions will be a valuable semi-parametric tool for Bayesian practitioners
who would like to analyze multivariate extremes of moderate dimensions (i.e. around five).

Following Boldi and Davison’s steps, we propose in this paper a novel parametrization of the DM model. One
strong advantage of this parametrization resides in the fact that the moment constraint is automatically satisfied. This
allows to construct a consistent prior in a relatively simple way (see Section 3). A trans-dimensional Metropolis-
within-Gibbs algorithm is implemented (see Section 4) to approach the posterior distribution. In practice, assuming
that the maximum number of clusters within the mixture is below 15 (a reasonable hypothesis for most applications),
it becomes possible to make accurate Bayesian inferences for at least five dimensional data set (see Section 7).

Theoretical ergodicity properties of the algorithm are established in Section 5. In Section 6, the important issue of
empirical convergence assessment is investigated. As it is the case for any other mixture model, the parameters of the
mixture are not identifiable, and the monitored quantity cannot be the parameter itself. Instead, convergence of the
densities can be checked, and we propose an approach based on the use of well chosen Dirichlet test functions to be
integrated against the Dirichlet mixture densities generated by the algorithm.

In Section 7, a simulation study is performed with two- and five- dimensional data sets, in order to compare our
algorithm with Boldi and Davison’s one, in terms of mixing properties and precision accuracy. We also fit our model
to air quality measurements1 recorded in the city of Leeds, UK, during the winter season, years 1994-1998. This data
set was already studied by Cooley et al. (2010), Heffernan and Tawn (2004), Boldi and Davison (2007) and Sabourin
et al. (In press). We comment our results with respect to Boldi and Davison (2007)’s approach.

2. Background and notations

2.1. Multivariate extremes and spectral measure

Multivariate extreme value theory aims at characterizing the joint behavior of extreme events such as block max-
ima or multivariate excesses above a threshold (Beirlant et al., 2004; de Haan and Ferreira, 2006; Resnick, 1987, 2007).
Let X = (X1, . . . , Xd) be a positive random vector of size d. If the uni-variate marginal distributions are known, there is
no loss of generality in assuming each of them to be unit-Fréchet distributed P(Xi ≤ x) = exp

(
− 1

x

)
, for i = 1, . . . , d.

Concerning the multivariate dependence description, it is convenient to introduce the L1 norm R = X1 + · · · + Xd and
to represent X in polar coordinates, letting R be the radial component and W = X/R the angular one. Thus, W corre-
sponds to a random point on the d − 1 dimensional unit simplex Sd =

{
w = (w1, · · · ,wd) : wi ≥ 0 w1 + · · ·+ wd = 1

}
.

A major result of multivariate extreme value theory is that, under mild assumptions (see e.g. Resnick, 1987,
multivariate regular variation), the radial and angular components become independent for large R’s. More precisely,
with our choice of unit Fréchet margins, the condition is that the cumulative distribution function (cdf ) of X be in the
domain of attraction of a max-stable distribution G, i.e. there exists a non degenerate cdf G such the limit Pt(X ≤ tx)
goes to G(x), as t → ∞. This implies Gt(tx) = G(x) for all t > 0. In such a case, there is a spectral probability measure
H defined on Sd, such that for any Borelian subset B of Sd, P(W ∈ B,R > r) ∼

r→∞
r−1H(B), so that

P(W ∈ B | R > r) −→
r→∞

H(B). (1)

Thus, H represents the distribution of the angular components for asymptotically large R’s.
This measure has to satisfy the moment constraint

for all i = 1, . . . , d,
∫

Sd

wi dH(w) =
1
d
. (2)

1Available at http://www.airquality.co.uk
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Conversely, any probability measure H satisfying (2) is a valid spectral measure for a multivariate extreme value
distribution G. In other words, H is a valid spectral measure if and only if its center of mass lies at the centroid of
the unit simplex. In this paper, we focus on angular measures which mass is concentrated on the interior of the unit

simplex, denoted
◦

Sd, and which admit densities with respect to the Lebesgue measure dw1 · · · dwd−1 on the Euclidean
plane of dimension d − 1. The simplex is parametrized by {(w1, . . . ,wd−1) : wi ≥ 0 ;

∑d−1
i=1 wi ≤ 1}.

2.2. Dirichlet mixture model (Boldi and Davison, 2007)

Besides condition (2), there is no other constraint on H. In terms of modeling, this strongly favors non-parametric,
or semi-parametric models. As H lives on the interior of the unit-simplex, the Dirichlet mixtures family appears as
the ideal candidate. We recall that a Dirichlet density, which we denote diri, can be parametrized by a mean vector

µ ∈
◦

Sd and a concentration parameter ν > 0, so that

∀w ∈ Sd, diri(w | µ, ν) =
Γ(ν)∏d

i=1 Γ(νµi)

d∏
i=1

wνµi−1
i .

A k-component Dirichlet mixture density is a finite mixture

h(µ,p,ν)(w) =

k∑
m=1

pm diri(w | µ · ,m, νm),

with positive weight vector p =
(
p1, . . . , pk

)
summing to one, concentration vector ν =

(
ν1, . . . , νk

)
and mean matrix

µ =
(
µ · ,1, . . . ,µ · ,k

)
where µ.,m =

(
µ1,m, . . . , µd,m

)
is the mean vector for the mth mixture component. The moment

constraint (2) is equivalent to
k∑

m=1

pm µi,m =
1
d
, for all i = 1, . . . , d. (3)

This leads to the Ψ-parametrization2 proposed and studied by Boldi and Davison (2007) as a disjoint union:

Ψ =
∐
k≥1

Ψk , with Ψk =
{
ψ =

(
µ · , 1:k, p1:k, ν1:k

)
: (3) holds

}
.

In a Bayesian context, specifying an adequate prior distribution for µ = µ · , 1:k and p = p1:k subject to (3) is challenging.
Boldi and Davison (2007) conditioned µ upon p. The prior on µ was then defined component by component, on the
open set µ1:d−1,1:k−1 : ∀1 ≤ m < k,

d−1∑
i=1

µi,m < 1 and ∀1 ≤ i < d,
k−1∑
m=1

pmµi,m <
1
d

 ,

by successive conditioning, each component being uniformly distributed on the largest interval keeping (3) satisfied.
Besides a minor error on the admissible bounds of such an interval (see Appendix G for details), doing so introduced
some asymmetry in µ’s prior distribution: in particular, the coordinates µi,m (i = 1, . . . , d) of a given mean vector
µ · ,m were not exchangeable in their model and the prior was concentrated in a relatively small region of the space of
admissible mixtures. This might partly explain the low convergence rate of their reversible jump algorithm. Below,
we address this issue by proposing an alternative parametrization such that constraint (2) is automatically satisfied.
This allows a natural prior specification in which space coordinates play symmetrical roles.

2The vector µ · , q:r denotes
(
µ · , q, . . . ,µ · , r

)
for q ≤ r. This type of notation will be used throughout this work, e.g. pq:r means

(
pq, . . . , pr

)
.

Unless otherwise mentioned, ‖ · ‖ denotes the Euclidean norm on Rd while ‖ · ‖1 stands for the L1 norm.
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3. Unconstrained Dirichlet mixture model

3.1. Re-parametrization

Our goal is to replace the weight vector p and the “last” mean vector µ · , k by eccentricities e = (e1, . . . , ek−1),
between zero and one. Those em’s are sequentially defined and indicate departure from centrality induced by decreas-
ing subsets of mixture components. Thus, (3) is automatically satisfied and the parameter space for k-mixtures is a
“rectangular” subset of Sk−1

d × (0, 1)k−1 × (R+)k.
Let us go into details: suppose one wants to construct a k-components DM density h(µ,p,ν) satisfying (3). For

m ∈ {0, . . . , k − 1}, let γm be the center of mass of the k − m + 1 last components

γm = ρ−1
m

k∑
j=m+1

p j µ · , j, (4)

where ρm =
∑k

j=m+1 p j = 1 −
∑m

j=1 p j (m ≥ 1), and ρ0 = 1.
From (3), we know that γ0 = (1/d, . . . , 1/d). By associativity of the center of mass, we have

γ0 = p1µ · ,1 +

k∑
j=2

p j µ · , j

= p1µ · ,1 + ρ1γ1 .

Visually, this means that γ0 is located on the line segment joining γ1 and µ · ,1 (see Figure 1, with m = 0, on the two-
dimensional simplex S3), i.e. that γ1 lies on the half line D1 = [γ0,µ · ,1], inside the simplex. If I1 is the intersection
between D1 and the boundary of the simplex, it is clear that one can use a number e1 between 0 and 1 to determine
the position of γ1 on the segment [γ0, I1]. Namely, set

e1 =
‖γ1 − γ0‖

‖I1 − γ0‖
.

At this stage, given µ · ,1 and e1, one can deduce the location of γ1 and elementary algebra provides relative weights
p1 and ρ1 respectively assigned to µ · ,1 and γ1.

The argument can be repeated to obtain subsequent centers of mass γ1, . . . ,γk−1 and weights p1, . . . , pk−1, ρ1, . . . , ρk−1,
given k − 1 Dirichlet mean vectors µ · ,1:k−1 and eccentricities e1:k−1, via

γm = γm−1 + em(Im − γm)
pm = ρm−1

‖γm−γm−1 |

‖γm−µ · ,m‖

ρm = ρm−1 − pm

Finally, from the definition, γk−1 = µ · ,k and pk = ρm−1.
Roughly speaking, em rules the eccentricity induced by µ · ,m onto the subsequent partial center of mass γm, rela-

tively to the current one γm−1. It also determines the weight to be attributed to µ · ,m: for em small, γm−1 and γm are
close to each other, i.e. the departure from γm−1 induced by µ · ,m is small, so that pm is also small.

It must be noted that the parametrization is valid only if

γm−1 , µ · ,m, for all m ∈ {1, . . . , k − 1}. (5)

This condition is satisfied for all µ · ,1, . . . ,µ · ,k−1 out of a nowhere dense subset of Sk−1
d . In practice, it will be almost

surely satisfied if one chooses any absolutely continuous prior for the µ · ,m’s.
For computational purposes, analytical expressions for the γm’s are needed in order to derive the weights and the

last mean vector µ · ,k. We thus introduce the positive scalar

Tm = sup
{
t ≥ 0 : γm−1 + t (γm−1 − µ · ,m) ∈ Sd

}
(m ∈ {1, . . . , k − 1}), (6)
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so that Im = γm−1 + Tm(γm−1 − µ · ,m), and that

γm = γm−1 + emTm (γm−1 − µ · ,m) . (7)

It is shown in Appendix A.1 that

Tm = min
i∈Cm

γi,m−1

µi,m − γi,m−1
, (8)

where Cm is the index set
{
i ∈ {1, . . . , d} : γi,m−1 − µi,m < 0

}
.

The following proposition summarizes the argument.

Proposition 1. Let h(µ,p,ν) be a k-component DM density satisfying (3) and (5), with partial centers of mass
γ1, . . . ,γk−1 defined in (4). Let {Tm : 1 ≤ m ≤ k − 1} be the positive scalars introduced in (6).

Then, we have γ0 = (1/d, . . . , 1/d), each Tm is given by (8), and there exists k − 1 eccentricity parameters(
e1, . . . , ek−1

)
∈ (0, 1)k−1 such that (7) holds for all m ∈ {1, . . . , k − 1} .

Conversely, suppose that µ · ,1:k−1 ∈ (
◦

Sd)k−1 and e1:k−1 ∈ (0, 1)k−1 satisfying (5) are given, together with a concen-
tration vector ν1:k, νi > 0.

Then, one may successively define centers of mass {γ1, . . . ,γk−1} through (7), where Tm is given by (8); together
with weights p1:k−1, ρ0:k−1 via ρ0 = 1 and for 1 ≤ m ≤ k − 1,

pm = ρm−1
emTm

1 + em Tm
; ρm = ρm−1 − pm .

Defining the last mean vector µ · ,k and weight pk by µ · , k = γk−1 and pk = ρk−1 , the DM parameters (µ,p, ν) satisfy
the moment constraint (3) and the DM density hµ,p,ν is an admissible angular measure.

Dm

µ · ,m×

Im

×γm

×γm−1

Figure 1: Sequential construction of the partial centers of mass on the two-dimensional simplex S3 at step m. The simplex points γm, γm−1 and
mth mean vector µ.,m, as defined in Proposition 1, belong to a common line Dm and γm−1 lies between γm and µ · ,m, so that (7) holds for some
eccentricity parameter em ∈ (0, 1).

The unconstrained parameter space for the DM model can now be defined as a disjoint union

Θ =

∞∐
k=1

Θk, where Θk =
{
θ =

(
µ · , 1:k−1, e1:k−1, ν1:k

)
∈ (
◦

Sd)k−1 × (0, 1)k−1 × (R+)k : (5) holds
}
.

For k ≥ 1, we introduce the re-parametrization maps for k-mixtures Γk : θ ∈ Θk 7→
(
µ · , 1:k, p1:k, ν1:k

)
∈ Ψk, which

allows to define
Γ : Θ −→ Ψ

θ ∈ Θk 7−→ Γk(θ) ∈ Ψk

In the sequel, we denote hθ a DM density with parameter θ ∈ Θ. As opposed to the Ψ-parametrization from Boldi and
Davison (2007), we refer to ours as the Θ-parametrization.
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3.2. Prior definition
We denote π the prior distribution and also, for the sake of simplicity, the prior density. To prevent numerical

issues, i.e. to facilitate storage and avoid numerically infinite likelihoods, it appears preferable to restrict the prior’s
support to a (large) bounded subset

ΘB =

kmax∏
k=1

Sk−1
d × [0, emax]k−1 × [νmin, νmax]k (9)

with, typically, kmax = 15, νmin = exp(−2), νmax = 5 103 and emax = 1 − 10−6.
Then, the prior can be defined as convenience onΘB, according to the user’s beliefs. Here is described an example

of prior specification (the one used in our simulations), allowing the user to control the concentration of the mean
vectors µ · ,1:k around the global center of mass γ0 (again, a priori). Recall that a DM angular density with mean
vectors located near the simplex’ center, together with high concentration parameters ν1:k, corresponds to high levels
of dependence among extreme observations. On the contrary, mean vectors near the vertices or low concentrations
are associated with low levels of dependence, even if the angular measure is obtained in the limit of asymptotically
dependent observations.

As usual, the prior’s impact will vanish with large sample sizes, but this kind of control may be useful for small
samples with prior expert knowledge regarding the amount of dependence at extreme levels.

Conditionally on k, ν is a priori independent from (µ, e)

π(k,µ, e, ν) = πk(k) πγ(µ, e | k) πν(ν | k) .

The prior πk is a truncated geometric distribution πk(k) ∝
(
1 − 1

λ

)k−1 1
λ
1[1,kmax](k) with typical values for λ ranging

between 1 and 10. The concentration vector ν has a truncated multivariate log-normal distribution (denoted logN)
with independent components, from which simulation is straightforward. Namely, we set

∀ j ∈ {1, . . . , k}, πν, j ∝ 1[νmin,νmax] logN(mν, σ
2
ν). (10)

The joint distribution for ν is the product measure πν =
⊗k

j=1 πν, j. Finally, the distribution πγ( · | k) is defined by
successive conditioning

πγ(µ, e | k) =

k−1∏
m=1

πµ,m(µ · ,m | k,µ · , 1:m−1, e1:m−1) πe,m(em | k,µ · , 1:m, e1:m−1)

where, by convention, µ · , 1:0 = {γ0} and e1:0 = ∅.
In general, one does not want to see the mean vectors rejected on the simplex boundary, where the model is not

defined, again to avoid numerical problems such as infinite likelihood values. On the other hand, it may be of interest
to control the dispersion of the k mean vectors µ · , 1:k. This is achieved by setting

πµ,m( · |µ · , 1:m−1, e1:m−1) = diri
(
· | γm,

χµ

min1≤i≤d{γi,m}

)
,

where χµ is a concentration hyper parameter. Thus, for χµ ≥ 1, the prior density for µ · ,m is bounded; the larger χµ,
the more µ · ,m concentrates around the current center of mass γm−1. For 0 < χµ < 1, the prior is unbounded and the
prior mass for µ · ,m is concentrated near the simplex boundaries. In our simulations, χµ is set to 1.1. Thus, µ · ,m has
relatively flat distribution with bounded density, centered around γm.

Concerning the eccentricity parameters, specifying an identical Beta distribution for each em would trigger a bias
against the last mixture components: the weights pm would tend to decrease with m. To avoid this issue, we define
a Beta prior for em such that, conditionally to (µ · , 1:m, e1:m−1), the expectancy of em corresponds to a weight ratio
pm/ρm−1 close to 1/(k − m + 1). Proposition 1 yields

em =
pm/ρm−1

Tm (1 − pm/ρm−1)
.
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The ideal situation pm/ρm−1 = 1/(k −m + 1) thus corresponds to em =
(
Tm (k −m)

)−1
, which may be greater than one.

We thus set the distribution’s mean to Me,m = min
{
(Tm(k − m))−1 , emean.max

}
, where emean.max = 99/100. Then, we

define another concentration parameter χe, typically set to 1.1. Finally, we choose

am =
χe

min{Me,m, 1 − Me,m}
Me,m, and bm =

χe

min{Me,m, 1 − Me,m}
(1 − Me,m).

and πe,m( · | k,µ · , 1:m, e1:m−1) ∝ beta ( · | am, bm) 1[0,emax)( · ) where beta denotes the Beta density.
The Directed acyclic graph in Figure 2 summarizes the model specification. Simulating parameters (µ · , 1:k−1, e1:k−1)

λ, kmax
πk

k

χµ, χe , emean.max, emax

πγ

mν , σν , νmin, νmax

πν
µ · , 1:k−1, e1:k−1

Γ

µ · , 1:k, p1:k ν1:k

w ∈
◦
Sd

1

Figure 2: Representation of the conditional dependencies of the DM Bayesian model as a Directed acyclic graph. Hyper-parameters appear in
simple square frames, parameters in oval frames and observations in a double square frame. Simple arrows denote probabilistic relations whereas
double arrows stand for deterministic ones.

can be achieved by successively drawing k, then the µ · ,m’s and em’s, in increasing order and finally by using the map-
ping Γ to obtain µ · , k and p1:k.

3.3. Model consistency
Boldi and Davison (2007) have shown that the family of finite constrained mixtures of Dirichlet densities is

weakly dense in the set of admissible angular measures. Following their steps, we limit ourselves to weak consistency
properties. It is well known (see e.g. Freedman, 1963) that weak density does not entail weak consistency, unless some
additional regularity assumptions are satisfied, which are detailed in this section. We show (Appendix A) that our
prior on the re-parametrized parameter space induces a weakly consistent posterior at all distribution that is arbitrarily
close to the model in terms of Kullback-Leibler divergence (Proposition 2 below).

Since the mixture model is not identifiable (several parameters θ’s correspond to a single density h), we use
non-parametric consistency results, which allow one to work with the densities themselves. Most of the theoretical
background required here may be found in Ghosal et al. (1999) and is derived from Schwartz (1965). For a recent
review about available theorems for different types of consistency in the non-parametric case, in particular for the
(stronger) Hellinger consistency, the reader may also refer e.g. to Walker (2004) and the references therein. Recall
that a weak neighborhood U of some density h0 on the sample space Sd is a family of probability densities containing
a finite intersection of subsets of the kind{

h :

∣∣∣∣∣∣
∫

Sd

(h(w) − h0(w)) g(w) dw
∣∣∣∣∣∣ < ε

}
,
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where ε > 0 and g is some bounded, continuous function defined on Sd. Similarly, if (Θ,T ) is a measurable parameter
space indexing a family of densities (hθ)θ∈Θ, a weak neighborhood of some θ0 ∈ Θ is a weak neighborhood of hθ0

restricted to Θ (the weak topology on Θ is the trace of the weak topology on the densities). Let π be a prior on T and
πn be the posterior, given observations W1, . . . ,Wn, which are independent, identically distributed (i.i.d.) according
to some probability measure h0. The posterior is said to be weakly consistent at h0 if, with h0-probability one, for
all weak neighborhood U of h0, πn(Uc) −→

n→∞
0. It is clear from the definition that two distinct parameters θ1 , θ2

defining the same density hθ1 = hθ2 will automatically belong to the same weak neighborhoods, so that identifiability
is not an issue anymore. Also, weak consistency is usually sufficient for most applications, because the angular
density is mainly destined to be integrated against some bounded, continuous function. For example, probabilities
of a joint excess of high multivariate thresholds (u1, . . . , ud) are derived by integration of the angular density against
g(w) = min(w1/u1, . . . ,wd/ud).

One classical way to prove weak consistency at some density h0 is to use Schwartz’s theorem (Schwartz, 1965,
theorem 6.1), which guarantees it under a relatively limited number of assumptions, the most crucial of which being
that the prior assign positive mass to any Kullback-Leibler (KL) neighborhood of h0 (see Appendix A for details).
Recall that the KL neighborhoods are defined in terms of the KL divergence between two densities, which is the non-
negative quantity KL(h0, h) =

∫
Sd

log(h0(w)/h(w))h0(w) dw. A KL neighborhood of some density h0 is thus a set of
densities of the form Kh0,ε = {h : KL(h0, h) < ε}, for some ε > 0. The KL support of the prior is the set of all densities
for which π(Kh,ε) > 0 for all ε > 0. The KL condition is thus that h0 be in the KL support of the prior. A generally
weaker assumption is that h0 be in the KL closure of the model, i.e. that any KL neighborhood of h0, regardless of its
prior mass, contain a density hθ from the model. The KL support is included in the KL closure but the converse may
not hold (e.g. if the prior does not have full support in the model).

The following proposition establishes posterior consistency of the re-parametrized DM model on the KL closure
of ΘB for a general class of priors. Here, a ‘Euclidean open set’ in Θ is any union of opens set for the Euclidean
topology on the Θk’s. 3.

Proposition 2. Let π be a prior on the DM model assigning positive mass to any non-empty Euclidean open subset of
ΘB, where ΘB is defined by (9). If h0 is in the Kullback-Leibler closure of ΘB, then the posterior is weakly consistent
at h0. In particular, for all θ0 ∈ ΘB, the posterior is weakly consistent at hθ0 .

In particular, the prior π defined in Section 3.2 satisfies the requirement of the statement. More generally, any
prior obtained as a mixture of point masses and of a positive density on ΘB assigns positive mass to Euclidean open
sets.

One must note that this result put together with the weak density result from Boldi and Davison is not sufficient
to prove weak consistency at all angular measure with continuous density on the simplex, even if one takes infinite
bounds for ΘB, so that ΘB = Θ. Indeed, the KL topology is thinner than the weak topology, which means that, in
general, the KL condition may not be verified even for a density in the weak support of the model. Freedman (1963)
provides an example of weakly inconsistent model in a discrete case where the prior still assigns positive mass to all
weak neighborhoods of h0.

For the sake of simplicity we assume in this paper that the true distribution belongs to the model or to its KL
closure. However, it would be of interest to investigate the extent of the latter. Also, when the model is ‘incorrect’
(i.e. the KL divergence between the model and the truth is positive), it might be possible to exploit results from
Bunke and Milhaud (1998) and show that the posterior concentrates around pseudo-true parameters minimizing the
KL divergence between the true h0 and the model. Bunke and Milhaud (1998)’s results are valid for parametric models
containing only bounded densities, so that one should impose a maximum number of mixture components and restrict
the model to Dirichlet densities such that νµi ≥ 1 for all i ∈ {1, . . . , d}.

4. Metropolis algorithm

We describe in this section a trans-dimensional Metropolis algorithm to produce samples from the posterior,
which we call Metropolis for Dirichlet mixture, or, in short, M-DM . It belongs to the class of Metropolis within Gibbs
algorithms (MH-Gibbs), as described e.g. in Roberts and Rosenthal (2006).

3These open sets define the co-product topology induced by the Euclidean topology on the disjoint union
∐

k Θk .
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The key principle of the M-DM algorithm is to use the data to construct the proposal distribution for the mean
vectors µ · ,m. At each step of the algorithm, three classes of proposal moves are possible: regular moves, trans-
dimensional moves and shuffle moves. During a regular move, either a mean vector µ · ,m, or an eccentricity parameter
em, or a concentration parameter νm is picked out of the current state as a candidate for a move. If a mean vector µ · ,m
is chosen, it is thrown back in regions of Sd where data points concentrate.

Trans-dimensional moves consist of split and combine moves. During a split (resp. combine) move, an additional
mixture component is created in the Θ-parametrization. (resp. the last component is removed) and the ‘last’ mean
vector µ · , k = γk−1 is adjusted accordingly.

Finally, shuffle move do not alter the likelihood but are designed to improve the chain’s mixing properties. They
simply consists in transposing two indices in the Ψ- parametrization and deducing the correspondingΘ-parametrization.
They thus correspond to a discrete transition kernel.

The starting value is generated according to a prior distribution. The probability of choosing a regular move, a
trans-dimensional move or a shuffle move have been respectively set to creg = .5, ctrans = 1/3 and cshuf = 1/6.

The proposal variables, the proposal distributions and densities, and the acceptance probability ratios are respec-
tively denoted ( · )∗, Q( · , · ∗), q( · , · ∗), and r( · , · ∗) ; θt denotes the chain’s state at time (iteration) t.

4.1. Regular moves

If θt =
(
µ · ,1:k−1(t), e1:k−1(t), ν1:k(t)

)
∈ Θk, then 3k − 2 regular moves are possible. Three subclasses are defined:

µ-moves, e-moves or ν-moves, depending on the type of component affected. The choice between subclasses is made
under equi-probability.

• ν-moves affect one component νm(t) of the concentration vector ν. The proposal density qν(νm(t), ν∗m) is log-
Normal, with mean parameter equal to log(νm(t)) and standard-deviation parameter typically set to log(1 + 0.52)
(on the log scale).

• Similarly, e-moves affect one eccentricity parameter em(t). The proposal density qe(em(t), e∗m) is a Beta density
with mode at em(t). The latter is constructed by fixing a re-centering parameter ε∗e (typically set to 0.2). Then,
the Beta parameters are

a1 =

[
ε∗e
2

+ (1 − ε∗e ).em(t)
]

2
ε∗e

; a2 =

[
1 −

(
ε∗e
2

+ (1 − ε∗e ).em(t)
)]

2
ε∗e
.

During an e-move affecting em, the weights p∗m:k and the last mean vector µ∗
· ,k (in the Ψ-parametrization) are

modified according to the mapping Γ : θ 7→ ψ.

• µ-moves affect one of the k − 1 first mean vectors. Again, the subsequent weights p∗m:k and the last vector µ∗
· , k

in ψ∗ are modified according to Γ. The proposal µ∗· ,m follows a DM distribution with density qµ(µ · ,m(t), · ),
constructed from the angular data w1:n. The mixture is multi-modal, with one mode located at each angular
data point, and weights penalizing the distance between the considered data point and the current mean vector
µ · ,m(t). The precise construction is a generalization of the e-move distribution. More details are provided in
Appendix C.

The acceptance probability for each regular move is classically given by (e.g. for e-moves affecting the mth

coordinate)

r(em(t), e∗m) = min
(
1,

hθ∗ (w1:n)π(θ∗)
hθt (w1:n)π(θt)

qe(e∗m, em(t))
qe(em(t), e∗m)

)
.

4.2. Trans-dimensional moves

4.2.1. Split moves
This type of move is only proposed when k < kmax. A new mean vector µ∗

· , k is generated in a neighborhood of
µ · , k(t), similarly to the proposal rule for the µ-moves, and the last eccentricity parameter e∗k is proposed according to
the prior, see Appendix C.2 for details. Finally, the last mean vector µ∗

· , k+1 is deduced from the re-parametrization
map Γ.
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4.2.2. Combine moves
These deterministic moves are allowed for k ≥ 2. They simply consist in removing the last component (µ · , k−1, ek−1, νk)

from the Ψ-parametrization. The last mean vector µ∗
· ,k in the Ψ- parametrization is thus the center of mass of the two

last mean vectors in the current state.

4.2.3. Acceptance ratio for trans-dimensional moves
From Green (1995), the posterior distribution is invariant under a trans-dimensional move if we set the acceptance

probability, for a split move, to

rsplit = min
{

1,
hθ∗ (w1:n)π(θ∗)
hθt (w1:n)π(θt)

pc(k + 1)
ps(k)

[
qµ,split(θt,µ

∗
· , k) qe,split(θt, e∗k |µ

∗
· ,k) qν,split(θt, ν

∗
k+1)

]−1
}
,

and, for a combine move, to

rcombine = min
{

1,
hθ∗ (w1:n)π(θ∗)
hθt (w1:n)π(θt)

ps(k − 1)
pc(k)

qµ,split(θ∗,µ · ,k(t)) qe,split(θ∗, ek |µ · ,k(t)) qν,split(θ∗, νk(t))
}
,

where pc(k) and ps(k) are respectively the probability of choosing a combine or a split move, when the current state is
in Θk. Namely, we have set ps = 1k=1 + 1

2 11<k<kmax and pc = 1k=kmax + 1
2 11<k<kmax .

Note that the Jacobian appearing in Green’s balance condition is, in our case, equal to one. Indeed, the additional
component is directly simulated, without further mapping.

4.3. Shuffle moves
These moves do not affect the density hθ, but improve the convergence of the algorithm. Without shuffling, the

weights affected to the last component of the mixture would have a tendency to decrease, as the number of mixture
components increases, by a stick breaking effect. In what follows, it is assumed that condition (5) holds for θt.

Let k be the number of components at step t, ψt = (µ · , 1:k(t), p1:k(t), ν1:k(t)). Let m1,m2 ≤ k, and τm1,m2 be the
transposition between elements indexed by m1 and m2 in ψt. Let ϕm1,m2 = Γ−1 ◦ τm1,m2 ◦ Γ. The proposal parameter is
then defined by θ∗ = ϕm1,m2 (θt). The mapping ϕm1,m2 is differentiable, and we prove in Appendix B that, setting

rshuffle,m1,m2 (θt, θ
∗) = min

(
1,

hθ∗ (w1:n)π(θ∗)
hθt (w1:n)π(θt)

∣∣∣Jac(ϕm1,m2 )[θt]
∣∣∣)

as an acceptance probability for this move, the posterior is invariant under the shuffle kernel. The involved Jacobian
is (see Appendix C.3) ∣∣∣Jac(ϕm1,m2 )[θt]

∣∣∣ =

k−1∏
m=1

ρm−1 Tm

(1 + em Tm)2

k−1∏
m=1

(
1 + e∗m T ∗m

)2

ρ∗m−1 T ∗m
, (11)

where the e∗m, ρ
∗
m−1,T

∗
m’s (resp. the em, ρm−1,Tm’s ) are relative to the proposal parameter θ∗ = ϕm1,m2 (θt) (resp. θt), and

the Tm’s are defined in Proposition 1.

5. Ergodicity properties of the M-DM algorithm

Their is an abundant literature concerning asymptotic convergence of Markov chains towards their objective dis-
tribution, see e.g. Meyn et al. (1993) for an extensive exposition.

In short, let π̃ is an objective probability on (Θ,T ), i.e. a distribution from which one wishes to generate a sample
(here, π̃ is the posterior πn and Θ = ΘB). Let π̃’s density with respect to some reference measure dη be known up to
a normalizing constant. We also denote π̃ this un normalized density.

We shall use a classical result (see e.g. Rosenthal, 2001; Roberts and Rosenthal, 2006; Tierney, 1994) stating that,
under regularity assumptions4, if an aperiodic Markov chain generated by a transition kernel K(θ, · ) admits π̃ as an

4It is required that T be countably generated. This is not too restrictive, since it is true in any case where Θ is some Borel space and T is its
Borel σ-field. In particular, this is true in our context, since Θ can be identified with a finite union of open subsets in finite dimensional euclidean
spaces.
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invariant probability measure, and if K(θ, · ) is η-irreducible, then for π̃-almost all starting value, the law Kn(θstart, · )
defined by the n-step transition kernel converges in total variation distance towards π̃.

Aperiodicity means the state space cannot be finitely partitioned into subsets Θ1, . . . ,Θd (d > 1) such that for
1 ≤ i < d and θi ∈ Θi, K(θi,Θi+1) = 1, and for θd ∈ Θd, K(θd,Θ1) = 1. Also, π̃ is invariant by K if ∀θ ∈ Θ,∀A ∈
T ,

∫
Θ

K(θ, A) dπ̃(x) = π̃(A). Such a π̃ is also called stationary. Finally, η-irreducibility stipulates that for all set A ⊂ Θ

such that η(A) > 0, for all θ ∈ Θ, for some t ∈ N, Kt(θstart, A) > 0.
In view of section 3.3, total variation distance is more than needed, because we only know about weak consistency

properties of the posterior. However, it entails a mean ergodicity property that can be used in conjunction with weak
consistency. Namely, for all π̃ integrable function g, and for π̃-almost all starting value, convergence in total variation
implies

1
T

T∑
t=1

g(θt) −→
T→∞

Eπ̃(g), Pθstart almost surely, (12)

where Pθstart represents the probability measure on
(
ΘN,T ⊗N

)
induced by the Markov kernel and the initial state θstart,

and θt is the random state at time t. Note that, from Roberts and Rosenthal (2004) (cf their remark following Corollary
6), aperiodicity is not required for (12).

In order to verify that (12) holds for the M-DM algorithm, we show in Appendix B the following

Proposition 3. Let η the Lebesgue measure restricted to ΘB. The M-DM algorithm generates a η-irreducible, aperi-
odic Markov chain admitting the posterior πn as an invariant probability measure.

The original part of the proof of Proposition 3 concerns the invariance of the discrete shuffling kernel. Indeed,
standard reversibility arguments are only valid for continuous proposal kernels. In contrast, irreducibility and ape-
riodicity are verified in a classical way and some ideas are in common e.g. with Roberts and Smith (1994) (in the
context of the standard Gibbs sampler) and Guillotte et al. (2011) (pp. 392-393, proofs 6.3.2 and 6.3.3, together with
their Appendix A.5, for a particular trans-dimensional Gibbs sampler). As noted by the latter authors, the literature
is scarce concerning general conditions for irreducibility and aperiodicity in a trans-dimensional context. We thus
provide a proof that suits our purposes.

The π̃-null set on which (12) is not guaranteed may be problematic because its extent is unknown. If, in addition to
the properties listed in Proposition 3, a Markov chain is Harris recurrent, then the result holds for all starting value. A
η-irreducible Markov chain with stationary distribution π̃ is said Harris-recurrent if for all A ⊂ Θ, such that η(A) > 0,
the stopping time τA = inf{N ≥ 1 : θN ∈ A} is almost surely finite for all starting value: Pθstart (τA < ∞) = 1 for all θstart.

Full-dimensional MH algorithms are Harris-recurrent under weak assumptions regarding the support of the pro-
posal distributions. A short and self contained proof was recently proposed by Asmussen and Glynn (2010), see also
e.g. Rosenthal (2001); Roberts and Rosenthal (2004) or Roberts and Rosenthal (2006) for a review of the properties
of the class of MH-Gibbs and trans-dimensional MH algorithms. Harris-recurrence is less easily achieved for the
two latter classes than for the full-dimensional MH algorithm, and the question is even stated as an open problem in
the case of coordinate mixing, trans-dimensional Markov chains (which is precisely our framework, see paragraph
‘shuffle moves’ in the preceding section). Similarly to Guillotte et al. (2011), we do not prove Harris-recurrence for
the M-DM algorithm. In our case, the difficulty comes from discontinuities of the proposal density around singular
points where (5) does not hold. However, generating the starting value according to the prior and noticing that π � π̃,
the starting value will almost-surely not belong to the problematic set.

We now turn to practical implications of (12) (which itself derives from Proposition 3). As discussed in Sec-
tion 3.3, for applied purpose, the quantity of interest is often obtained as an integral of some bounded, continuous
function g defined on the simplex, with respect to the angular measure H. We thus define, for such a g,

g̃(θ) =

∫
Sd

g(w)hθ(w) dw

:= 〈g, hθ〉 .
(13)

The function g̃ is bounded by ‖g‖∞, and its continuity (for the weak topology) may be verified5. Consequently,
provided that the true measure h0 satisfies the assumptions of Proposition 2 (so that the posterior is weakly consistent

5The arguments are the same as those leading to the continuity of κ, in the proof of Proposition 2
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at h0), we have
Eπn (g̃) −→

n→∞
g̃(h0) = 〈g, h0〉 (h0-a.s) .

Combining this with (12) shows that

lim
n→∞

 lim
T→∞

1
T

T∑
t=1

〈g, hθn
t
〉

 = 〈g, h0〉 (h0 × Pθstart -a.s.) . (14)

where θn
t is the current state at time t of the algorithm, with objective probability the posterior πn.

6. Convergence assessment

6.1. Choice of the monitored quantity

In this section, we propose a method to verify in practice that the asymptotic domain of validity (14) has approxi-
mately been reached, for a given data set and an an output of the M-DM algorithm. Non-identifiability and shuffling
prevent from monitoring the parameter components generated by the algorithm. On the other hand, there is no obvious
way to visualize the evolution the generated densities (hθt )t themselves. One solution is to extract suitable numerical
quantities that represent the generated densities, in relation to (14), and then to apply standard convergence tests to
the numerical representations. For example, in the bi-variate case, Boldi and Davison (2007) monitor the evolution
of the dependence measure corresponding to the density hθt : g̃(θt) =

∫ 1
0 min(w, 1 − w)hθt (w) dw. This quantity has an

analytical expression (using incomplete Beta functions) in the case d = 2 only.
The ideas developed here aim at proposing suitable g’s for which g̃(θ) = 〈g, hθ〉 in (14) can easily be derived

in arbitrary dimension. Then the M-DM estimates 1
T
∑T

t=1〈g, hθt 〉 will be compared to the reference value (the true
distribution for simulation or an empirical estimate in realistic cases).

For this purpose, it is very convenient to choose g in the set of bounded Dirichlet distributions, which are those
with parameters (µ, ν) verifying ν µi > 1, for all i = 1, . . . , d.To see this, suppose that h and g are two Dirichlet
densities with respective parameters (µ, ν) and (µ̃, ν̃), and suppose that g is bounded, so that ν̃ µ̃i ≥ 1 for all i ≤ d.
Then, direct calculations yield the (rather complicated, but tractable) expression

〈g, h〉 =

∫
Sd

g(w)h(w) dw

=
Γ(ν)Γ(ν̃)∏d

i=1 Γ(µiν)Γ(µ̃iν̃)

∫
Sd

d∏
i=1

w(µiν+µ̃i ν̃−1)−1
i dw

=
Γ(ν)Γ(ν̃)∏d

i=1 Γ(µiν)Γ(µ̃iν̃)

∏d
i=1 Γ(µ′iν

′)
Γ(ν′)

(15)

:= Iµ,ν(µ̃, ν̃)

where ν′ = ν + ν̃ − d > 0 and µ′i = (µiν + µ̃iν̃ − 1)/ν′.
In experiments with simulated data, the true h0 may be a Dirichlet mixture, in which case the reference 〈g, h0〉

has a similar expression. Indeed, there is no further difficulty if the simple Dirichlet h in (15) is replaced with any
DM density h0 = hθ with θ = (p,µ, ν). The quantity 〈g, θ〉 := 〈g, hθ〉 is then obtained as a convex combination of
Iµ

· ,m,νm (µ̃, ν̃) with weight vector p (see E.1 in Appendix).
When h0 is unknown, an empirical mean estimator may be used instead: Consider a function g and a data set W1:n

as above. Then, note that 〈g, h0〉 =
∫

Sd
g h = Eh0 (g), so that a classical non-parametric estimate of 〈g, h0〉 is

ĝnonP
n =

1
n

n∑
j=1

g(W j). (16)
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In addition, to a reference mean value, a reference error is needed. It is obtained as the standard deviation δnonP
n

(under h0) of the estimator ĝnonP
n

δnonP
n =

1
√

n
[
Varh0 (g)

]1/2
=

1
√

n

[
Eh0 (g2) −

(
Eh0 (g)

)2
]1/2

, (17)

A closed form when h0 is a Dirichlet mixture is derived in Appendix E. Again, a non parametric estimate is readily

available: δ̂nonP
n = 1

√
n

[
ˆ(g2)

nonPar
n −

(
ĝnonPar

n

)2
]1/2

.
The Dirichlet test functions g’s can be interpreted from a statistical point of view, other than being a convenient

computational tool. Take g as a highly peaked Dirichlet (i.e. with large concentration ν), with mean vector µ ∈ Sd.
Then 〈g, h0〉 is close to h0(µ) and the 〈g, hθt 〉’s are close to hθt (µ). Thus, (14) may be reformulated in terms of
convergence of the posterior predictive density in a neighborhood of the simplex point µ. In practice, choosing such a
g (see Appendix D) allows to check that the posterior predictive behaves well in regions of interest (for example, in
the regions where the observed angular data concentrate). Also, in this paper, the Dirichlet g’s are chosen according
to the angular data set: their mean vector are drawn in the neighborhoods of the data points. More details are gathered
in Appendix D.

6.2. Assessing convergence in practice

For each case study, the M-DM algorithm was ran J times (typically, J = 4 or J = 8) with starting values gener-
ated from the prior. For the sake of simplicity, we use the convergence assessment tools available in R package coda.
First, the stationarity of single chains is investigated using the the Heidelberger and Welch criterion, (Heidelberger
and Welch, 1983). The latter is based on a Cramer-von-Mises statistic and is implemented in R function heidel.diag.
Under the null hypothesis that the chain has reached its stationary domain, the statistic has standard normal distribu-
tion. In a second step, only the stationary chains are retained, and it must be checked that starting values have lost
their influence. For such purpose, we use the diagnostic proposed by Gelman and Rubin (1992) and implemented in
R functions gelman.diag and gelman.plot. The principle is to compare within-chain and inter-chain variances. The
Gelman ratio statistic RG (shrink factor) converges to 1 under the null-hypothesis and a typical requirement is that
RG < 1.1.

Beside stationarity and mixing properties, the accuracy of the estimate is of primarily interest. Suppose first that
h0 is a known Dirichlet mixture (simulation experiment). Discarding the first T1 iteration of each run and considering
the sub-samples obtained between iterations T1 + 1 and T2 ( T2 > T1 ), the estimate of 〈g, h0〉 produced by the M-DM
algorithm is

ĝDM
n (J,T1,T2) =

1
J(T2 − T1)

J∑
j=1

T2∑
t=T1+1

〈g, hθt( j)〉

Each term of the summation has analytical expression derived from (15). The exact DM error is then

∆DM
n (J,T1,T2) =

∣∣∣ĝDM
n (J,T1,T2) − 〈g, h0〉

∣∣∣ .
As a summary, the error ratio

rDM =
∆DM

n (J,T1,T2)
δnonP

n
(18)

may be used as an indicator of the posterior mean estimate’s accuracy.
If h0 is unknown, accuracy of the fit may still be assessed by comparing the model estimate with its empirical

counterpart, i.e. by replacing 〈g, h0〉 with ĝnonP (see (16)) in (18) and δnonP
n with its estimate δ̂nonP

n . This defines the
empirical DM error ∆̂DM

n and the empirical error ratio r̂DM =
∆̂DM

n

δ̂nonP
n

.
In practice, it is impossible to span the whole range of test functions and to conclude that the MC MC output as

a whole is stationary. However, reasonable p-values for the Heidelberger tests, together with Gelman ratio close to
one and moderate error ratios, on a representative family of test function, confers some credibility to the estimates
constructed from the posterior samples.
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7. Results

7.1. Example: tri-variate simulated data
In this example, a sample of one hundred tri-variate points is simulated from a three component DM distribution

with parameter θ0 = (µ0, p0, ν0), with

µ0 =

 0.3 0.2 0.475
0.6 0.1 0.175
0.1 0.7 0.35

 ,
p0 = (5/12, 1/4, 0.5, 1/3), and ν0 = (15, 11, 20).

(19)

Figure 3 compares the true density with the posterior predictive resulting from one chain6. The Grey dots are the

corresponding angular points over the simplex
◦

Sd with d = 3.
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Figure 3: Predictive angular density contours (solid lines) obtained via the M-DM algorithm, on the two-dimensional simplex S3, inferred with 100
simulated points (Grey points) simulated from the true density (dotted lines) defined by (19).

The predictive angular density appears to reproduce well the characteristics of the mixture. To complement this
visual check with a quantitative convergence assessment, we follow the procedure described in Section 6.2. Four
parallel M-DM chains of 50 000 iterations are run (the first 10 000 are discarded). Five Dirichlet test function are
randomly chosen (namely, the Dirichlet mean vectors are drawn among the angular data points, see Appendix D for
details). The minimum p-values (over the five test functions) for the Heidelberger test applied to each ‘mapped’ chain
are respectively (0.13, 0.10, 0.13, 0.06). Setting a significance level of 0.05, all the chains are deemed stationary. The
multivariate Potential scale reduction factor equals RG = 1.01, indicating good mixing properties. The error ratios
rDM (see (18) ) for the five test functions are (0.02, 0.24, 0.51, 1.04, 0.48), respectively. All these ratios but one are
lower than one, as required.

As a comparison, the same procedure is followed with the algorithm proposed by Boldi and Davison (2007). The
predictive densities are similar to those obtained with the M-DM algorithm but convergence issues arise: for the same
test functions as above, the Heidelberger p-values are (0.015, 0.001, 0.07, 2 · 10−6) so that only the third chain is not
rejected. For this chain, the error ratios are (0.11, 0.63, 0.83, 1.36, 0.46), which is on average slightly more than those

6To save computational time, only one out of 100 iterations were kept to compute the predictive density. For the other tests based on integration
against Dirichlet densities, the thinning interval was set to 10.
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obtained with the M-DM algorithm. Decreasing the limiting p-value for rejection to 0.01, two chains can be retained,
but then the Gelman ratio is equal to 2.17.

For a more immediate convergence diagnostic, Figure 4 shows the evolution of the quantities 〈g, hθt( j)〉 (as defined
in (13)), where j ∈ {1, . . . , 4} is the chain index, and of the mean estimates ĝDM({ j}, 0,T ) = 1

T
∑

t≤T 〈g, hθt( j)〉 ., for one
given test function 7. Clearly, the mixing properties of the original algorithm are not as good as in the re-parametrized
version, so that it should be ran with a much higher number of iterations for the estimates to be fully reliable with real
data.

Figure 4: Convergence monitoring with three-dimensional data in the original DM model (left panel) and in the re-parametrized version (right
panel), with four parallel chains in each model. Grey lines: Evolution of 〈g, hθt( j)〉. Black, solid lines: cumulative mean. Dashed line: true value
〈g, h0〉. Dotted lines: true value +/- 1 theoretical standard deviation δnonPar

n of the empirical mean estimate with n = 100 points.

7.2. Example: stimulated five-dimensional data
We now turn to higher dimensional problems, for which the density on the full dimensional simplex cannot be

easily represented, except by projection or marginalization over triplets or pairs of coordinates. A 100- points data set
is simulated from a four-components DM distribution with parameters

µ0 =


0.1 0.5 0.2 0.18
0.1 0.2 0.2 0.24
0.1 0.1 01 0.3
0.2 0.1 0.3 0.18
0.5 0.1 0.2 0.1


p0 = (0.2, 0.1, 0.2, 0.5) , and ν0 = (30, 40, 20, 25).

Four parallel chains of length 200 103 are run in each model. As in the three dimensional example, 5 Dirichlet
test functions are randomly chosen to monitor convergence. As an example, for one test function g with Dirichlet
parameter α = ν . µ ' (2.3, 1.1, 1.7, 5.9, 13.9), the evolution of the 〈g, hθt( j)〉 and ĝDM({ j}, 0,T ) is shown in Figure 5.
Table 1 gathers the results of the convergence diagnostics performed after randomly selecting five test functions, as in
the three-dimensional case.

The same conclusion can be drawn as in the tri-variate case. The only difference is the number of simulations
required to obtain good convergence statistics with the M-DM algorithm. The computational burden remains rea-
sonable: the typical run-time is of five minutes for one chain. One practical implication of the slow mixing on the

7The Dirichlet test function is the third of the list, i.e. a Dirichlet density with parameter νµ ' (17.7, 25.2, 1.001)
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Figure 5: Convergence monitoring with five-dimensional data in the original DM model (left panel) and in the re-parametrized version (right panel),
with four parallel chains in each model. Grey lines: Evolution of 〈g, hθt( j)〉. Black, solid lines: cumulative mean. Dashed line: true value 〈g, h0〉.
Dotted lines: true value +/- 1 theoretical standard deviation δnonPar

n of the empirical mean estimate with n = 100 points.

#{stationary} HW1 HW2 HW3 HW4 RG r1 r2 r3 r4 r5

M-DM 3 0.05 0.06 0.01 0.07 1.07 0.27 0.65 0.03 0.17 0.04
BD 1 0.01 0.07 2.10−5 0.03 ‘NA’ 0.45 0.45 0.18 0.42 0.81

Table 1: Simulated five dimensional data: convergence statistics for the output of the M-DM algorithm (first line) and the original version from
Boldi and Davison (2007) (second line). First column: number of chains retained by the Heidelberger and Welches test. Columns 2-5 :minimum
p-values (over the five test functions) of the Heidelberger and Welches’ statistics applied to each chain. Column 6: Gelman ratio. Columns 7-19:
accuracy of the estimate: ratio statistics defined by (18) for five test functions.

original parametrization is that posterior credible intervals are difficult to estimate. As an example, Figure 6 displays,
for the two parametrizations, the estimated posterior mean of the bi-variate angular density for the coordinates pair
(2, 5), obtained by marginalization of the five-variate estimated density. The posterior credible band corresponds to
the point-wise 0.05− 0.95 quantiles of the density. In both cases, the estimates are obtained from the last 120.103 iter-
ations of a chain that which stationarity was not rejected (for a 0.05 p-value) by the Heidelberger test. The estimated
credible band with the original algorithm is much thinner than it is with the re-parametrized one. As a consequence,
the true density is out of the interval for a large proportion of angular points in (0, 1).

7.3. Case study: Leeds data set

This data set gathers daily maximum concentrations of five air pollutants: particulate matter (PM10), nitrogen
oxide (NO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Following Cooley et al. (2010), marginal
distributions are estimated by fitting a generalized Pareto distribution to the upper 0.7 quantile and using the empirical
distribution for the remaining observations. Marginal transformation into unit Fréchet is then performed by probability
integral mapping. The 100 largest observations (for the L1 norm) over the 498 non missing five-variate observations
are retained for model inference.

For those extremes, the convergence is slow. This may be due to the weak dependence at asymptotic levels found
by Heffernan and Tawn (2004). Eight chains of 106 iterations each were generated. Discarding half of the iterations
and setting the minimum p-value to 0.01, 4 (resp. 5 chains ) cannot be rejected by the stationarity test with the
re-parametrized algorithm (resp. with the original one). For those chains, the Gelman ratio is 1.08 (resp. 1.75).
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Figure 6: Simulated five-dimensional data (100 points): Bi-variate angular posterior predictive densities for the pair (2, 5). Left panel: Original
algorithm; Right panel: re-parametrized version. Dash-dotted line: true density; solid line: posterior predictive; Grey area: posterior credible set at
level 0.9.

This indicates again that mixing remains acceptable in the re- parametrized DM model, provided the run length
is long enough, which is not the case in the original version. Figure 7 shows the projection of the predictive density
on the three two-dimensional simplex faces. Again, the mean estimates obtained with the original MC MC algorithm
are very similar but the posterior 0.05 − 0.95 quantiles are thinner (not shown). This example allows to verify that
our estimates (after fitting the model on the five dimensional data set) are close to those found by Boldi and Davison
(2007) using an EM algorithm, for the considered coordinate pairs.
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Figure 7: Five dimensional Leeds data set: posterior predictive density. Black lines: projections of the predictive angular density defined on the
four-dimensional simplex S5 onto the two-dimensional faces. Grey dots: projections of the 100 points with greatest L1 norm.

7.4. Prior influence

In this section, the influence of the prior specification is investigated. The re-parametrized model is fitted on the
same simulated five-dimensional data set as in section 7.2, with different values for the hyper-parameters λ, σν, χµ, χe,
which correspond respectively to the mean parameter for k, the variance (on the log scale) of the shape parameters, the
concentration of the mean vectors around the ‘current’ partial centers of mass, and the concentration of the eccentricity
parameters around the objective value (see section 3.2). Also, we verify that defining the prior distribution of (µ, e)
jointly, as in section 7.2, leads to a substantially more reliable inference than when the µ · , j’s and the e j’s are a priori
mutually independent. An alternative prior for (µ, e) is thus defined such that all the mean vectors (resp. eccentricities)
are independent and uniformly distributed on the simplex (resp. the segment [0, emax]). For this simplified prior, the
shape hyper-parameter σν is made to vary as in the preceding setting.
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The default hyper-parameter values are set to

λ = 5 , kmax = 15 ,

mν = log(60) , σ2
ν = log(1 + 52) , log(νmin) = −2 , log(νmax) = 5000 ,

χe = 1.1 , emean.max = 0.99 emax = 1 − 10−6

χµ = 1.1 .

Starting from this, the hyper-parameters λ, σν, χµ, χe are perturbed, one at a time. Namely, the model is successively
fitted with λ ∈ {1, 3, 5, 7, 10, 12} (the other parameters being set to the default except for λ ∈ {10, 12} for which
kmax = 20), σ2

ν ∈ {log(1+(0.5)2), log(1+12), log(1+22), log(1+52), log(1+102), log(1+202)} , χµ ∈ {0.5, 1, 1.5, 2, 4, 8},
χe ∈ {0.5, 1, 1.1, 1.5, 3, 6}. For each hyper-parameters value, four chains are ran in parallel, with a burn-in period of
100 × 103 followed by another period 100 × 103 iterations. Five Dirichlet test functions are chosen and the quality of
the fit is assessed in terms of multivariate Gelman ratio and of the average error ratio rDM over the five test functions.
Figure 8. On both panels, lower values indicate better properties. It appears that the hyper-parameter λ ruling the
number of components has only a limited impact, except that setting λ = 1 affects the quality of the estimates.
Increasing values of λ does not alter the quality of the fit. When µ and e are a priori dependent, as in section 3.2, the
hyper-parameter σν on the variance of the shape parameters has only a limited impact: the scores are approximately
constant over the six values. As for the concentration hyper-parameter χe and χµ, only very large or low values affect
the quality of the fit and the mixing properties. For both of them, results are indistinguishable on the range [1, 3]. Only
the large value χµ = 8 damages the mixing properties of the algorithm. The only case of instability is observed with the
simplified version of the prior on (µ, e), for which the fit is more sensitive to σν and the mixing properties are generally
poor. This result is somewhat in adequacy with the findings of Boldi and Davison (2007), who concluded (for the
original model) that the prior on the shape should be defined as flat as possible. To conclude this part, the structure of
the prior defined in section 3.2 appears to be relatively robust to the hyper-parameters specification, compared to the
simplified version where µ and e are a priori independent.
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Figure 8: Influence of the prior specification on the quality of the fit (left panel) and on the chains’ mixing property (right panel). •, simplified
prior on (µ, e), influence of σν (variance of the shapes); �, dependent prior on (µ, e), influence of σν; ◦, influence of λ (mean number of mixture
components); �, influence of χµ (concentration of mean vectors); 4, influence of χe (concentration of eccentricities); Grey line, level 1.1 for the
Gelman ratio.

7.5. Comparison with other methods for bi-variate data
Here, the M-DM algorithm is compared with other Bayesian models that have already been proposed for the bi-

variate case. Namely, comparison is made with the original DM model and with the non-parametric Bayesian model
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for bi-variate spectral measure from Guillotte et al. (2011). In the latter model, the angular measure is obtained as
a smoothed version of a discrete distribution on (0, 1), allowing for atomic masses on {0} and {1} and satisfying the
moments constraint. The parameters’ randomness concerns the number and positions of the atoms on (0, 1) defining
the underlying discrete distribution (to be smoothed), as well as the amount of mass to be attributed to the boundary.

A simulation study is performed following the same pattern as in Guillotte et al. (2011) and Einmahl and Segers
(2009).

In this study, bi-variate data sets are simulated from three multivariate extreme value distributions belonging
respectively to the Logistic model, to the Asymmetric Logistic model and to the DM model itself (see Appendix
F for details). we respectively denote these ‘true’ distributions H0,L,H0,AL,H0,DM . Contrary to the two other ones,
the asymmetric logistic distribution has point masses at 0 and 1. For each H0,m (m ∈ {L, AL,DM}), 100 data sets
of size 1000 are simulated and the three Bayesian models are fitted. Following Guillotte et al. (2011), for the non-
parametric Bayesian model, the bi-variate threshold (u1, u2) is set to the theoretical 0.9 marginal quantile and the
original algorithm is modified so that the marginal parameters are set to their true values. The number of angular
observations retained for fitting both versions of the DM model is the same as the number of points in the upper
square region [u1,∞) × [u2,∞). The number of MC MC steps is set to the conservative value of 5 × 105 for the
non-parametric model, and to 2× 105 for both DM models. In the bi-variate case, the cumulative distribution function
(c.d.f.) H itself is easily representable and we consider the point-wise posterior predictive estimates Ĥ.

Figure 9 displays three examples of fit with one data set generated respectively from a logistic, an asymmetric
logistic and a DM distribution. The estimation errors Ĥ − Hi are plotted. In this bi-variate setting, the two versions
of the Dirichlet model produce very similar estimates, so that only the ones from the re-parametrized version are
displayed and compared to the non-parametric estimates. At first view, the possibility for point masses on the end
points is an advantage in favor of the non-parametric model, when the underlying distribution presents such a feature
(middle panel, asymmetric logistic distribution). On the other-hand, when the true distribution is continuous on [0, 1],
this flexibility seems to become a drawback: the posterior estimate grants some mass to {0} and {1}, whereas the true
distribution does not.
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Figure 9: Error of the predictive angular cdf (solid lines) on the segment [0,1]. From left to right: data from a Logistic, an Asymmetric logistic and
from a DM distribution. Solid line and Grey area: Dirichlet Mixture mean estimate and 0.1 − 0.9 posterior quantiles; dashed line and dashed area:
idem in the non-parametric model.

For a more quantitative assessment, the performance of the posterior mean estimates Ĥ for a given ‘true’ H0 are
compared in terms of mean integrated squared error loss (MISE), which is MISE (Ĥ,H0) =

∫ 1
0 [Ĥ(w) − H0(w)]2 dw,

and the scores are averaged over the 100 data sets, for each underlying distribution. Table 2 gathers the averaged MISE
scores. For the sake of readability, the values have been multiplied by 103. As could be expected, the non-parametric
estimator obtains the best score for the Asymmetric logistic model, because it allows point masses at the segment
end-points. In the two other cases (no mass on the boundary), the converse is observed: the non-parametric estimate
is outperformed by the DM model, probably for the same reason that makes the non-parametric framework preferable
in the asymmetric logistic case.
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As a conclusion for the bi-variate case, there is no clear general advantage in favor of one model against the others,
and the original and re-parametrized versions of the DM model behave similarly, provided that the number of MC
MC steps is large enough.

Table 2: Averaged MISE scores for the three inferential schemes (standard error of the estimate)

True distribution Logistic Asymmetric Logistic Dirichlet Mixture

Re-parametrized DM 0.57 (0.05) 3.45 (0.18) 1.17 (0.1)
Original DM 0.63 (0.04) 3.58 (0.17) 0.96 (0.07)
Non-parametric 1.28 (0.07) 1.07 (0.08) 2.25 (0.17)

8. Discussion

In this paper, we demonstrate that Boldi and Davison (2007)’s model, can, after a suitable re parametrization, be
used in a Bayesian framework to infer the dependence structure between the largest observations of a multivariate
data set of moderate dimension. The required computational effort is somewhat low; typical running times to issue
the posterior samples on a desktop machine range from less than three minutes (for the three dimensional simulated
data) to three hours (for the five dimensional Leeds data set). We have not tested the model on greater dimensional
data sets, but much more than 100 data points would likely be needed to obtain reasonably accurate results, and the
computational time would naturally increase. Still, the possibility to handle the five dimensional case may open the
road to new modeling approaches in environmental applications: Consider for example five adjacent cells on the
grid of a spatial climate model (see Figure 10). Environmental variables such as temperature or precipitation observed

Figure 10: Five adjacent cells (Grey squares) on a two dimensional discretization grid

simultaneously on the five adjacent locations are likely to exhibit some dependence at asymptotic levels and we believe
that the stability properties of the Dirichlet mixtures under conditioning and marginalization could be exploited in the
context of extreme events prediction or weather generators.

Supplementary material

An R package implementing the algorithm and the convergence assessment tools developed in this work has been
prepared. It is available on demand to the authors and is intended to be submitted to the CRAN package repository.

Appendix A. Proofs

Appendix A.1. Re-parametrization of the Dirichlet Mixture model

Expression for Tm. Recall that, from the definition, µ.,k = γk−1, and that by (3), we have γ0 = (1/d, . . . , 1/d). Also,
by associativity, for 1 ≤ m ≤ k − 1,

ρm−1 γm−1 = pm µ · ,m + ρm γm.
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Both weights defining the center of mass γm−1 are positive and, assuming (5), γm−1 is on the line segment joining γm
and µ · ,m (see Figure 1 for the three-dimensional case). Consequently,

∃tm > 0, γm = γm−1 + tm(γm−1 − µ.,m).

With the notations of Section 3, Cm =
{
i ∈ {1, . . . , d} : γi,m−1 − µi,m < 0

}
. Thus, for i < Cm, the map t 7→

γi,m + t(γi,m − µi,m) is non decreasing. Thus,

∀i < Cm,∀t > 0, γi,m + t
(
γi,m − µi,m

)
> 0 ,

whence

Tm = sup
{
t ≥ 0 : ∀i ∈ Cm, γi,m + t

(
γi,m − µi,m

)
> 0

}
= sup

{
t ≥ 0 : t < min

i∈Cm

(
γi,m

µi,m − γi,m

)}
= min

i∈Cm

(
γi,m

µi,m − γi,m

)
.

Proof of Proposition 1. The equivalence of the two parametrizations is immediate from he argument preceding the
proposition. Here, we derive the expression for pm, given the current center of mass γm−1, mean vector µ · ,m and
eccentricity em, i.e. pm = ρm

emTm
emTm+1 .

Let hθ a Dirichlet mixture density with parameter θ =
(
µ · , 1:k−1, e1:k−1, ν1:k

)
∈ Θk. Let p1:k,µ · , k be the correspond-

ing weights vector and the “last” mean vector in the original parametrization .
Let m ≥ 1 and suppose the p′js ( j < m) have been reconstructed, so that ρm−1 = 1 −

∑
j<m p j.

Since γm−1 = ρ−1
m−1

{
pmµ · ,m + ρm γm

}
, with ρ−1

m−1(pm + ρm) = 1, we have

ρ−1
m−1pm(µ · ,m − γm−1) + (1 − ρ−1

m−1pm)(γm − γm−1) = 0 ,

whence
ρ−1

m−1pm(µ · ,m − γm) = γm−1 − γm .

By assumption (5), µ · ,m , γm−1, so that γm , γm−1 and necessarily µ · ,m − γm , 0. We thus have

ρ−1
m−1pm =

‖γm − γm−1‖

‖γm − µ · ,m‖

=
emTm‖γm−1 − µ · ,m‖

emTm‖γm−1 − µ · ,m‖ + ‖γm−1 − µ · ,m‖

=
emTm

emTm + 1
.

Appendix A.2. Weak consistency of the posterior
For convenience, we restate below Schwartz’s theorem (Schwartz, 1965, Theorem 6.1, p.22). The proof requires

that the sample space (S ,S) be a separable, complete metric space, which is obviously the case with the simplex Sd

endowed with the Euclidean metric and the Lebesgue σ-field .
LetM be the set of absolutely continuous probability measures on S w.r.t. to some reference measure, which is

in our case the Lebesgue measure on Sd = {(w1, . . . ,wd−1) : wi ≥ 0,
∑d−1

1 wi ≤ 1}.
A dominated statistical model is a subsetMΘ = {hθ, θ ∈ Θ} ofM, indexed by some parameter space Θ. In a non

parametric context, Θ is any measurable space with σ-field T . For us, Θ = ΘB defined in (9) and T is the Borel
σ-field associated with the topology induced by the Euclidean topology on the co-product space ΘB. Also, it must
be assumed that the function (w, θ) 7→ hθ(w) is (S × T )-measurable. This is the case when MΘ is the set of DM
distributions satisfying (2), indexed by ΘB.
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As for random variables, the infinite sequence (W)∞ =
{
W j, j ≥ 0

}
corresponds to (i.i.d.) random vectors follow-

ing the density h0 ∈ M and W1:n = (W1, . . . ,Wn) to a sample of size n. Also, the same notation h0 is used to refer to
the distribution of W, W1:n or W∞ (defined on the product σ-fields). Finally, πn denotes the posterior π( · |W1:n) on T .
The notion of uniformly consistent sequence of tests is key to establishing weak consistency. Consider the two sided
hypothesis

H0 : h = h0 versusH1 : h ∈ Uc,

where U ⊂ M and h0 ∈ U. Let (τn)n≥1 be a sequence of tests (i.e.: τn is a function of W1:n ), with 0 ≤ τn ≤ 1 aiming
at testingH0 versusH1. Then, (τn)n is said uniformly consistent if

Eh0 (τn) −→
n→∞

0, and inf
h∈Uc

Eh(τn) −→
n→∞

1.

Throughout her paper, Schwartz assumes that the model is identifiable. However, since we focus on weak con-
sistency, we shall only need one of her results which does not require identifiability, and which we restate for conve-
nience. A self contained proof may be found in Ghosh and Ramamoorthi (2003).

Theorem 1. (L. Schwartz, 1965)
Let π a prior on T and h0 ∈ M. Let U ⊂ M containing h0, such that U ∩MΘ be T -measurable. If

• The application (w, θ) 7→ hθ(w) is (S × T )-measurable,

• h0 is in the KL support of π,

• There is a uniformly consistent sequence of tests for

H0 : h = h0 versus H1 : h ∈ M \ U ,

Then
πn(U ∩MΘ) −→

n→∞
1 , h0-almost surely. (A.1)

The identifiability assumption is used in Schwartz’s paper to exhibit a uniformly consistent sequence of test for
metric neighborhoods. As we shall see, this is unnecessary for our purposes, because we consider only weak neigh-
borhoods of the true density.

LetM be endowed with the Borelian σ-field B(M) relative to the weak topology onM. It is easily verified that
the intersections of open sets in M with MΘ are measurable for the DM model (if g is some bounded, continuous
function on Sd, the map θ 7→

∫
Sd

g hθ is continuous on all compact subset of ΘB). Consequently, a prior π on (ΘB,T )
induces a prior π̃ on (M,B(M)) defined by π̃(U) = π(U ∩MΘ). For the sake of simplicity, the ˜ will be omitted and
π denotes both the prior onM and on ΘB.

As noted e.g. in Ghosal et al. (1999), and shown in Ghosh and Ramamoorthi (2003), if U is a weak neighborhood
of h0 inM, it is easy to find a uniformly consistent sequence of tests forH0 versusH1. Indeed, any weak neighborhood
may be obtained as a finite intersection of U’s of the type {h :

∫
g h0 −

∫
g h < ε}, for some g bounded, continuous

with 0 < g < 1, so that, if τn is chosen as the indicator function of the set {W1:n : 1
n
∑n

1 Wi −
∫

h0g < ε/2}, then (τn)n

is uniformly consistent. Consequently, for such a U, the two first hypotheses alone imply the existence of a uniformly
consistent sequence of tests, so that πn(U)→ 1. For general weak neighborhoods V =

⋂R
r=1 Ur, where Ur is as above,

πn(V)→ 1 as well.
Finally, since the sample space S is separable, the space of densities M is separable for the weak topology

(see Billingsley, 1999, Theorem 6.8, for a proof that can easily be adapted to the case of absolutely continuous
distributions). The weak neighborhoods of h0 inM thus have a countable base and we can exhibit a set Ω0 ⊂ S

N ,
with h0(Ω0) = 1, on which convergence (A.1) occurs for all neighborhood of h0. We have shown (see also Ghosh and
Ramamoorthi, 2003, chapter 4)

Corollary 1. Let π be a prior on (Θ,T ), with the regularity assumption:
B(M) ∩ {hθ, θ ∈ Θ} ⊂ T and (w, θ) 7→ hθ(w) is (S × T )-measurable.
If h0 is in the KL support of π, then the posterior is weakly consistent at h0.
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Proposition 2 can now be proven.

proof of proposition 2. The regularity requirements for the Corollary to apply are met. Thus, we only need to show
that the KL closure of ΘB is included in the KL support of π.

Let h0 ∈ M be in the KL support of ΘB. In other words, for any ε > 0, we assume the existence of a θε ∈ ΘB such
that KL(h0, hθ) < ε.

Let ε > 0 and Kh0,ε a KL neighborhood of h0: Kh0,ε = {h ∈ M : KL(h0, h) < ε}. We need to show that
π(Kh0,ε) > 0.

By assumption (stated in the proposition), if U is non empty open set in ΘB, then π(U) > 0. Consequently, it is
enough to exhibit a non empty open set Uε ⊂ ΘB (for the co-product Euclidean topology on ΘB), such that Uε ⊂ Kh0,ε .

Let k ≤ kmax such that θε ∈ Θk. Then there is a closed ball B̄ε in Θk (for the Euclidean metric), centered at θε , such
that B̄ε ⊂ Θk. Let

κ : B̄ε → R+

θ 7→ KL(h0, hθ) .

If we can show that κ is continuous on B̄ε for the Euclidean topology, then we are done. Indeed, continuity implies
the existence a neighborhood Vε ⊂ B̄ε around θε where κ < ε, i.e. such that Vε ∈ Kh0,ε . Then one may choose
Uε = ΘB ∩ Vε , where the intersection is non empty (clearly, ΘB has no isolated points in Θ).

Let us now prove the continuity of κ. Let

g : B̄ε ×
◦

Sd −→ R

(θ,w) 7−→ log
(

h0(w)
hθ(w)

)
h0(w) ;

so that κ(θ) =
∫
◦

Sd
g(θ,w) dw. The function g is continuous in θ for all w, and measurable in w for all θ. By continuity

of the Lebesgue integral, we only need to show that g is uniformly dominated on B̄ε by some integrable function

g0 :
◦

Sd → R+. For such purpose, let us define

amin = min
{
µi,m νm : m ≤ k, i ≤ d, (µ, e, ν) ∈ B̄ε

}
> 0 ,

amax = max
{
µi,m νm : m ≤ k, i ≤ d, (µ, e, ν) ∈ B̄ε

}
,

Dmin = min

 Γ(νm)∏d
i=1 Γ(µi,m νm)

: m ≤ k, i ≤ d, (µ, e, ν) ∈ B̄ε

 > 0 ,

Dmax = max

 Γ(νm)∏d
i=1 Γ(µi,m νm)

: m ≤ k, i ≤ d, (µ, e, ν) ∈ B̄ε

 .

(Note that, by compacity of B̄ε , the extrema are reached, which ensures positivity of the infima)

Hence, ∀(µ, e, ν) ∈ B̄ε ,∀w ∈
◦

Sd, ∀m ≤ k,

0 < Dmin

∏
1≤i≤d

wamax−1
i ≤ diri(w |µ · ,m, νm) ≤ Dmax

∏
1≤i≤d

wamin−1
i .

By convex combination, we also have, ∀θ ∈ B̄ε ,∀w ∈
◦

Sd,

0 < Dmin

∏
i

wamax−1
i ≤ hθ(w) ≤ Dmax

∏
i

wamin−1
i .

Whence, by monotonicity of the log function, ∃D1,D2 > 0,

D1 + (amax − 1)
∑

i

log(wi) ≤ log (hθ(w)) ≤ D2 + (amin − 1)
∑

i

log(wi) .

23



Let C1 = max
{
|D1| , |D2|

}
and C2 = max

{
|amin − 1| , |amax − 1|

}
. We have: ∀(θ,w) ∈ B̄ε ×

◦

Sd ,

| log(hθ(w)| ≤ C1 + C2

∣∣∣∣ d∑
i=1

log(wi)
∣∣∣∣ .

Thus, ∀(θ,w) ∈ B̄ε ×
◦

Sd,

|g(θ,w)| ≤

| log(h0(w))| + C1 + C2

∣∣∣∣ d∑
i=1

log(wi)
∣∣∣∣ h0(w)

= g0(w) .

Using the fact that, for α > −1, w 7→ wα log(w) is integrable on (0, 1), with w 7→ 1
α+1 (wα+1 log(s) − wα+1

α+1 ) as an anti

derivative, g0 is integrable on
◦

Sd, so that κ is continuous on B̄ε and the proof is complete.

Appendix B. Ergodicity properties of the Markov chain generated by the reversible jump algorithm.

In this section, π̃ = πn denotes the posterior distribution and K is the M-DM kernel as defined in Section 4 as a
mixture kernel (one component corresponding to a given move choice).

proof of Proposition 3.

Aperiodicity
It is enough to verify that, if θt ∈ ΘB, then the probability of rejecting the proposal is positive, i.e. K(θt, {θt}) > 0.
This is true, e.g. because the probability of proposing a regular move is positive (and independent from θt) and the
acceptance probability of a regular move is obviously strictly less than one.

η-irreducibility.
Here, the irreducibility measure is the Lebesgue measure on ΘB, so that the prior π (hence, the posterior) and η are
equivalent. In the sequel, let ΘBk denote the index set of k-mixtures of Dirichlet densities in the prior’s support:
ΘBk = ΘB ∩Θk.

We need to show that, if θstart ∈ ΘBk and A ⊂ ΘB is such that π̃(A) > 0, then there is a i ≥ 0 such that Ki(θstart, A) >
0. The idea of the proof is very simple: we may choose A as a ’rectangular’ subset of ΘBk′ , for some k′ ≤ kmax. If
k = k′, we shall exhibit a finite sequence of regular move types (one move for each direction) allowing to reach A
from θstart. If k , k′, it is easily verified that ΘBk′ is accessible from ΘBk. For the sake of completeness, we detail the
proof.

For θ = (µ, e, ν) ∈ ΘBk, Let us organize the components of θ into 3k − 2 blocks (θ1, . . . , θ3k−2), so that θm is
respectively equal to µ · ,m (if 1 ≤ m ≤ k − 1), em−kmax+1 (if k ≤ m ≤ 2k − 2) or νm−2kmax+2 (if 2k − 1 ≤ m ≤ 3k − 2).

Similarly, we denote Em
k the factor of the product space ΘBk corresponding to direction m, so that ΘBk =∏3k−2

m=1 Em
k . Without loss of generality, take A as a ‘rectangle’ A =

∏3k−2
m=1 Am , Am ⊂ Em

k .
Assume first that θstart ∈ ΘBk, and consider a sequence of move choices c1:3k−2 = c1, . . . , c3k−2, made of all the

possible regular move choices. The probability of such a sequence starting from θstart, is non zero.
If xm ∈ Em

k , let θ̃ (θ, xm) =
(
θ1, . . . , θ

m−1, xm, θm+1, . . . , θ3k−2
)

be the element of ΘBk obtained by replacing some θm

with xm.
Finally, denoting θ0 = θstart, and for xt ∈ Et

k, θt = θ̃(θt−1, xt), qt and rt being the corresponding proposal density
and acceptance probability, we have

K3k−2(θ, A|c1:3k−2) ≥
∫

A1

· · ·

∫
A3k−2

3k−2∏
t=1

qk
t rk

t

(
θt−1, θ̃(θt−1, xt)

)
dx1 · · · dx3k−2 ,

where, ∀1 ≤ m ≤ 3k − 2, θm ∈ A1 × · · · × Am × Ek
m+1 × · · · × Ek

3k−2 .
Further, for θ0, x1, . . . , x3k−2 ∈ ΘBk × A1 × · · · × A3k−2, we have
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• π̃(θ0) > 0

• ∀m ≥ 1, qm(θm−1, θm) > 0 and qm(θm, θm−1) > 0

So that each term of the integrand is positive, and we have K3k−2(θstart, A|c1:3k−2) > 0. Thus, K3k−2(θstart, A) > 0.
Assume now that θstart < ΘBk. In such a case, the probability of proposing and accepting trans-dimensional moves

until the chain reaches ΘBk is positive. Consequently, ΘBk is accessible from θstart, which completes the proof.

Invariance of the posterior distribution under the M-DM kernel
Since the whole M-DM kernel K is a weighted average of partial kernels defined in section 4, it is enough to

show that the posterior is invariant under each of them. The invariance under trans-dimensional moves is ensured by
the fact that the acceptance ratios rsplit and rcombine defined in section 4.2 satisfy Green (1995)’s balance condition.
Also, each ‘regular’ kernel Km(θ, · ) (i.e. affecting one µ · ,m, one νm or one em corresponds to a Metropolis-within-
Gibbs partial kernel, as defined e.g. in Roberts and Rosenthal (2006), so that, if we denote Im(Km, θ) ⊂ Θ the
image of Km(θ, · ), ηm the reference Lebesgue measure on Im(Km, θ), qm the proposal density (w.r.t. ηm) and rm

acceptance probability, then, following Roberts and Rosenthal (2006, Section 4), the so-called balance equation,
π̃(θ)qm(θ, θ∗)rm(θ, θ∗) = π̃(θ∗)qm(θ∗, θ)rm(θ∗, θ), ensures the invariance of π̃ under Km.

We only need to show the invariance under the shuffle moves.
Let r(θ) = rshuffle,m1,m2 (θ, θ∗) denote the acceptance probability of the shuffle move as described in Section 4.3, for

a transposition ϕm1,m2 , so that θ∗ = ϕm1,m2 (θ) := ϕ(θ). Let Ks be the corresponding transition kernel (i.e., the transition
kernel conditionally to proposing a shuffle move affecting m1 and m2). We derive a sufficient condition on r for the
posterior distribution πn to be invariant under Ks. The proposal kernel Qs, conditionally to the acceptance of the
shuffle move, is the point mass Qs(θ, A) = δϕ(θ)(A) = 1A(ϕ(θ)), for A ⊂ ΘB. The shuffle kernel Ks may thus be written
as

Ks(θ, A) = r(θ)1A(ϕ(θ)) + (1 − r(θ))1A(θ)
= r(θ)1ϕ−1(A)(θ) + (1 − r(θ))1A(θ) .

and the shifted measure of A is

Ks.πn(A) =

∫
ϕ−1(A)

πn(θ)r(θ) dθ +

∫
A
(1 − r(θ))πn(θ) dθ

=

∫
A
πn

(
ϕ−1(θ∗)

)
r(ϕ−1(θ∗)) |Jac(ϕ)|−1

[ϕ−1(θ∗)] dθ∗ +

. . .

∫
A
(1 − r(θ))πn(θ) dθ

= πn(A)+

. . .

∫
A
πn

(
ϕ−1(θ∗)

)
r(ϕ−1(θ∗)) |Jac(ϕ)|−1

[ϕ−1(θ∗)] − r(θ∗)πn(θ∗) dθ∗ .

A sufficient condition for Ks.πn(A) = πn(A) is thus πn (θ) r(θ) |Jac(ϕ)|−1
[θ] = r(θ∗)πn(θ∗) , or

∀θ ∈ ΘB,
r(θ)
r(θ∗)

=
πn(θ∗)
πn (θ)

|Jac(ϕ)|[θ] (B.1)

Now, since ϕ is the transposition of two components of the Ψ-parametrization, we have ϕ = ϕ−1, and

|Jac(ϕ)|[θ] =

√
|Jac(ϕ)|[θ] |Jac(ϕ)|[θ] =

√√
|Jac(ϕ)|[θ]∣∣∣Jac(ϕ−1)

∣∣∣
[ϕ(θ)]

=

√
|Jac(ϕ)|[θ]
|Jac(ϕ)|[θ∗]

,

so that (B.1) holds if we set r(θ) to

r(θ) = min
(
1,
πn(θ∗)
πn (θ)

|Jac(ϕ)|[θ]

)
It must be noted that the above argument is not valid for general permutations of indices ϕm1,...,md , unless the

condition ϕ = ϕ−1 holds.
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Appendix C. M-DM algorithm details

Appendix C.1. Proposal distribution for µ-moves
The proposal density qµ(µ · ,m(t), · ) is a Dirichlet mixture constructed from the data W1:n = (W1, . . . ,Wn):

qµ(µ · ,m(t), · ) =

n∑
j=1

p̃ j diri( · | µ̃W j
, ν̃).

The proposal parameters (p̃, µ̃W, ν̃) are as follows: Let ε̃w be a recentring parameter, typically set to 0.1. Then

µ̃W j
= (1 − ε̃w)W j + ε̃wγ0 ,

where γ0 = (1/d, . . . , 1/d). is the centroid of the simplex. The concentration parameter is set to ν̃ = d
ε̃w
, So that each

component diri( · | µ̃W j
, ν̃) is bounded, with mode at W j .

Finally, the weights (p̃1, . . . , p̃n) are defined so as to penalize the distance between µ · ,m(t) and W j . Namely, p̃ j

is proportional to the density, evaluated at W j , of a Dirichlet distribution with mode at µ · ,m(t) . Again, we define
ε̃µ ∈ (0, 1/2) (typically, ε̃µ = 0.1), then µ̃µ = (1 − ε̃µ)µ · ,m(t) + ε̃µγ0 and ν∗µ = d/ε∗µ. Now, the un normalized weight for
the j th mean vector is

˜̃p j = diri(W j | µ̃µ, ν̃µ).

Finally, we normalize the vector and set p̃ j = ˜̃p j /
∑n

j=1
˜̃p j .

In short, the proposal mean vector µ∗· ,m has a good chance to be drawn in a small neighborhood of one data point
W j, which in turn should be located close to the current mean vector µ · ,m(t).

Appendix C.2. Proposal distribution for split moves
The proposal distribution for the new mean vector µ∗

· ,k is constructed similarly to the µ-moves distribution.
Namely, the proposal density qµ,split is defined by

qµ,split(θt, · ) =

n∑
j=1

p̃split
j diri( · |µ̃W j

, ν̃)

where the µ̃W j
’s and ν̃’s are the same as in the µ-moves, and where the weights p̃split

j are defined in a similar way as

the p̃ j’s, except that the recentring parameter ε̃µ = 0.1 is replaced with ε̃split
µ = 0.5 and that the ‘current mean vector’

µ · ,m(t) is replaced with the last vector µ · , k(t) in the Ψ-parametrization.
Compared to the µ-moves, the proposal distribution is thus less concentrated around µ · , k(t).
The kth eccentricity parameter e∗k is generated, conditionally to the proposed mean vector µ∗

· ,k, according to the
prior distribution:

qe,split(θt, · |µ
∗
· ,k) = πe,k( · |µ · ,1:k−1,µ

∗
· ,k, e1:k) .

Finally, the last shape parameter ν∗k+1 is generated according to the proposal distribution for regular ν-moves,
conditionally on νk(t):

qν,split(θt, · ) = qν(νk(t), · ).

Appendix C.3. Jacobian term in the acceptance ratio for shuffle moves
Here is derived the closed form of Jac(ϕ) appearing in (11).
The indices m1,m2, and we denote G the local diffeomorphism deduced from Γ:

G : ΘBk ⊂ R3k−2 −→ G(ΘBk) ⊂ R3k−2(
µ · , 1:k−1, e1:k−1, ν1:k

)
7−→

(
µ · , 1:k−1, p1:k−1, ν1:k

)
.

Recall that ϕ(θ) = Γ−1 ◦ τ ◦ Γ(θ), so that

Jac(ϕ)θ = Jac(G−1)τ◦Γ(θ) Jac(τ)Γ(θ) Jac(G)θ .
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The determinant of a transposition is −1, so that

|Jac(ϕ)θ| =
∣∣∣∣∣ Jac(G)θ
Jac(G)θ∗

∣∣∣∣∣ ,
and we only need to compute Jac(G). The Jacobian matrix dG is of the form

dG =

 1R(d−1)(k−1) 0 0
Mp,µ Mp,e 0

0 0 1Rk

 ,
Where 1R(d−1)(k−1) denotes the identity matrix on R(d−1)(k−1) and Mp,e is the Jacobian matrix

(
∂pi
∂e j

)
i, j<k

relative to p and e.

Hence, Jac(G) =
∣∣∣Mp,e

∣∣∣.
Since pm depends only on the {µ · , j, e j : j ≤ m}, we have

∣∣∣Mp,e

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂p1
∂e1

0 · · · 0

∗
. . .

. . .
...

...
. . .

. . . 0
∗ · · · ∗

∂pk−1
∂ek−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
whence ∣∣∣Mp,e

∣∣∣ =

k−1∏
m=1

∂pm

∂em
.

From Proposition 1, we have

∂pm

∂em
=

∂

∂em

(
ρm−1

emTm

1 + em Tm

)
=

ρm−1 Tm

(1 + em Tm)2 .

Note that this holds because ρm−1 and Tm do not depend on em: they are functions of the {µ j, e j : j < m} only.
The desired Jacobian’s absolute value is thus

|Jac(ϕ)| =
k−1∏
m=1

ρm−1 Tm

(1 + em Tm)2

k−1∏
m=1

(
1 + e∗m T ∗m

)2

ρ∗m−1 T ∗m
(C.1)

where the e∗m, ρ
∗
m−1,T

∗
m are relative to the proposal parameter θ∗ = ϕ(θ).

Appendix D. Convergence assessment: Random choice of Dirichlet test functions

Let W1:n = (W1, . . . ,Wn) be an angular data set, L ∈ N∗ and{
g` = diri( · |µ̃`, ν̃`), 1 ≤ ` ≤ L

}
,

a set of Dirichlet test functions to be constructed. In this study, we fix L = 5 and the µ̃`’s are chosen so that they
correspond to the dependence features of the data set (cf our remark preceding Section 6.2). Namely, the µ̃`’s are
sampled among candidate angular data points as follows:

We fix a maximum shape parameter ν̃max = 300∗d, where d is the dimension of the sample space. Then, we retain
the n′ angular points W j which verify

min
1≤i≤d
{Wi, j} > ν̃max
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Then, L angular data points
{
W j` , 1 ≤ ` ≤ L

}
, are chosen (uniformly) among the n′ candidate data points, and we set

µ̃` = W j` . Finally, we fix a minimum value ν̃min = 5 ∗ d for the test’s shape parameter, as well as a multiplying
constant χtest = 1.001, then the `th shape parameter is set to

ν̃` = max
{

χtest

min1≤i≤d µ̃i,`
, ν̃min

}
.

Appendix E. Theoretical standard deviation of the empirical estimate of Eh0 (g), for g a Dirichlet test function.

Here it is assumed that h0 = hθ is itself a Dirichlet mixture density. We already have the expression for Eθ(g) =

Ehθ (g) when g = diri( · | µ̃, ν̃) and θ = (p,µ, ν):

Eθ(g) =

k∑
m=1

pmIµ · ,m, νm(µ̃, ν̃) (E.1)

where the Iµ · ,m, νm(µ̃, ν̃)’s are given by (15).
To compute Eθ(g2), we note that

g2( · ) = Cµ̃,ν̃ diri( · |µ′, ν′),

with ν′ = 2ν̃ − d, µ′ = (2ν̃µ̃ − 1)/ν′ and Cµ̃,ν̃ =
Γ(ν̃)2∏

1≤i≤d Γ(ν̃µ̃i)2

∏
1≤i≤d Γ(ν′µ′i )

Γ(ν′) . The analytic expression for (17) follows:

δnonP
n = n−1/2

Cµ̃,ν̃ k∑
m=1

pm Iµ · ,m, νm(µ′, ν′) −

 k∑
m=1

pm Iµ · ,m, νm(µ̃, ν̃)


2

1/2

Appendix F. Bi-variate distributions used in the simulation study

Appendix G. Correction on the prior proposed by Boldi and Davison (2007)

In the original parametrization, the prior Fµ on µ is defined conditionally on the number k of mixture components
and on the weights vector p, by successive conditioning in the lexicographic order:

Fµ(µ · ,1, . . . ,µ · ,k) = f1,1(µ1,1) f1,2(µ1,2|µ1,1) · · · f1,k−1(µ1,k−1|µ1,1:k−2) · · · fd−1,k−1(µd−1,k−1|µ1:d−1,1:k−2) ,

where fi, j is a uniform distribution on the largest interval Ii, j (i ≤ d − 1, j ≤ k − 1) allowing (3), and where the last
column and the last line are deduced from the others according to (3) and

∑
i µi,m = 1. Boldi and Davison indicate

zero as a lower bound for Ii, j. In fact, small values in the the first columns of µ imply large ones on the last column,
which, in some cases, induce negative values on the last line. It is left to the reader to verify that the correct lower
bound for Ii, j is

max

0, p−1
j

d−1 −
∑
m< j

pm µi,m −
∑

m∈ j+1,...,k

pm (1 − S i,m)




where S i,m =
∑
`<i µ`,m (1 ≤ m ≤ k).
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