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[1] A novel climate downscaling methodology that attempts
to correct climate simulation biases is proposed. By com-
bining an advanced statistical bias correction method with a
dynamical downscaling it constitutes a hybrid technique that
yields nearly unbiased, high-resolution, physically consis-
tent, three-dimensional fields that can be used for climate
impact studies. The method is based on a prior statistical
distribution correction of large-scale global climate model
(GCM) 3-dimensional output fields to be taken as boundary
forcing of a dynamical regional climate model (RCM). GCM
fields are corrected using meteorological reanalyses. We
evaluate this methodology over a decadal experiment. The
improvement in terms of spatial and temporal variability is
discussed against observations for a past period. The biases
of the downscaled fields are much lower using this hybrid
technique, up to a factor 4 for the mean temperature bias
compared to the dynamical downscaling alone without
prior bias correction. Precipitation biases are subsequently
improved hence offering optimistic perspectives for climate
impact studies. Citation: Colette, A., R. Vautard, and M. Vrac
(2012), Regional climate downscaling with prior statistical cor-
rection of the global climate forcing, Geophys. Res. Lett., 39,
L13707, doi:10.1029/2012GL052258.

1. Introduction

[2] Global Climate Models (GCM) improved notably in
their representation of the climate system over the past couple
of decades [Intergovernmental Panel on Climate Change,
2007a]. Their design is focused on the global scale, and
their main scope consists in capturing the sensitivity of the
global climate to changes in external natural and anthropo-
genic forcing. The fairly low resolution of such models does
not allow for the detailed simulation of local atmospheric
processes. In addition, the main focus being the global
energy balance, coupled models may exhibit significant
regional biases in important variables such as temperature or
precipitation.

[3] However, climate risk assessment requires horizontal
resolution of the order of half a degree or below and unbiased
projections, especially when it comes to meteorological
extremes. More generally such information is required in
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order to design adaptation measures for which impact models
(e.g., with regards to food safety, energy, water, air pollu-
tion), tuned on current climate observations, need to be
applied to future climate projections. Such a requirement
cannot be met by current raw GCM outputs.

[4] The transformation of global model outputs into high
spatial resolution products is referred to as climate down-
scaling. It can be divided into two broad types of approaches:
statistical or dynamical downscaling. Statistical downscaling
builds upon a prior knowledge of statistical relationships
between the GCM and monitoring data. Statistical models
representing those relationships are then applied over future
time periods, without involving any additional physical
modelling in addition to the GCM [Wilks and Wilby, 1999;
Vrac et al., 2007; Semenov et al., 1998; Maraun et al., 2010].
To downscale a global model in a dynamical way, one
implements a Regional Climate Model (RCM) forced by the
global fields at the boundaries [Giorgi et al., 2009; Laprise,
2008]. Similarly to the GCM, the RCM provides a compre-
hensive physically-consistent representation of the climate
system. However, GCM biases are conveyed to the RCM,
and the latter can only compensate, or enhance, these flaws.
In order to cope with these deficiencies, bias correction
methods are often applied to RCM outputs prior to the
implementation of an impact model [ Christensen et al., 2008;
Oettli et al., 2011]. However this methodology suffers from
several caveats. On the one hand, the fields are generally
corrected without considering spatial, temporal or inter-
variable correlation. On the other hand, the bias correction
requires high-resolution observations, generally not avail-
able on a grid, but rather at scattered locations. These prob-
lems could be at least partly avoided if most of the GCM
biases were removed before the dynamical downscaling, an
approach that we investigate in this article. A few studies
investigated the possibility to correct large scale forcing prior
to applying a mesoscale model [Rasmussen et al., 2011;
Schdr et al., 1996] but none of them achieved that with a
downscaling technique that matches the whole range of the
distribution to meteorological reanalyses.

[5] We propose here an innovative downscaling method-
ology that combines both dynamical and statistical approa-
ches, but in a different order compared to what is usually
done. In a nutshell, our hybrid approach consists in applying
a statistical correction of the GCM fields with respect to
atmospheric reanalyses prior to performing a dynamical
downscaling of these corrected fields. As such, this approach
constitutes a hybrid climate downscaling technique building
upon upstream statistical correction and downstream physi-
cal modelling.

[6] Like any probabilistic downscaling technique, the
upstream statistical correction may alter the integrity of the
forcing fields by matching it to reanalyses. The main strength
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of our hybrid approach lies in the implementation of a
mesoscale model after the probabilistic downscaling that
guarantees the physical consistency of the resulting fields and
hence constitutes an essential advantage for climate impact
studies [Intergovernmental Panel on Climate Change, 2007b].
Statistical downscaling that targets only a couple of surface
variables has long been considered satisfactory for most
climate impact studies (such as food safety or hydrological
extremes). However other applications such as air quality
modelling require physically-consistent 3D atmospheric
fields. That is why regional air quality projection studies rely
on raw RCM outputs, and our technique offers a unique
perspective to derive unbiased, balanced, 3D forcing fields.
[7] In section 2, the statistical and physical downscaling
methodologies are presented. The evaluation results are given
in section 3 on a test case for present day simulation. The
application to future projections is left for upcoming studies.

2. Methodology

2.1. Large Scale Climate Model

[8] The large scale climate model that we use to demon-
strate the efficiency of our hybrid statistical and dynamical
technique is the coupled climate model IPSLcm (Institut
Pierre Simon Laplace Coupled Model) GCM [Marti et al.,
2010].

[s] The simulations used here are obtained with the “low
resolution” versions prepared for the CMIP5 (Climate Model
Intercomparison Project) stream of the Intergovernmental
Panel on Climate Change (IPCC). The meteorological fields
are computed on a global 96 x 96 points grid with a hori-
zontal resolution of 3.75 x 1.875 degrees and 39 vertical
levels.

2.2. Statistical Downscaling

[10] The probabilistic downscaling methodology used
here is the CDF-t (Cumulative Distribution Function trans-
form) of Michelangeli et al. [2009], based on a variant of the
“quantile-matching” technique [Déqué, 2007]. Quantile-
matching consists in associating to a modelled value, the
value in a control distribution (e.g. observations) that has the
same probability. In other words, from a quantile in the CDF
of the simulations, the corresponding quantile in the CDF of
the control data (e.g. observations) is determined. By scaling
the quantile-quantile relationship, the correction changes the
shape of the distribution so that the events whose frequency
(or probability) is systematically biased in the model are
better captured.

[11] While classical applications of quantile-matching
consider that the CDF of the simulations is stationary in time
[Maraun et al., 2010; Wilks and Wilby, 1999], the scope of
CDF-t consists in expanding this technique for the case
where the CDF of the simulations for the future has changed.
This is done, first, by estimating the CDF of the corrected
variable for the future time period of interest [Michelangeli
et al., 2009]. Then, projections are obtained through a
quantile-quantile technique between future uncorrected and
corrected CDFs [Vrac et al., 2012]. The methodology
implemented here thus applies for future projections even
though we decided to limit the scope of the present paper to
historical periods in order to discuss its validation.

[12] This CDF-t technique has been used successfully in
the past to downscale climate models [Vrac et al., 2012;
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Flaounas et al., 2012; Michelangeli et al., 2009] but one
should note the two major limitations of the approach. First,
only the bulk CDF is matched, the temporal frequency and
spatial patterns are not altered so that any flaw in the persis-
tence or in the spatial distribution of the weather patterns is
not improved. In addition, the major underlying hypothesis
of the CDF-t downscaling is that, although the CDFs are not
supposed to be stationary, the transformation T from model
to observed variable CDFs is supposed to be valid under
changed climate conditions, i.e. is supposed stationary in
time. We emphasize that even though CDF-t is designed to
be applied to future climate simulations, we decided to apply
this technique in the present paper to a current period for
validation purposes.

2.3. Dynamical Downscaling

[13] We use the Weather Research and Forecasting
[Skamarock et al., 2008] mesoscale model to downscale the
IPSLcem fields in a dynamical way. The spatial resolution
is 50 km and the domain covers the whole of Europe with
119 x 116 grid points. The setup is the same as that of Menut
et al. [2012] who present a detailed evaluation of the per-
formance of the IPSLcm/WRF regional climate modelling
suite. However no nudging was applied in the present case
in order to evaluate the full effect of prior correction on
dynamical downscaling.

2.4. Experimental Design

[14] We perform a CDF-t based correction of the large-
scale input fields produced with the IPSLcm model so that
corrected fields will be used for the dynamical downscaling.
Distributions are matched with those of reanalysed fields of
the ERA-interim reanalysis. Unlike existing applications of
CDF-t that perform a scaling of large-scale model outputs
to point surface observations [Michelangeli et al., 2009] or
gridded surface analyses [Flaounas et al., 2012] we scale
several variables of the model to the whole 3D fields of the
reanalysis.

[15] The correction is achieved at each GCM grid-point
independently, where reanalysed fields were previously
interpolated. There was no attempt to maintain the spatial
consistency of the fields considering that (1) matched fields
are coarse enough to avoid the introduction of high-
frequency variability and (2) potential spurious features
would vanish after having used the mesoscale model to
downscale the corrected fields. For each variable and at each
grid point, we extract the time series for the whole period to
produce the two distributions (GCM and reanalysis) that will
be matched. To account for seasonality, all training dis-
tributions are taken on a monthly basis. For 3D and surface
temperature, the correction is performed independently for
the 4 daily time steps to account for the diurnal cycle. Since
we match the bulk distribution of the time series, there is no
matching of sequences of event, on the contrary we maintain
the temporal consistency of the input field.

[16] The correction is done for 3D zonal and meridional
wind, 3D relative humidity, and 3D and surface (skin) tem-
perature. Surface pressure and geopotential height are not
matched in order to maintain flow consistency and quasi-
geostrophy at the boundaries, but they are indirectly modified
by the matching of the 3D temperature field. The hydrostatic
balance of the corrected input field is recomputed before
launching the mesoscale model in order to ensure physical
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Figure 1. Difference between the mean modelled 950 hPa temperature and observed (E-OBS) 2-m temperature (K) over the
1990-1999 decade for ERA-interim, the GCM IPSLcm as well as its corrected version and the RCM WREF driven by raw
IPSLcm fields and by downscaled IPSL fields corrected with the CDF-t technique. The green-shaded areas in the WRF field
are unavailable because located below the 950 hPa level in the hybrid coordinates.

consistency along the columns; by proceeding to an upward
integration of the hydrostatic balance, corrections applied to
the temperature field are conveyed to the geopotential height.

[17] The evaluation experiment consists of simulations
over a 11-year period for the downscaling. The first year is
considered as a spin-up period and it is thus discarded from
the following analysis. The last decade of the 20th century
is chosen because of the full overlap between ERA-interim
and IPCC historical simulations. This time period also
allows comparing the efficiency of the methodology against
observations. Two simulations are carried out, starting on
1 January 1989. The first one is done without applying the
GCM correction prior to dynamical downscaling, while the
second is done with application of the prior CDF-t approach.
The two simulations are then compared to E-OBS data
[Haylock et al., 2008] over the same time period. Since the
focus of this study is not to validate the performance of the
CFD-t itself directly applied to the GCM fields (as it was
demonstrated before [Flaounas et al., 2012; Michelangeli
et al., 2009; Vrac et al., 2012]), but the impact of CDF-t on
the dynamical regional climate downscaling, it was unnec-
essary to implement a ‘leave-one-out’ testing approach. The
duration of the simulations (10 years) is too short to address
the benefits for meteorological extremes; this aspect is left
for future work while we focus here on average biases.

3. Results

[18] The evaluation of the results is performed against
the European Climate Gridded dataset (E-OBS) temperature
and precipitation observations.

3.1.

[19] The bias of temperature averaged over the 10-year
time period is given in Figure 1 for the reanalysis (ERA-i),
the large-scale climate model (IPSLcm) and its statistically
corrected version, the dynamically downscaled climate
model (IPSLcm/WRF) and the hybrid statistical/dynamical
downscaling (IPSLcm/CDF-t/WRF). For all the models the
temperature is interpolated at 950 hPa while the observations
are provided at 2-m altitude. The discrepancies between
E-OBS and ERA-i are confined to the outskirts of the domain
where the gap filling procedure used in E-OBS has uncer-
tainties as a result of the scarcity of the monitoring network.
In addition, important differences are found over mountain-
ous areas due to lack of resolution and methodological dif-
ferences. On average, the difference between ERA-i and the
observations is —1.41 K (standard deviation o = 2.03) over
the Western part of the domain (5SW, 15E, 40N, 55N). Raw
GCM temperatures exhibit a strong negative bias (—4.78 K,
o = 0.6), except over mountainous areas where the positive
biases result from an artefact of the smooth orography. This
strong negative bias of the low resolution version of the
IPSLcm model was discussed before [Hourdin et al., 2012]
and was improved in a more recent version of the model
including a higher resolution [Cattiaux et al., 2012]. This
feature constitutes a somewhat good test case for the hybrid
downscaling methodology presented here. The statistical
correction is efficient at reducing the temperature bias of
IPSLcm, the average bias of the corrected GCM is —1.36
(0 =2.07) and its pattern resembles that of ERA-i.

[20] The negative bias of IPSLcm is amplified in the raw
regional climate model simulations (—5.06 K, o = 1.49), as

Surface Temperature
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Figure 2. Same as Figure 1 for the precipitations (mm/day)
except that only the results of the climate models are given
and the colour scale is reversed.

was observed by Menut et al. [2012]. The dynamical down-
scaling does not constrain the distribution in any ways, and
it appears that a negative feedback occurs here as the RCM
increases the negative biases of forcing fields. On the con-
trary, the situation is better for the hybrid downscaling, the
average bias is limited to —2.33 K (0 = 1.35). The mesoscale
still tends to cool down the GCM, and the average bias is
larger than for the corrected version of IPSLcm since the
compensation that occurred over high elevation terrain van-
ishes. Despite the reduction of the mean bias, it still exhibits a
regional pattern with negative values in Western and North-
ern areas and positive values in Mediterranean areas.

[21] The overall negative bias is primarily found for low
temperatures during winter and to a lesser extent for warm
temperatures, even though a bias remains over the lowermost
part of the distribution.

[22] Seasonality has a strong impact, the mesoscale model
tends to be warmer than the large scale forcing in winter
(0.5 and 0.6 K average bias for IPSLcm and IPSLcm/CDF-t,
respectively) and colder in summer (—0.3 and —1.67 K
average bias for IPSLem and IPSLem/CDEF-t, respectively).
The upstream statistical correction influences indirectly the
atmospheric flow. This feature is confirmed with average
sea-level pressure maps (not shown) that exhibit larger dif-
ferences in winter than in summer, explaining this uneven
influence on temperature of the bias correction over the year.
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3.2. Precipitation

[23] Beyond its relevance for climate impact studies, pre-
cipitation is an interesting variable to evaluate our method-
ology since, unlike temperature, this variable was not directly
corrected by the prior statistical CDF-t method. The absolute
differences between modelled and observed precipitations
are provided on Figure 2.

[24] The GCM exhibits an overestimation of precipitations
throughout the domain. Only West-facing coastal areas have
a deficit, presumably because of the too coarse resolution
that is not able to capture the precipitation local maxima over
the coastlines. The overestimation is less pronounced over
mountainous areas because of a compensation of errors.

[25] The dynamical downscaling of the raw GCM outputs
yields an even stronger overestimation of the precipitation
because of a negative feedback related to the low temperature
bias. The deficit over coastlines and mountains is compen-
sated by the higher resolution of the model.

[26] It is only with the hybrid downscaling that the
results are significantly improved. The model still exhibits an
overestimation of precipitation but, over low-lying area of
Western Europe, the bias is decreased by a factor of two. An
excess is found over the Alps. Precipitation deficits are found
around the Mediterranean, the spatial patterns of these defi-
cits do not appear highly correlated to coastlines. It may thus
be attributable to other uncorrected deficiencies such as
weather regime frequencies rather than resolution issues.

[27] The distribution of daily precipitation shows that the
hybrid downscaling constitutes an improvement over the
whole range of the distribution. Nevertheless, all the simu-
lations still exhibit an overestimation of low precipitations
and an underestimation of higher quantiles.

4. Conclusion

[28] We propose an innovative climate downscaling
methodology that combines state-of-the-art statistical and
dynamical approaches. We apply a statistical correction to
large-scale fields of a Global Climate Model (GCM) prior to
a regional simulation. The statistical correction makes use
of the Cumulative Distribution Function transformation
(CDF-t) designed by Michelangeli et al. [2009]. The GCM
field distributions are matched to those of reanalysed fields in
order to apply a correction over the whole 3D domain for
several variables. The corrected fields are then provided to a
dynamical Regional Climate Model (RCM), so that we can
produce bias-corrected, yet physically consistent, 3D fields
at higher spatial resolution.

[29] An application to present-day climate shows that the
statistical upstream correction leads to a reduction of the
surface temperature bias of a factor four in the regional cli-
mate simulation. This improvement yields, in turn, a lower
overestimation of precipitations.

[30] The CDF-t upstream correction does not address yet
spatial and temporal variability (climate modes, persistence
and weather regimes), the technique remains sensitive to the
choice of variables included in the correction and the location
of the domain since the forcing is applied at the boundaries.
The methodology carries some error compensation mechan-
isms whose effect is minimised thanks to the implementation
of a dynamical downscaling in the lee of the statistical
correction.
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[31] Nevertheless, considering the magnitude of the
improvement in terms of mean bias we conclude that this
innovative hybrid statistical/dynamical climate downscaling
offers promising perspectives for climate impact studies
requiring unbiased, balanced, high-resolution 3D fields.
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