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Abstract The main framework of multivariate extreme value theory is well-known
in terms of probability, but inference and model choice remain an active research
field. Theoretically, an angular measure on the positive quadrant of the unit sphere
can describe the dependence among very high values, but no parametric form can
entirely capture it. The practitioner often makes an assertive choice and arbitrarily fits
a specific parametric angular measure on the data. Another statistician could come up
with another model and a completely different estimate. This leads to the problem of
how to merge the two different fitted angular measures. One natural way around this
issue is to weigh them according to the marginal model likelihoods. This strategy, the
so-called Bayesian Model Averaging (BMA), has been extensively studied in various
context, but (to our knowledge) it has never been adapted to angular measures. The
main goal of this article is to determine if the BMA approach can offer an added
value when analyzing extreme values.
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1 Introduction

Assessing the probability of occurrence of joint extreme events has proven to be
a major issue for risk management and a complex inferential problem in statistics.
To illustrate this point, daily maximum concentrations of three air pollutants, PM10
(Particulate matter), NO (Nitrogen oxide) and NO2 (Nitrogen dioxide), recorded in
Leeds (U.K.) during five winter seasons (1994–1998),1 are displayed in Fig. 1. Visu-
ally, asymmetrical relationships seem to be present, the dependence between NO2
and NO may be stronger than that between the two other pairs. For this Leeds data
set, at least three different approaches (Cooley et al. 2010; Heffernan and Tawn 2004;
Boldi and Davison 2007) have already been proposed. Heffernan and Tawn (2004)’s
study focuses on conditional distributions, allowing both for asymptotic dependence
or independence at extreme levels. On the contrary, Cooley et al. (2010) and Boldi
and Davison (2007), under the assumption of asymptotic dependence, characterize
the joint distribution of extremes in terms of the so-called angular measure (see
Section 2 for more details), respectively in a parametric and semi-parametric frame-
work. In this paper, we follow this latter approach, and focus on parametric models.
Several such models have already been proposed for the case where the data
are dependent at asymptotic levels: see e.g. chapter 9 of Beirlant et al. (2004),
Tawn (1990) or Coles and Tawn (1991) for the Logistic and Dirichlet families; or
Cooley et al. (2010) for the Pairwise Beta model, further generalized by Ballani and
Schlather (2011).

In this context, two practitioners working on the same data may well have chosen
two distinct models, leading to different estimates of some quantity of interest such
as a probability of joint excess of some high multivariate threshold. One could thus
reasonably ask if it would be appropriate to merge these results. Our main objec-
tive throughout this paper is to investigate how to average the estimates issued from
existing parametric families and what are the benefits and the limitations of such an
approach.

The Bayesian framework appears to be well tailored for this task because set-
ting priors offers a natural way to integrate results issued from different studies.
The so-called Bayesian Model Averaging (BMA) method has been extensively stud-
ied in other contexts (e.g., Raftery et al. 2005; Madigan and Raftery 1994; Hoeting
et al. 1999). Its adaption to the analysis of multivariate extreme events represents the
main aim of this work. To our knowledge, in the field of multivariate extremes, the
only publication using BMA is Apputhurai and Stephenson (2011). They combined
the cumulative distribution functions of asymptotically dependent and independent

1Five different air pollutant concentrations (PM10, NO, NO2, O3, and SO2) were measured in the city
centre of Leeds, see http://www.airquality.co.uk for more details. We restrict our analysis to the three most
dependent pollutants.
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Fig. 1 Daily maximum concentrations of three air pollutants, PM10, NO and NO2, recorded in Leeds
(UK) during five winter seasons (1994–1998)

models, in the bi-variate case. Our approach differs from theirs in focusing on asymp-
totically dependent models, and combining the dependence structures themselves
(angular measures or exponent functions, see Section 2 for definitions and rationale
for such a choice).

In the next section, we recall the necessary background about multivariate
extremes. In Section 3, we detail the BMA nuts and bolts within a multivariate
extremes context. The BMA scheme is implemented in Section 4 with two differ-
ent models: the Pairwise Beta model (Cooley et al. 2010) and a nested asymmetric
logistic model. A simulation study is performed: data sets are generated from a semi-
parametric Dirichlet mixture model (DM) introduced by Boldi and Davison (2007)
and we compare the predictive performance of the BMA versus a model choice
framework. The tri-variate Leeds data set is also revisited. Section 5 offers a few
conclusions regarding the advantages and limitations of averaging spectral measures.

2 Background and notations

Spectral measure Let X = (X1, . . . , Xd)T be a positive random vector of dimension
d whose margins follow a unit Fréchet distribution, P(Xi ≤ x) = exp(−1/x), for
all x > 0. To describe the extremal behaviour of the vector X, it is mathematically
convenient to transform the Cartesian coordinates into pseudo-polar ones by setting

R = X1 + · · · + Xd and W = (X1/R, . . . , Xd/R)T

where R and W are often called the radius and the angular vector, respectively. The
latter one lies on the unit simplex Sd = {w : w1 + · · · + wd = 1, wi > 0}.
With regards to the Leeds data set, we follow the exact same procedure as Cooley
et al. (2010) to estimate the marginal distributions of the three pollutants plotted
in Fig. 1. Each uni-variate series can thus easily be transformed into unit Fréchet
distributed ones via a probability integral transformation. Observations with the 100
largest radial components2 (out of 539 non missing triplets) are plotted on the unit

2Besides the L1-norm (x1 + x2 + x3), other norms could be used for threshold selection.
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Fig. 2 Leeds data set: the 100 points with largest radial component R = x1 + x2 + x3 (unit Fréchet scale)
projected on the unit simplex

simplex S3 in Fig. 2. The points located at the centre of this triangle correspond to
events that were equally extreme in the three directions.

Multivariate extreme value theory tells us that, under mild conditions,3 the depen-
dence structure among excesses above a high radial threshold r can be characterized
by the asymptotic distribution H of the angular component:

lim
r→∞ P(W ∈ B | R > r) = H(B) , (1)

The spectral measure H(.) is any probability measure on the simplex Sd that satisfies
the following moment constraint

∀i ∈ {1, . . . , d},
∫

Sd

wi dH(w) = 1
d

. (2)

Limit measure With our normalization choice, the spectral measure is related to a
limit measure ν, defined on E = [0, ∞]d \ {0}, in pseudo-polar coordinates, by
dν = d

r2 dr dH (see e.g. Chapter 6 of Resnick 2007). The measure ν is homogeneous

3 The largest values have to belong to the domain of attraction of a max-stable distribution (the distribution
G is said to be max-stable if Gt (tx) = G(x) for any t > 0). This type of distribution arises as the
natural non-degenerate limit of rescaled i.i.d. component wise maxima of random vectors with unit Fréchet
margins (de Haan and Ferreira 2006; Resnick 1987, 2007). Within this framework, it is classical to define
the exponent function V (x) = − log G(x) that satisfies V (tx) = t−1V (x).
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of order −1, i.e. for any measurable subset A ⊂ E, ν(tA) = 1
t ν(A). If A is relatively

compact in E,

lim
n→∞ nP

(
X
n

∈ A

)
= ν(A). (3)

In particular, Eq. 3 holds for any failure set A of the form A(u) = {x : x1 >
u1, . . . , xd > ud } .

Modelling threshold excesses Equations 1 and 3 provide the main elements for mod-
elling excesses in practice. Given a data set whose margins have been transformed
into unit Fréchet, one may fix a high radial threshold r0 and retain only obser-
vations with radial component exceeding r0. The corresponding angular data set
W = (W1, . . . , Wn), as in Fig. 2 with n = 100 excesses, is assumed to be an i.i.d.
sample distributed according to H(.). Then, the statistician has to propose and fit an
adequate spectral measure.

In other words, all the inference in this paper is based on the following key
assumption, in view of Eq. 3: Conditionally on the radial component R exceeding
the retained threshold r0, the random vector X is assumed to be distributed accord-
ing to some (normalized) limit probability measure ν̃, with, in polar coordinates,
dν̃ = d

r0

dr
r2 dH . The angular and the radial components are thus assumed to be inde-

pendent on regions {r > r0}, and H characterizes ν̃, so that a a statistical model for
excesses above r0 can be indexed by a set of angular measures. Also, the likelihood
is proportional to the density h evaluated at the angular data points W and inference
can be made with the angular components only. This assumption of ‘perfect thresh-
old’ has a second consequence: The likelihood of an angular measure which mass is
concentrated on the axis is zero, because all the angular data points lie in the interior
of the positive quadrant. This restricts any likelihood-based inference to asymptoti-
cally dependent models, i.e. to H -families which put some mass in the interior of the
unit simplex only.

Relaxing the ‘perfect threshold’ assumption is possible if one works with max-
stable distributions, but then, the link with questions related to excesses above
threshold is not immediate. Another reason for not considering this option in the con-
text of model averaging is the fact that an average of max-stable distributions is not
max-stable. More details are given at the end of this section.

Further, one may consider asymptotically independent models with second-order
regular variation in the interior of the positive quadrant (Ledford and Tawn 1996;
Ramos and Ledford 2009). However, flexible parametric models for asymptotically
independent data, in problems of dimension greater than three, have only recently
been proposed in an unpublished paper from Qin et al. (2008).4 For the sake of sim-
plicity, we leave apart this class of models and focus on asymptotically dependent
data.

4Qin X., Smith R.L., Ren R.E., Modelling multivariate extreme dependence, In 2008 Joint Statistical
Meetings (JSM) Proceedings, Risk Analysis Section. Alexandria, VA: American Statistical Association:
3089–3096.
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If a vector u = (u1, . . . , ud)T defines the boundary of a failure region A(u) =
{x : x1 > u1, . . . , xd > ud} is such that

∑d
i=1 ui > r0 for some large r0, using Eq. 3

and the homogeneity property of the limit measure, the probability of being in the
failure region can be approximated with ν:

P(X1 > u1, . . . , Xd > ud) ( ν
(
A(u)

)
= d

∫

A

1
r2 dr dH(w)

= d

∫

Sd

∫

r>maxi=1:d
ui
wi

1
r2 dr dH(w)

= d

∫

Sd

min
i=1:d

wi

ui
dH(w) (4)

A classical way of proposing parametric max-stable models is to define them
through their exponent function V , (see footnote 3), which is related to ν by

∀x ∈ E, V (x) = ν
{
([0, x1] × · · · × [0, xd])c

}
,

where ( · )c denotes the complementary set in E. In the case where all the mass of the
angular measure H is concentrated in the interior of the simplex Sd , and V is regular,
Theorem 1 of Coles and Tawn (1991) provides a general relationship to derive the
spectral density h(w) from V (.): h(w) = − 1

d ∂x1,...,xd V (x)
∣∣
x=w. One advantage of

such models is that Eq. 4 has an analytical expression obtained from V by inclusion-
exclusion. For three-dimensional sample spaces, it yields

ν
(
A(u)

)
= V (u1, u2, u3) + · · ·

· · · V (u1, ∞, ∞) + V (∞, u2, ∞) + V (∞, ∞, u3) − · · ·
· · · (V (u1, u2, ∞) + V (u1, ∞, u3) + V (∞, u2, u3)) . (5)

One drawback is that the angular likelihood h has to be computed by differentiation
of order d .

Multivariate extreme models In theory, the only constraint on H is encapsulated
by Eq. 2, which advocates in favour of fully non-parametric estimation methods
(see e.g. Einmahl et al. 2001; Einmahl and Segers 2009; Guillotte et al. 2011;
Gudendorf and Segers 2011). In a Bayesian context, it is computationally difficult to
handle moderate dimension problems with semi-parametric spectral measures. For
example, Boldi and Davison (2007) introduced a semi parametric Bayesian model
based on mixtures of Dirichlet distributions and concluded that “one practical draw-
back with the approach stems from the use of simulation algorithms, which may
converge slowly unless they have been tuned. A second is that the number of param-
eters increases rapidly with the number of mixture components, so model complexity
must be sharply penalized through an information criterion or a prior on the number
of mixture components”.

From a practical point of view, parameters in some well-chosen models may
offer interpretable summaries to describe the dependence structure (e.g., a finite
number of parameters allows to compare between two time periods), and a feasible
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strategy to reduce the computational complexity. A seminal example (Gumbel 1960)
of parametric model defined by the exponent function is the logistic one

VL(x) =
(

d∑

i=1

x
−1/α
i

)α
(0 < α < 1) .

The logistic model can be extended to handle asymmetrical behaviours and to cap-
ture additional dependencies among subsets of variables (Coles and Tawn 1991). In
particular, the exponent function

VNL(x) = 2−α0

[(
x

−1
α0α12
1 + x

−1
α0α12
2

)α12

+
(

x
−1

α0α13
1 + x

−1
α0α13
3

)α13

+ · · ·
(

x
−1

α0α23
2 + x

−1
α0α23
3

)α23
]α0

(0 < α0 , α12, α13, α23 < 1) ,

(6)

is a possible generalization which allows for asymmetric pairwise relationships,
while concentrating all its mass in the interior of S3. This model belongs to the class
of the nested asymmetric logistic models. In the remainder of this paper, we refer to
the one defined by Eq. 6 as the NL model, we denote α = (α0, α12, α13, α23). The
expression for the NL density hNL( · |α) on S3 is given in Appendix. One advantage
of NL is its low number of parameters and in their interpretability. The scalar α0
describes the overall dependence among the three coordinates and the αij ’s charac-
terize the additional pairwise dependences. The dependence between a coordinates
subset is a decreasing function of the corresponding parameter.

It is also possible to define a multivariate extreme model directly through the
spectral density. For example, Cooley et al. (2010) fitted to the Leeds data set the
following Pairwise Beta (PB) model

hPB
(
w|β0, {βij }1≤i<j≤d

)
=

∑

1≤i<j≤d

hij

(
w|β0, βij

) (
β0, βij > 0

)
,

which is a sum of beta functions defined by

hij

(
w|β0, βij

)
= Kd(β0) w

2β0−1
ij (1 − wij )

(d−2)β0−d+2%
(
2βij

)

%2
(
βij

)wβij −1
i/ij w

βij −1
j/ij

with wij = wi + wj , wi/ij = wi
wi+wj

and Kd(β0) = 2(d−3)!
d(d−1)

%(β0d+1)
%(2β0+1)%(β0(d−2)) .5

The interpretation for the parameters in the PB model is similar to the NL model’s
one, except that the strength of the dependence is an increasing function of β0 and of
the βij ’s. Again, we denote β = (β0, β12, β13, β23).

5The difference of a multiplicative factor
√

d in our normalizing constant compared to the one given
by Cooley et al. (2010) is due to the choice of the reference measure: in the aforementioned study, the
reference measure is the Lebesgue measure (more precisely the Hausdorff measure) on the simplex itself,
whereas we write our densities with respect to its projection on the d − 1 dimensional euclidean space.
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Having at our disposal several spectral models leads us to the question of how to
average them with respect to the data set at hand. First, one could wonder what is the
meaning of averaging spectral measures in terms of random variables and if directly
averaging the corresponding max-stable distributions could be a valuable alterna-
tive. However, if the random vector Mj follows a max-stable distribution Gj(x) =
exp(−Vj (x)) with unit Fréchet margins, then the averaged distribution G(x) =
p1G1(x) + · · · + pJ GJ (x) (with

∑J
j=1 pj = 1) is not max-stable anymore: it does

not satisfy Gt(tx) = G(x) for any t > 0. In contrast, averaging the angular measures
Hj still provides another valid angular measure. Indeed, p1H1(.)+· · ·+pJ HJ (.) sat-
isfies Eq. 2. In terms of random vectors, averaging angular measures translates into
component-wise max-linear combinations. More precisely, if the Mj ’s are indepen-
dent, then the max-linear combination M̃ = p1M1∨· · ·∨pJ MJ , where ∨ denotes the
component-wise maximum, has exponent function Ṽ (x) = p1V1(x)+· · ·+pJ VJ (x).

The latter is associated with the spectral measure H̃ = p1H1 + · · · + pJ HJ .
This derives immediately from the homogeneity property (Vj (tx) = t−1Vj (x))
characterizing exponent functions:

P(M̃ ≤ x) = P




J∨

j=1

pjMj ≤ x



 =
J∏

j=1

P
(

Mj ≤ x
pj

)

=
J∏

j=1

exp
[
−Vj

(
x
pj

)]
= exp



−
J∑

j=1

pjVj (x)



 .

3 Bayesian model averaging for spectral measures

In the general context of parametric modeling, the information loss relative to the
choice of one particular model may be high. Averaging the estimates stemming from
several models, with appropriate weights, can be used to partially overcome this
issue. As an example, Raftery et al. (2005) found some evidence in an ensemble
weather forecast context that the predictive variance in one model would sometimes
not reflect the total predictive uncertainty, whereas the predictive variance in the aver-
aged model accounted better for prevision errors. Madigan and Raftery (1994) found
some examples, in a contingency tables context, where averaging models resulted in
better predictive performance, as measured by a logarithmic scoring rule. We recall
here the basic BMA features within our spectral measure context. For a review of
BMA, the reader may refer to Hoeting et al. (1999).

Suppose we have M spectral density models M1, . . . , MM , such that each model
Mm = {hm( · | θm), θm ∈ 'm} has a finite dimensional parameter space 'm. In this
paper, for illustrative purpose, we set M = 2 and h1 and h2 correspond respectively
to the aforementioned PB spectral measure family hPB and to the NL one hNL.

In a Bayesian framework, beliefs of the statistician about θm (e.g., arising from
expert knowledge), prior to any observation, are made explicit: each parameter space
'm is endowed with a prior measure (in our case, a probability measure), denoted
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πm. Now, in a Bayesian model averaging setting, the statistical model M̃ is the dis-
joint union of the individual models: in other words, the parameter space '̃ indexing
M̃ is the disjoint union '̃ = ⊔M

m=1 'm. We recall that a disjoint union of sets
A1, . . . , AM is defined by

⊔M
m=1 Ai = {(m, am), 1 ≤ m ≤ M, am ∈ Am}. In

the sequel, the term ‘union model’ will refer to the BMA model indexed by the
disjoint union '̃. A prior on the index set {1, . . . , M} is thus needed: we choose
(p1, . . . , pM), with p1 + · · · + pM = 1, so that pm is the a priori weight of Mm. In
this work, lacking expert knowledge, we choose a uniform prior: pm = 1/M for all
m. The prior distribution π̃ on M̃ is

π̃

(
M⊔

m=1

Bm

)

=
M∑

m=1

pmπm(Bm) ,

for any collection of measurable sets (B1, . . . , BM) with Bm ⊂ 'm. Suppose that
each model has a well defined spectral density hm( · | θm). Given the sample
of excesses W = (W1, . . . , Wn), a common density estimator is the Posterior
predictive density6 which, in the disjoint union model, is defined by

h̃(w | W ) =
M∑

m=1

pm(W )

∫

'm

hm(w | θm) d(πm|W )(θm) , (7)

where πm|W = πm( · | W ) is the posterior distribution restricted to Mm, and
pm(W ) is the posterior weight of Mm. This explains the terminology “model averag-
ing”: our density estimate is the average of the density estimates produced in separate
Bayesian models. As mentioned above, the family of admissible densities is stable
under convex combinations, and it is also stable under integration with respect to
any probability measure. Consequently, the posterior predictive density still defines
a valid angular measure.

More generally, if the goal is to estimate some quantity of interest ), (a measur-
able function of θm in each model Mm, such as e.g. the probability of a failure set,
then ) is a random variable which prior and posterior distributions in each model are
respectively the image measures )∗πm and )∗[πm|W ]. The posterior distribution in
the BMA model is thus the average

)∗[π |W ] =
M∑

m=1

pm(W ))∗[πm|W ]

and the mean estimate is δ̂ =∑M
m=1 pm(W )

∫
'm

)(θm) d[πm|W ](θm) .

6The density estimator defined by Eq. 7 is a “Bayes estimator”: it minimizes the posterior expected
quadratic loss Eπ̃ |W {(h(w| · ) − ĥ(w))2}, at each point w, where the expectancy is taken with respect to
the posterior density π̃ |W in the union parameter space (see e.g. Robert 2007, Chap. 2, for details about
Bayesian decision theory).
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The Bayes formula provides immediately the expression for the posterior weights:
pm(W ) is proportional to the marginal likelihood Lm(W ) of the observed angular
sample in each model Mm, multiplied by the corresponding prior model weight

pm(W ) = pmLm(W )

p1L1(W ) + · · · + pMLM(W )
,

where

Lm(W ) =
∫

'm

hm(W |θm) dπm(θm) . (8)

In practice, for high dimensional parameter spaces, the main hurdle lies in estimat-
ing the integral 8. This can be done either by Monte-Carlo methods or asymptotic
approximations, from which the Bayesian Information Criterion (BIC) derives. (see
e.g. the review from Kass and Raftery 1995, and the references therein). When
the sample size n is not too small compared to the dimension k of the parame-
ter space, a reasonable trade-off between precision and computational efficiency
is the Laplace’s approximation method: the logarithm of the integrand l̃m(θm) =
log
[
hm(w|θm)πm(θm)

]
should be approximately normal around the posterior mode

θ̂m, with covariance matrix +̂ = (−d2 l̃)−1 where d2 l̃ is the Hessian matrix at θ̂ . This
yields, by integration, the Laplace approximation

L̂m(W ) = (2π)k/2|+̂|1/2h
(
W |θ̂m

)
πm

(
θ̂m

)
(9)

Kass and Raftery (1995) suggest that in most cases where n/k ≥ 20, Eq. 9 yields a
good precision. More details about the validity of Eq. 9 may be found in Kass et al.
(1990). For lower sample size, one alternative to obtain the posterior weights would
be to implement a MC MC algorithm with reversible jumps between the individ-
ual models. The proportion of ‘time’ spent in each model would provide estimates of
posterior weights. The main difficulty with this approach would be to define reason-
able ‘jumps’ proposals, to obtain jumps acceptance rates high enough for the chain’s
mixing properties to remain acceptable in practice.

Inside each single model, the posterior parameter distribution is classically evalu-
ated by a Metropolis–Hastings algorithm producing an approximate posterior sample
(θm,1, . . . , θm,N). The latter is used to approximate each term h̃m(w) =

∫
'm

hm(w |
θm)d(πm|W )(θm) in Eq. 7 via

ĥm(w) = 1
N

N∑

t=1

hm(w | θm,t ) . (10)

Throughout this paper, the total number of simulations is set to 50 × 103, from
which the first 30 × 103, values are discarded. The Heidelberger and Welch test
(Heidelberger and Welch 1981; Cowles and Carlin 1996) and the Geweke conver-
gence diagnostics (Geweke 1992) show good convergence properties for this burn-in
period.
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4 BMA with the PB and NL spectral measures

4.1 Preliminary: definition of Bayesian PB and NL models

Before implementing the BMA scheme, we need to separately implement our two
models in a Bayesian framework. To our knowledge, this has never been done for the
PB model neither for our NL model.

Since none of these models is part of the exponential family, there is no obvious
uninformative or invariant prior choices at hand. So, for convenience, we transform
the parameter spaces to obtain unconstrained ones. Namely, we set

θPB = log(β) ∈ R4 ; θNL = logit(α) ∈ R4 .

where, for the NL model, logit(x) = log(x/(1−x)), which excludes the independent
case α = (1, 1, 1, 1). Then, the parameters in each model are assumed to be a priori
mutually independent and normally distributed with common mean equal to 0 and
standard deviation equal to 3. Results on simulated data (see Appendix) show that
this prior specification does not introduce a strong bias in the estimations.

4.2 Averaging the PB and NL models: simulation study

Comparison with other approaches An alternative to the BMA framework would be
to select the ‘best’ model given a data set. The criterion for comparison could be, for
example, the posterior weight, or the BIC or AIC. In our case, these three criteria
are approximately equivalent: indeed, the differences of scores between two models
in terms of AIC or BIC are the same when the two models have same dimension
(k1 = k2), since in such a case BIC12 − AIC12 = (k2 − k1) log n − 2(k2 − k1) = 0.
Selecting the model according to the BIC or the AIC is thus exactly the same. As
for the posterior weights, note that the prior model weights were chosen uniform
(here (1/2, 1/2)). The posterior odds are then equal to the Bayes factor: B12 =
p1(W )/p2(W ) = L1(W )/L2(W ). For large sample sizes the logarithm of the lat-
ter can be approximated by the Schwarz criterion S = log L1(W ) − log L2(W ) −
1/2(k2 − k1) log(n), which is −1/2 times the the BIC (see e.g. Kass and Raftery
1995; Kass et al. 1990). In view of the asymptotic equivalence of the three criteria,
and because posterior weights are anyway computed for the BMA, the ‘model selec-
tion’ alternative considered here consists in selecting the model with highest posterior
weight.

The main goal of our simulations is to compare the predictive performance of the
BMA against this model selection framework and against single models, in terms of
predictive angular densities and estimations of the probability of being in a failure
region A(u) as defined in Section 2. The union model is larger than any individual
model, and averaging instead of selecting allows to ‘integrate’ the uncertainty. One
could thus expect the predictive performance to be enhanced.

The main theoretical limitation of the averaging approach stems from a concen-
tration phenomenon: if the data arises from the union model (thus, from one of the
individual model), the posterior mass should concentrate around the true value and
assign more mass to the model containing it. In “misspecified” cases (when the true
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distribution does not belong to the union model), the posterior is bound to concen-
trate around “asymptotic carrier” regions of the parameter space, which minimize the
Kullback–Leibler divergence to the true distribution (Berk 1966; Kleijn and van der
2006). In our context, this means that, for large sample sizes, the BMA is likely to
select a single model, except if the true distribution is at exact “equi-distance” from
the two. Consequently, we restrict our study to situations where the sample size is
moderate (namely, 80 points).

Predictive scores with simulated data In this paragraph, the angular data set W under
consideration is supposed to be simulated according to some angular distribution
h0 (a Dirichlet mixture (DM) distribution, see the next paragraph) on the sim-
plex S3. The density estimates produced by each inference framework (PB model,
NL model, BMA and model selection) are to be compared. We now introduce dif-
ferent scoring rules allowing to do so. The interest of considering several scores is
that they rank the predictions according to different criteria. It may happen that one
framework be selected by one scoring rule and discarded by another one. The aim
here is to check consistency, i.e. that our conclusions are relatively independent from
the considered score.

As a performance score for a density estimate ĥ fitted to W , we consider the
logarithmic score

LS
(
ĥ, h0

)
= −Eh0 log

(
ĥ( · )

)
= −

∫

S3

log
(
ĥ(w)

)
h0(w) dw , (11)

associated to the Kullback–Leibler divergence between the density estimate and the
true distribution. A model with low LS is ‘close’ to the truth. According to this rule,
the best model is the one minimizing the score (note that a zero is not a measure of
perfect fit). Since one can simulate from h0, the latter integral can be evaluated by
simple Monte-Carlo

L̂S
(
ĥ, h0

)
= −1

Nmc

Nmc∑

N=1

log
(
ĥ(wN)

)
; wN

i.i.d.∼ h0 . (12)

In the remainder of this paper, Nmc is set to 50 × 103.
The approximation 12 allows us to compare the performance of the predictive

densities ĥPB, ĥNL, ĥBMA and ĥSelect. respectively in the PB model, in the NL model,
in the BMA and in the model selection framework. The predictive density for the
latter is defined as

ĥSelect. = 1pPB(W )≥0.5ĥPB + 1pPB(W )<0.5ĥNL .

One of the main interest in multivariate extreme value theory may reside in the
probability of an excess of a high threshold. In this study, we consider the probability
of falling in the failure region A(u) with u = (100, 100, 100). On the Fréchet scale, it
corresponds to a marginal excess probability of roughly 1

100 . The quantity of interest
) is thus a joint probability

)(m, θ) = P(X > u|m, θ) ( ν(A(u)|m, θ)
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where m ∈ {PB, NL} (see Section 2). The true probability is

)(h0) = Ph0(X > u) = ν0(A(u)) ,

where ν0 is the true exponent measure, which density in pseudo-polar coordinates is
(e.g. on the region {r > 1}) dν0 = d dr

r2 h0(w) dw. Here, the approximation becomes
an equality because the radii and angles are simulated independently from each other.

For the PB (resp. the true ) density, ν(A(u)|θ, m) (resp. ν0(A(u) ) is given by
Eq. 4 and approximated by Monte-Carlo integration (since we can simulate angular
samples from PB distributions and from the true one). In the NL model, it is simply
given by Eq. 5.

The output of the Bayesian procedure in model m is, for a given data set W , an
approximate posterior sample {θm(t)}1≤t≤T

7. This posterior is transformed into a
posterior )-sample {δm(t)}1≤t≤T = {)

(
θm(t)

)
}1≤t≤T ∈ (0, 1) of probabilities of

failure, so that the posterior predictive distribution )∗(πm|W ) (see Section 4) on
(0, 1) is approximated by the discrete cumulative distribution function (cdf )

F̂m(y) = 1
T

T∑

t=1

1δm(t)≤y (y ∈ (0, 1)) .

The posterior predictive cdf in the BMA is thus the weighted average

F̂BMA( · ) = pPB(W ) F̂PB( · ) + pNL(W ) F̂NL( · ) .

We can now compare the different distributions via strictly proper scoring rules
(Gneiting and Raftery 2007), adapted to the case where the true distribution is known
to be the Dirac mass at δ0 = )(h0). Namely, we consider the continuous ranked
probability score (CRPS), the predictive model choice criterion8 (PMCC) and the
interval score (ISα) for the central (1−α)∗100 % interval based on predictive quan-
tiles, with α = 0.1. If F̂ , EF̂ ()), VarF̂ ()), q̂α,l and q̂α,u denote respectively the
predictive cdf on (0, 1), the predictive mean and variance, and the predictive α/2 and
1 − α/2 quantiles, and if δ0 ∈ (0, 1) is the true value, these (negatively oriented)
scores are

CRPS(F̂ , δ0) =
∫

(0,1)
(F̂ (y) − 1δ0≤y)2 dy , (13)

PMCC(F̂ , δ0) = (EF̂ ()) − δ0)
2 + VarF̂ ()) , (14)

ISα(F̂ , δ0) =






2α(q̂α,u − q̂α,l) + 4(q̂α,l − δ0) if δ0 ≤ q̂α,l ,

2α(q̂α,u − q̂α,l) if q̂α,l ≤ δ0 ≤ q̂α,u ,

2α(q̂α,u − q̂α,l) + 4(δ0 − q̂α,u) if δ0 > q̂α,u .

(15)

7Here, T = 200 after discarding the values from the burn-in period and thinning. The thinning interval is
set to 100 to reduce the computational time
8This scoring rule is not proper in the general case but becomes so when the true distribution is a Dirac
mass.
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Similarly to the logarithmic score, the ‘best’ model according to a given scoring rule
is the one that minimizes the score.

Experimental setup Data sets are generated from Dirichlet mixture (DM) distri-
butions (Boldi and Davison 2007), which cover a wide variety of distributional
shapes. The Dirichlet mixture parameters themselves are drawn according to a sim-
ulating rule described in the Appendix. Note that the hyper parameters for this
simulating rule were chosen in order to grant significantly positive weights to both
models.

We generate 20 DM parameters {θi
0}1≤i≤20 and for each θi

0, 5 data sets
{W i

j }1≤j≤5 of size 80 each are generated according to the DM density hi
0 corre-

sponding to θi
0.

For each of the 100 data sets {W i
j }1≤i≤20,1≤j≤5, separate inference is made in each

framework ‘f r’ (here, f r represents the PB model, the NL model, the BMA and
the model selection framework), yielding a density estimate ĥi

j |f r , a cdf for the

probability of failure F̂ i
j |f r and posterior model weights which are approximated via

Eq. 9. The posterior mode and the hessian matrix are approximated by numerical
optimization.

Finally, the scores obtained by each framework are averaged over all the experi-
ments (i, j).

Results The first panel of Table 1 shows the average scores (over the 100 data sets)
obtained by each model, by the BMA and in the selection framework. The second
panel shows the average score differences9 between the BMA and the three other
possible approaches, together with an order of magnitude of the errors involved by
the Monte-Carlo approximations used to compute the score differences between the
BMA and the other approaches. More details about these errors are given in the
Appendix.

For example, line ‘ BMA/ PB’, column ‘CRPS’ corresponds to

CRPS(BMA/PB) =
20∑

i=1

5∑

j=1

CRPS
(
F̂ i

j |BMA, δ̂i
)

− CRPS
(
F̂ i

j |PB, δ̂i
)

,

where δ̂i is the Monte-Carlo estimate of the true probability of failure under the
Dirichlet distribution with parameter θi

0, i.e.

δ̂i = 3
Nmc

Nmc∑

N=1

min
j∈1:d

{
wj,N

uj

}
; wN

i.i.d∼ hi
0 ; uj = 1

100
.

9The scores reported in each column have respectively been multiplied by 102, 105, 108 and 105 to
improve the readability of the numerical output.
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Table 1 Comparison of mean scores with simulated data (error magnitude on score differences between
parentheses)

Scores LS CRPS PMCC IS

PB −107.48 24.04 20.97 45.06

NL −106.07 21.34 18.69 38.08

BMA −108.39 21.33 19.56 37.21

Select −107.36 22.95 20.11 42.27

BMA/PB −0.91 (0.32) −2.7 (0.04) −1.41 (0.05) −7.85 (0.15)

BMA/NL −2.33 (0.32) −0.002 (0.09) 0.87 (0.08) −0.87 (0.21)

BMA/Select −1.03 (0.32) −1.62 (0.02) −0.55 (0.01) −5.06 (0.12)

Data in bold denotes the best score in each column

Column ‘LS’ corresponds to

20∑

i=1

5∑

j=1

L̂S
(
ĥi

j |BMA

)
− L̂S

(
ĥi

j |PB

)
,

where L̂S is given by Eq. 12.
In terms of spectral density itself, the BMA approach obtains the best logarithmic

score (first column, second panel). The logarithmic score obtained by the selection
framework is also better than the ones obtained both by the PB and by the NL mod-
els. The gain is less obvious in terms of estimated probabilities of failure, probably
because, for this kind of simulated data, the NL model obtains better average scores
than the PB model (note that this tendency is reversed in terms of logarithmic scores).
In any case, the BMA gives slightly, but consistently, better predictions, with respect
to all the considered scores, than the model selection framework (line 7).

The disappointing aspect of these results is the fact that the relative gain or loss is
low: roughly, between 1/100 and 1/10 depending on the considered score.

4.3 Example: Leeds data set

We separately fit the PB and the NL model on the Leeds data set. Table 2 gathers
results in terms of the transformed parameters in each model. θ̂post and σ̂post denote
the mean and standard deviation of the posterior sample issued from the Metropolis
algorithm, θ̂mode, σ̂mode, are the posterior mode and the ‘standard deviation’ repre-
sented by (with the notations of the Laplace approximation 9) the squared root of
the diagonal elements of the inverse hessian +̂. The maximum likelihood estimates
θ̂mle and the estimated standard errors σ̂mle are also reported. Our Bayesian analy-
sis corroborates the frequentist estimates. The unusually high standard deviation of
the maximum likelihood estimate for logit(α13) is easily explained: the inverse logit
link function is numerically flat (equal to 1) above 17, and logit−1(3.67) = 0.98.
As expected, adding a prior re-centres the estimates towards the origin, but the rel-
ative discrepancy between the Bayesian and frequentist modes (with respect to the
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Table 2 The PB and NL models fitted to Leeds data: comparison between frequentist estimates and
posterior summary statistics

PB model NL model

logβ0 log β12 logβ13 logβ23 logitα0 logitα12 logitα13 logitα23

θ̂post 0.3 1.27 −0.35 1.22 0.22 0.89 4.57 1.19

σ̂post 0.14 0.43 0.23 0.42 0.09 0.49 1.69 0.64

θ̂mode 0.3 1.3 −0.34 1.14 0.21 0.79 3.67 1.03

σ̂mode 0.14 0.43 0.22 0.42 0.09 0.45 1.23 0.42

θ̂mle 0.3 1.32 −0.34 1.16 0.21 0.81 17.97 1.07

σ̂mle 0.14 0.43 0.22 0.43 0.09 0.47 2588.78 0.44

standard deviation of the frequentist ones) is less than 0.12. Also, the posterior
mode and mean are close to each other. This suggests that the asymptotic domain of
validity of the Bernstein–Von Mises theorem (asymptotic normality of the posterior
distribution, see e.g. van der Vaart 2000) is approximately reached.

The posterior predictive spectral densities in the PB and NL models can be com-
puted via Eq. 10. The squared dots in Fig. 3 represent the data displayed in Fig. 2.
Each panel tells us the same main story, a lot of mass in the middle, more near
the middle of the edges joining the pairs (PM10,NO) and (NO,NO2) than between
the pair (PM10,NO2). This pattern roughly corresponds to the distribution of the
observed angular points over the simplex. Still, the two panels have important dif-
ferences. For example, the NL model assigns more mass to the regions near the
vertices.

For this Leeds data set, the posterior weights are overwhelmingly in favour of the
NL model. Table 3 gathers the posterior weights issued from the BIC approximation,

Fig. 3 Leeds data: posterior predictive densities in the PB model (left panel) and the NL model (right
panel)
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Table 3 Leeds data set:
posterior PB model weights and
marginal likelihoods MC
MC steps: 100 × 103

Laplace BIC Monte-Carlo

PB 2.2 1032 4.1 1032 2.4 1032( 4.8 1031)

NL 8.2 1034 1 1035 1.4 1035( 1.9 1034)

p̂PB(W) 0.0027 0.004 0.0017

the Laplace method and by simple Monte-Carlo integration (parameters are drawn
from the prior).

For the Leeds data, BMA teaches us that a well-chosen four parameters NL
model belonging to the large Nested Asymmetric Logistic family outperforms the
PB model.

5 Discussion

This article shows that it is feasible to implement a BMA approach for angular mea-
sure models. Simulation studies indicate that this approach can, at best, improve the
predictive density estimates over each single model and at worst, be used as a selec-
tion tool by identifying a single one. For the four considered scoring rules, the gain
represented by the BMA against the model selection framework is significant (in
view of the Monte-Carlo errors) but moderate: the order of magnitude of the scores
is unchanged.

For the sake of conciseness, we have only considered two models to be averaged.
Future BMA roads would be to enlarge the dictionaries of parametric spectral fam-
ilies (e.g. for the PB model, Ballani and Schlather 2011) and/or to extend the BMA
framework to a mixture model setup, i.e. replacing the disjoint union parameter space
by a product space. The resulting model would be more flexible, in the sense that the
posterior mass would not have to concentrate on one single model for large sample
sizes. As a drawback, the dimension of a product space is the sum of the dimen-
sions of individual models, and the curse of dimensionality is likely to impose longer
burn-in periods for MC MC algorithms. Also, one could not use posterior samples
obtained in distinct models. We recall that, in this paper, we consider situations when
separate inference has already been achieved, or can be made in a simple way, and
where estimates are to be averaged. The main interest of the BMA approach is to
offer a compromise between model flexibility and parsimony: the estimated distri-
bution (the posterior predictive) is a mixture, while inference is conducted in lower
dimensional models.

Also, for our leading example, Heffernan and Tawn (2004)’s study suggests that
the pairs (S02, NO) and (SO2, PM10) might be asymptotically independent. It should
thus be of interest to average general spectral measures associated with asymptoti-
cally independent models, as introduced by Ledford and Tawn (1996) and Ramos and
Ledford (2009) in the bi-variate case, and extended to general multivariate problems
in Qin et al. (see footnote 4). The estimated distributions would not be max-stable
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anymore, but this would account for a potentially greater source of uncertainty than
the one attached to model choice within the asymptotically dependent class.
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Appendix 1: Bayesian PB and NL models

Simulation rule for the PB model

Whereas Cooley et al. used an accept-reject method for simulation, the one that we
propose here is direct. The PB density can be re-parametrized by setting ρij =
wi + wj , wi/ij = wi/(wi + wj) , sij = w[−(i,j)]/(1 − ρij ), where w[−(i,j)] =(
w1, . . . , wi−1, wi+1, . . . , wj−1, wj+1, . . . , wd

)
.

The transformation (ρij , wi/ij , sij ) /→ w has Jacobian: J = J (ρij ) = ρij (1 −
ρij )

d−3. Each beta function

hi,j

(
{wij , wi/ij , sij }|β0, βij

)
,

can be expressed within these new coordinates

hi,j ({ρij , wi/ij , s(wij )}|β0, βij )∝ρ
2β0
ij (1−ρij )

(d−2)β0−1w
βij −1
i/ij (1−wi/ij )

βi,j −1 1
J (ρij )

which can be written with the standard R package notations as

1
J (ρij )

dbeta(ρij , 2β0+1, (d−2)β0) dbeta(wi/ij , βi,j , βi,j ) ddirichlet(sij , rep(1, d−2)).

The three factors correspond to two Beta distributions and one uniform distribution
on the unit simplex of dimension d−3. The following algorithm produces the desired
angular variables W according to the density hPB(. | β0, βij ).

Algorithm 1

1. Choose uniformly a pair (i < j).
2. Generate independently the vectors Rij , Wi/ij and Sij according to the Beta

distributions Be(2β0+1, (d−2)β0) and Be(βij , βij ), and the uniform Dirichlet
distribution D ird−2(1, . . . , 1), respectively.

3. Define W as Wi = RijWi/ij , Wj = Rij (1 − Wi/ij ) and W[−(i,j)] =
(1 − Rij )Sij .
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Angular density in the NL model

From Coles and Tawn (1991), Theorem 1, with our normalizing convention, the angu-
lar density on the simplex is hNL(w[α) = − 1

d ∂1,2,3VNL(x|α)
∣∣
x=w , where we write

∂i1,...,ik ( · ) the partial derivative with respect to xi1, . . . , xik .
Letting

Uij (x) = x

−1
α0αij

i + x

−1
α0αij

i (1 ≤ i < j ≤ 3) ,

T (x) =
(
U

α12
12 + U

α13
13 + U

α23
23

)
(x) , (16)

we have VNL = 2−α0T α0(x), so that

∂1,2,3VNL(x|α) = 2−α0α0

[
T α0−1(x)∂1,2,3T (x) + · · · (α0 − 1)T α0−2(x)

×
{
∂1T (x)∂2,3T (x)+∂2T (x)∂1,3T (x)+∂3T (x)∂1,2T (x)

}

+ (α0 − 1)(α0 − 2)T α0−3(x)∂1T (x)∂2T (x)∂3T (x)
]

.

The simple and double partial derivatives are

∂iT (x) = −1
α0

(

x

−1
α0αij

−1

i U
αij −1
ij + x

−1
α0αik

−1

i U
αik−1
ik

)

(17)

and

∂i,j T (x) = αij − 1

α2
0αij

(
xi xj

) −1
αij

−2
U

αij −2
ij . (18)

The third order derivative is thus zero. Finally, we have

hNL(w|α)=



α0(1−α0)

2α0 d
T α0−3





∑

1≤i 1=j 1=k≤3

T ∂iT ∂j,kT + (α0−2)∂1T ∂2T ∂3T










x=w
(19)

where all the terms are given in Eqs. 16, 17 and 18.

Simulation method in the NL model

We adapt here the method proposed by Stephenson (2003) to our context.

Proof If X is generated according to the above algorithm, the conditional variables
Xi,ij|(S = s, Sij = sij ) are independent with distribution

P(Xi,ij ≤ xi |s, s12) = exp

(

−sij
( s

2

)1/αij

(
1
xi

)1/(α0αij )
)

,
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Algorithm 2

1. Generate independently four positive alpha-stable variables S, S12, S13, S23,
with respective index α0, α12, α13, α23 ∈ (0, 1), i.e. with Laplace transform
E(exp(−tS)) = e−tα0 (resp. e−t

αij ).
2. For i ∈ {1, 2, 3} :

(a) Simulate independently two standard exponentials Ei,ij , Ei,ik.

(b) Set Xi,ij =
[(

S
2

) 1
αij

Sij

Ei,ij

]αij α0

and Xi,ik =
[(

S
2

) 1
αik

Sik
Ei,ik

]αikα0

.

(c) Set Xi = max(Xi,ij , Xi,ik).

Then, X = (X1, X2, X3) has unit Fréchet margins and a multivariate distribution
belonging to the NL model 6.

So that X has conditional distribution

P(X ≤ x|s, s12) = exp



−
∑

1≤i<j≤3

sij
( s

2

)1/αij

((
1
xi

)1/(α0αij )

+
(

1
xj

)1/(α0αij )
)

 .

Integrating with respect to the sij ’s and s and using the Laplace transform property
of positive α-stable variables yields the desired distribution function.

The angular components Wi = Xi/(X1 +X2 +X3) follow immediately. By fixing
a high threshold r0 and retaining only the angular points corresponding to radii R >
r0, one obtains a sample on the simplex, approximately following angular distribution
with density hNL(.|α) .

Appendix 2: Results with simulated data from single models

Two data sets of 80 angular points each are simulated, one in the PB model, the
other in the NL model. A 50 103-iteration Metropolis–Hastings is run, the last 20 103

values are kept.
The marginal posterior densities for the four parameters in the PB (resp. NL)

model, obtained by a kernel smoothing of the posterior sample, are shown (solid
lines) in Fig. 4 (resp. Fig. 5), together with the prior densities (thin dotted lines) and
the true parameters (vertical thick dotted lines). For all the parameters components,
the posterior concentrates around the “true” value.

The posterior predictive density estimates are deduced from the posterior sample
according to Eq. 10, and plotted in Fig. 6 showing remarkable agreement between
the estimated (solid lines), and the true distribution contours (dotted lines).

Basic summary statistics for the posterior samples are gathered in Table 4 (θ0
stands for the “true” transformed parameter, see Section 4.3 for other notations),
together with maximum likelihood estimates. The three approaches yield comparable
results and the true parameter values lie at less than two standard deviations from their
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Fig. 4 PB model: prior and posterior parameter marginal densities with simulated data. Upper left panel:
logit(β0), upper right panel: logit(β12), left and right lower panels: logit(β13) and log(β23)

respective posterior mean estimates (except for the global dependence parameter α0
in the NL model, where the discrepancy is about 2.4 for the three estimates).

Appendix 3: Simulation study

We give here a more complete account of the results obtained in Section 4.2.

Dirichlet mixture model for spectral densities

Recall that the Dirichlet density, which we denote diri, can be parametrized by a
mean vector µ ∈ Sd and a concentration parameter ν > 0, so that

∀w ∈ Sd , diri(w | µ, ν) = %(ν)
∏d

i=1 %(νµi)

d∏

i=1

w
νµi−1
i .

The Dirichlet mixture model is the family of finite mixtures of such densities, with
positive weight vector ω =

(
ω1, . . . , ωK

)
(K ≥ 1) summing to one, concentration
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Fig. 5 NL model: prior and posterior parameter marginal densities with simulated data. Upper left panel:
log(α0), upper right panel: log(α12), left and right lower panels: log(α13) and log(α23)

Fig. 6 Angular measures: simulation and estimation in the the PB model (left panel) and in the NL model
(right panel)
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Table 4 The PB and NL models fitted to simulated data: Comparison between frequentist estimates and
posterior summary statistics

PB model NL model

θ logβ0 log β12 logβ13 logβ23 logitα0 logitα12 logitα13 logitα23

θ0 0.69 1.1 −0.69 2.3 0.41 −0.85 1.39 −0.41

θ̂post 0.62 1.28 −0.53 2.7 0.15 −0.5 2.41 0.23

σ̂post 0.2 0.35 0.26 0.6 0.11 0.3 0.73 0.4

θ̂mode 0.62 1.31 −0.52 2.77 0.14 −0.55 2.15 0.13

σ̂mode 0.19 0.34 0.25 0.58 0.11 0.28 0.61 0.35

θ̂mle 0.62 1.32 −0.52 2.88 0.14 −0.56 2.25 0.13

σ̂mle 0.19 0.35 0.25 0.61 0.11 0.28 0.67 0.35

vector ν =
(
ν1, . . . , νK

)
and mean matrix µ =

(
µ · ,1, . . . , µ · ,K

)
where µ.,k =

(µ1,k, . . . , µd,k) is the mean vector for the kth mixture component. In this model, the
mean constraint 2 is equivalent to

∀i ∈ {1, . . . , d},
K∑

k=1

ωk µi,k = 1
d

. (20)

Simulation of random Dirichlet mixture parameters and data sets

For our simulation, we generate 20 Dirichlet mixture parameters θi
0 =

(µi
· ,1:K, ωi

1:K, νi
1:K)1≤i≤10 with K = 10 components, so that Eq. 20 holds for all θi

0.
Each θi

0 is generated as follows:

– For k ∈ {1, . . . , K}, νk is generated under a truncated Gamma distribution with
shape equal to 1.4 and scale equal to 10, with an upper bound set to 100.

– For k ∈ {1, . . . , K − 1}, µ · ,k is generated (independently) under a Dirichlet
distribution with concentration parameter equal to 6 and a mean parameter set to
G0 = (1/3, 1/3, 1/3), truncated to the region {w ∈ S3 : ∀i ≤ 3, wi > ε} with
ε = 1/100.

– The first K −1 weights are constrained to be equal to each other and the location
for the last kernel centre µ.,K is set in in such a way that Eq. 20 holds while
keeping the last weight ωK as close to 1/K as possible.

For each θi
0, five data sets of size 80 each are generated under the corresponding

Dirichlet mixture distribution. To avoid numerical errors, angular points with any
coordinate less than 10−8 are rejected.

Error assessment for the mean differential scores

Since a lot of Monte-Carlo steps are involved in the differential score computations,
the second part of Table 1 may only be interpreted as an order of magnitude for the
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errors. In the remainder of this subsection, an alternative alt denotes either the sys-
tematic choice of the PB or the NL model, or the model selection framework where
the retained estimate is the one produce by the model with greatest posterior weight.
If S is a scoring rule, S(BMA/alt) is the score difference between the BMAand the
alternative.

Differential logarithmic score Here, we account for the error involved by the Monte-
Carlo approximation 12.

For a given alternative alt , parameter θi
0 and data set Wi

j , let ĥi
j |BMA (resp. ĥi

j |alt )
the posterior predictive distributions in the BMA and in the alternative framework.
Let L̂S(ĥi

j |BMA) (resp. L̂S(ĥi
j |alt )) be the Monte-Carlo estimate of the Logarithmic

score as in Eq. 12, and let σ̂ i
j (BMA) (resp. σ̂ i

j (alt)) be the classical Monte-Carlo
error of the estimate. When i is fixed and j varies, the errors σ̂ i

j are not indepen-
dent because they depend on the same Monte-Carlo sample. An estimated upper

bound for the standard deviation of the differential score L̂S
i

j (BMA/alt) is then
σ̂ i

j = σ̂ i
j (BMA) + σ̂ i

j (alt). This is conservative in the sense that this upper bound

is only reached in the unrealistic case where L̂S
i

j (BMA) and L̂S
i

j (alt) have cor-
relation equal to −1. In the same way, an upper bound for the standard deviation
of the average (letting i fixed) is the average standard deviation: σ̂ i = 1

5
∑5

j=1 σ̂
j
i .

Further, when i varies, the differential scores are independent from each other (i.e.

if i1 1= i2, 1 ≤ j1, j2 ≤ 5, then L̂S
i1
j1

(BMA/alt) and L̂S
i2
j2

(BMA/alt) are inde-
pendent). Consequently, an estimated upper bound for the variance of the average is
σ̂ (LS(BMA/alt))2 = 1

202

∑20
i=1[σ̂ i]2. The errors reported in the first column, lines

9–11 of Table 1 are the squared roots of the latter quantity.

Failure region scores: CRPS, PMCC and IS In this paragraph, the error concerns
the approximation of the true probability of failure. Let δ̂i

0, σ̂ i
0 be respectively the

mean Monte-Carlo estimate of the latter (see Eq. 4), and its estimated standard devia-
tion, for a given Dirichlet parameter θi

0. We define the boundaries of a typical centred
error interval: δi

inf = δ̂i
0 − σ̂ i

0, δi
sup = δ̂i

0 + σ̂ i
0. Now, given a scoring rule S (one of

the CRPS, PMCC and IS rules) and an alternative alt , let Si(BMA/alt, δi
inf) (resp

Si(BMA/alt, δsup)), be the mean differential score obtained between the BMA and
framework alt , when the true failure probability is set to δi

inf (resp. δi
sup). For exam-

ple, for the CRPS differential score between the PB model and the NL model, we set
CRPSi(BMA/PB, δi

sup) = 1
5
∑5

j=1 CRPS(F̂ i
j |BMA, δi

sup) − CRPS(F̂ i
j |PB, δi

sup).
An order of magnitude for the fluctuation of the partially averaged score

Si(BMA/alt, δ̂i) is

err
(
Si, alt

)
=
∣∣∣Si
(

BMA/alt, δi
inf

)
− Si

(
BMA/alt, δi

sup

)∣∣∣ /2 .

The final score Ŝ(BMA/alt) is the average over i ∈ {1, . . . , 20} of the
Si(BMA/alt, δ̂i

0)’s , and the errors are independent when i varies. The heuristic error
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magnitude reported in the three last lines and last columns of Table 1 are thus (up to
multiplication by the factor appearing in the column titles)

err(S, alt) =
(

1
20

20∑

i=1

[
err
(
Si, alt

)]2
)1/2

.
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