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Abstract

Dispersivity is often assumed to be independent of the 
ow boundary conditions.

As dispersion of a plume is a consequence of Darcy's velocity 
uctuations, boundary

conditions should in
uence this process and, possibly, a�ect the dispersivities de�ned

far from the boundaries.

In this work, we analyze, by means of Monte-Carlo simulations, the in
uence of

di�erent types of boundary conditions on 
ow and transport statistical quantities in

a bidimensional aquifer. Results show that boundary conditions have a short range

in
uence on velocity mean and variances, and a long range in
uence on transport.

For instance, transverse dispersivity is very sensitive to the nature of lateral boundary

conditions : for an imposed head the range of in
uence is at least eight correlation

lengths. On the basis of these results, dispersivity in bidimensional aquifers appears

to be dependent of boundary conditions in a zone, along the boundaries, of rather

large extent.

INTRODUCTION

Contaminant transport in heterogeneous aquifers is usually modeled by an advection

di�usion dispersion equation. The dispersivities are often assumed to be independent of

the 
ow boundary conditions. Whatever the modeling approach, classical or stochastic, the

dispersion process is a consequence of the Darcy velocity 
uctuations. Therefore, boundary

conditions potentially in
uence this process and, possibly, a�ect the dispersivities de�ned

far from these boundaries.

Head boundaries set head 
uctuation to zero while 
ux boundaries annuls one compo-

nent of Darcy's velocity. By constraining di�erent variables, di�erent type of boundary do

not produce the same 
ows in heterogeneous media. For instance, a mean uniform 
ow can

be generated by �xed head up- and down-stream, and impervious lateral borders. These

latter borders with �xed linear head produce the same average 
ow, but are not impervious

anymore. It is clear that transport of a plume or of a particle should also be a�ected.

If this phenomenon is well understood and accepted, the question of its importance

and its range in 2D-aquifers has been partially studied. Studies have shown analytically or

by Monte-Carlo simulations that log-transmissivity-head cross-correlations C

yh

and head

variogram 


hh

are stationary beyond a few correlation lengths � from the borders [7] [8] [6]

[4], but head variance is strongly determined by the boundary conditions, all over the area

they delimit, in a log-like variation [2] [4]. Head statistics can then never be considered



stationary, except for very large areas. Incidence on velocity is then expected to have the

same extent, but this topic is less richly described in the literature. Bellin [1] observed

a very clear impact of �xed-
ux boundaries on velocity variance. This e�ect, however, is

located in the vicinity of the borders, no more than 3� away from them. The in
uence

of other types of boundary was not investigated, nor was the study extended to velocity

correlations, which are the sources of dispersion. Therefore, it can not be concluded that

there should be a "boundary free" zone where head, velocity or transport would behave,

from the stochastic point of view, like in an in�nite domain.

The purpose of this study is to understand and to investigate by Monte-Carlo simu-

lations if and how dispersion in a uniform mean 
ow is a�ected by boundaries, especially

lateral boundaries. Simulations were made with the code CASTEM 2000. They rely on the

resolution of the 
ow equations by Mixed-Hybrid Finite Element method [5]. Transmis-

sivity realizations were generated by the matrix decomposition method for an exponential

transmissivity correlation, and transport was simulated by particle tracking technique.

In this work, we analyze, by means of Monte-Carlo simulations, the in
uence of di�er-

ent types of boundary conditions on 
ow and transport statistical quantities in a bidimen-

sional aquifer. These are the means and variances of Darcy's velocity and particle position.

The velocity �rst two moments are �rst analyzed analytically under the linearized model.

1 FLOW STATISTICS IN THE VICINITY OF BOUNDARIES

1.1 Theoretical framework

Let axis 1 be the direction of the uniform mean 
ow, and let us call Y the log-

transmissivity, split into a mean<Y> and a random 
uctuation y. Y is supposed stationary

so that the log-transmissivity correlation depends only on the separation ~r : C

yy

(~r) =<

y(~x)y(~x+ ~r)>= exp(�r=�). Head is noted H =<H> +h and Darcy's Velocity is written

~

U =<

~

U> +~u.

There are four types of boundary : �xed head or �xed 
ux on lateral - parallel to the

mean 
ow - or longitudinal - perpendicular to the mean 
ow - borders. In each case, only

one variable 
uctuation is set to zero : either h = 0 or ~u � ~n = 0 (where ~n is a unitary

vector normal to the boundary) respectively.

The linearized model [3] gives expressions of Darcy's velocity mean and 
uctuation :
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given the equations on �rst order head 
uctuations h = H

(1)

and second order head H

(2)

:

�h = �

~

J

0

�

~

ry with the proper boundary conditions (3)

�H

(2)

= �

~

rh �

~

ry ;H

(2)

equals zero on the boundaries (4)



The numbers in parenthesis are the �

y

orders in the linearized development (written till

order 2). The zeroth order head gradient has been written

~

J

0

, and the geometric mean of

transmissivity T

G

. We de�ne also the zeroth order mean velocity U

0

= �T

G

J

0

.

Each of these expressions takes di�erent forms depending on the boundary conditions

(from eq. (2)) :

- a �xed head longitudinal boundary sets h = 0 and @

2

h = 0, so u

2

= 0,

- a �xed 
ux longitudinal boundary sets u

1

= 0, so @

1

h = �y J

0

,

- a �xed head lateral boundary sets h = 0 and @

1

h = 0, so u

1

= y U

0

,

- an impervious lateral boundary sets u

2

= 0, so @

2

h = 0.

Mean Velocity

The analytical steps in the calculation of mean velocity are the determination of <

y

~

rh> from (3) and of

~

r <H

(2)

> from (4), taking advantage of the symmetries generated

by the boundaries. This has been made for lateral boundaries only. In the following, the

origin is taken on the boundary itself.

Resolution of eq. (3) with head lateral boundary can be done using a composed

Green function G(~x; ~x

0
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1
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), where G

1

is the Green

function for the laplacian in an in�nite 2D medium. This case can be described by a

�ctitious in�nite domain where y would be anti-symmetrical in relation to the boundary.

Multiplying (3) by h(~x

0

) and then taking ensemble mean gives :

<y(~x)h(

~

x

0

)>= �J

0

Z

~r2half plane
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C
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The particular symmetry of G associated to the parity of C

yy

(~r) is such that this integral

is null when x

1

= x

0

1

, whatever x

2

and x

0

2

, so that < y(x

1

; x

2

) @

x2

h(x

1

; x

2

)>= 0 too.

Furthermore, due to the nature of the boundary, @

1

h(x

1

; 0) = 0. So :

<y

~

rh> (x

1

; 0) =

~

0 (6)

Moreover, H

(2)

being null on the boundary, @

x1

<H

(2)

>= 0. Mean longitudinal velocity in

the vicinity of a head lateral boundary, expressed by (1), has then the following form :

<U

1

> (x

1

; 0) = (1 + �

2

y

= 2) U

0

(7)

Mean velocity should then be increased by the proximity of head lateral boundaries, with

a magnitude varying linearly with log-transmissivity variance. The range of the in
uence,

however, is not determined a priori.

Fixed-
ux lateral boundary does not a�ect mean velocity, because this situation cor-

responds to a �ctitious in�nite domain where y would be symmetrical in relation to the

boundary. In this case, eq. (5) is identical to the expression of C

yh

in an unbounded

domain. H

(2)

, <y

~

rh> and �nally <

~

U> are then unchanged.

Velocity variances

Velocity variances on boundaries are obtained directly from eq. (2). Some of them

are expressed in relation to head derivative standard-deviation on the boundary. Those



latter were not analytically calculated. It has been found that :
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1.2 Monte-Carlo simulations

Four values of �

y

have been investigated : 0.1, 0.5, 1.0 and 1.5. The number of

realizations necessary to reach a satisfactory convergence were made. The grid re�nement

is �=4 on a 21� � 13� wide area. Simulations have been performed for the two di�erent

lateral boundaries with �xed head on the in-
ow and the out-
ow borders. Results are

summarized in table 1.

Type of boundary Lateral, head Lateral, 
ux Long., head Range for

all types

E�ect on h �! 0 high �! 0 everywhere

E�ect on <U

1

> �(1 + �

2

y

= 2) slight - 4�

decrease

E�ect on �

u1

strong - strong 3�

increase increase

E�ect on �

u2

strong �! 0 �! 0 3�

increase

Table 1: E�ect and range of boundaries in a uniform 
ow

Detailed values are not shown, but the simulated increase of <U

1

> in the vicinity of a

�xed-head lateral boundary is exactly the one predicted by eq. (7) except for �

y

=1.5 (the

linearized model usually requires �

y

< 1). The �t is not as good for longitudinal velocity

variance increase near the same boundary. An overestimation of no more than 25% is

observed. The results show that velocity variability tends to zero where expected, and

increase signi�cantly otherwise. Symmetrically, studies of Dagan [2] and Osnes [4] showed

how head 
uctuations tend to zero on �xed-head boundaries but increase near impervious

lines. In any case, the range of the in
uence of the boundaries on mean and variances of

velocity does not exceed a few correlation lengths. To this point, nothing can be said on

how, and how far, can velocity correlations be a�ected by the boundaries.

2 INFLUENCE OF LATERAL BOUNDARIES ON TRANSPORT IN A

UNIFORM FLOW

The in
uence of the type of lateral boundaries on transport has been studied by Monte-

Carlo simulations. We investigate here the particle displacement variances in a uniform




ow generated in a 17� square medium discretized �=4. From 800 up to 2000 realizations

were performed for each value of �

y

investigated.
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Figure 1: Normalized displacement variances functions of dimensionless abscissa s=� for

di�erent boundary conditions : longitudinal head (thin) or 
ux (bold) conditions,

and lateral head (small dashes) or 
ux (long dashes) boundaries.

We present the position variances as functions of mean travel distance s, of a particle

released 3� from the up-stream border, on the symmetry axis of the medium. Results are

quite similar for the four values of �

y

. For the sake of clarity, X

11

is presented with �

y

=1,

and X

22

with �

y

=0.1 (See Figure 2). Longitudinal dispersion seems not to be a�ected

by lateral boundaries, nor by head longitudinal boundaries ; but �xed-
ux longitudinal

boundaries induce a signi�cant, though light, decrease of X

11

. On the other hand, trans-

verse dispersion is clearly dependent on the nature of all four boundaries. Lateral 
ux

boundaries increase X

22

while lateral head boundaries lower it. After a travel distance of

only 7�, the plume is no more than 0:3� wide, so still about 8� away from the lateral

borders, but the di�erence has already got up to 20%. Moreover, X

22

seems extremely

sensitive to longitudinal 
ux boundaries.

These results suggest that velocity correlations are a�ected on a very long range (more

than 10 � like other not included calculations showed), while velocity variances are not af-

fected on more than a few �. Thus, velocity correlation lengths for longitudinal separations

seem to be a�ected by the boundaries on long distances. Within this assumption, trans-

verse velocity correlation length would decrease in the vicinity of a head lateral or 
ux

longitudinal boundary, and increase in the vicinity of a 
ux lateral boundary. The ex-

planation according to which e�ective log-transmissivity correlation length doubles near a

�xed-
ux boundary due to the �ctitious symmetry of Y relatively to it, is not pertinent.

If the boundary is parallel to the mean 
ow, then only correlation length for transverse

separations is concerned ; and if the boundary is orthogonal to the mean 
ow, an increase

of longitudinal position variance should be observed, which is not the case. The same

remark applies to head boundaries. So the observed in
uence of boundaries on particle

position variances remains unexplained, yet indubitable.



3 CONCLUSION

It is commonly accepted that boundaries a�ect 
ow and transport in their vicinity.

That is why every modeler chooses, somewhat arbitrarily or on the strength of studies not

plainly devoted to the topic, an area that he thinks is "boundary free". It has been showed

here that boundaries determine 
ow and transport in a very wide area, at least 10 log-

transmissivity correlation lengths away from them. For instance, with lateral boundaries

8� away from the release point, itself 3� from the in-
ow boundary, the di�erences in

position variances go up to 30% after only 7� traveled. Longitudinal boundaries exert

the more important in
uence on transport. The in
uence of transverse boundaries is also

certain, though limited to transverse dispersion. This could not be expected on the basis of

velocity mean and variances, which reach their in�nite-domain values after a short distance.

Velocity correlation lengths could be responsible of the e�ect of boundaries on transport,

by being a�ected on very long ranges. Other explanations could be suggested, like high-

order e�ect not included in the linearized model used here. More analytical research are

necessary to understand the long-range e�ect of boundaries on transport.

From a practical point of view, it must be understood that, unless boundaries are

very far apart, they take a full part in the modelization and should be subject to a careful

choice. Real �eld boundaries should be preferred, and if not available, boundary e�ects

should be kept in mind when interpreting results. Finally, the nature of boundaries might

be of critical importance in other types of 
ow, like single or multi-pumping, where the

nature (�xed draw-downs or �xed pumping rates) of the wells must be chosen.
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