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ABSTRACT6

Statistical methods to bias correct global or regional climate model output are now common7

to get data closer to observations in distribution. However, most bias correction (BC) meth-8

ods work for one variable and one location at a time and basically reproduce the temporal9

structure of the models. The inter-variable, spatial and temporal dependencies of the cor-10

rected data are usually poor compared to observations. Here, we propose a novel method for11

multivariate BC. The empirical copula - bias correction (EC-BC) combines a 1-dimensional12

BC with a shuffling technique that restores an empirical multidimensional copula. Several13

BC methods are investigated and compared to high-resolution reference data over the French14

Mediterranean basin, notably: (i) a 1d-BC method applied independently to precipitation15

and temperature fields, (ii) a recent conditional correction approach developed for producing16

correct two-dimensional inter-variable structures, (iii) the EC-BC method.17

Assessments are realized in terms of inter-variable, spatial and temporal dependencies and18

an objective evaluation using the integrated quadratic distance (IQD) is presented. As ex-19

pected, the 1d methods cannot produce correct multidimensional properties. The conditional20

technique appears efficient for inter-variable properties but not for spatial and temporal de-21

pendencies. EC-BC provides realistic dependencies in all respects, inter-variable, spatial and22

temporal. The IQD results are clearly in favour of EC-BC. As many BC methods, EC-BC23

relies on a stationarity assumption and is only able to reproduce patterns inherited from his-24

torical data. However, due to its easiness of coding, its speed of application and the quality25

of its results, the EC-BC method is a very good candidate for all needs in multivariate bias26

correction.27

1



1. Introduction28

The use of simulations from climate or meteorological models at large or regional scales29

is now common in many impact studies, such as hydrological, environmental, or economic30

studies among others, or more generally in studies on consequences of climate change and31

adaptation. Although those simulations provide much useful information, they are in general32

not directly comparable to observations: for example, many observations are point measure-33

ments, whereas simulated data represent volume integrated dynamical variables. Moreover,34

simulated data are associated with potential biases in the sense their statistical distribution35

differs from the distribution of the observations. This is partly due to the fact that Global36

Climate Models (GCMs) have too low a spatial resolution to be employed directly in most37

of the impact models (e.g., Meehl 2007; Christensen et al. 2008). Regional Climate Models38

(RCMs) reduce some of the biases but not those unrelated to spatial resolution (Maraun39

2013; White and Toumi 2013). Statistical bias correction methods – correcting the distribu-40

tion (e.g., the cumulative distribution function) – are then commonly applied to transform41

the simulated data into new data with no, or at least fewer, statistical biases with respect to42

reference, generally observed, time series. In general, there is no clear distinction between a43

change of support problem (i.e. down- or upscaling), and bias correction.44

In all the following, capital letters – e.g., X – represent random variables, while small45

letters – e.g., x – are used for realizations or values of a random variable. The most employed46

bias correction (BC) methods are based on quantile-association. The most famous is certainly47

the so-called quantile-mapping approach (Panofsky and Brier 1958; Haddad and Rosenfeld48

1997; Wood et al. 2004; Déqué 2007; Piani et al. 2010; Gudmundsson et al. 2012), trying to49
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map a modeled value x (with a cumulative distribution function – CDF – FX) to an observed50

value y (with a CDF FY ) through a function f , such that their distributions are equivalent51

(Piani et al. 2010b):52

y = h(x) such that FY (y) = FX(x). (1)

This mapping function h can be derived from distributions, regression-like transformations,53

in both cases either parametric or non-parametric (see, e.g., Gudmundsson et al. 2012, for54

some details). A very popular distribution-derived non-parametric approach (e.g., Déqué55

2007) directly uses the constraint FX(x) = FY (y) to derive the corrected value y from the56

modeled value x through the so-called ”Empirical Quantile Mapping” (EQM):57

y = F−1
Y (FX(x)) (2)

where F−1 is the inverse function of the CDF F , both modeled non-parametrically.58

One major issue of such quantile mapping methods and their variants (e.g., Michelangeli59

et al. 2009) is that they are essentially univariate: they work only for one variable at a time,60

one location at a time and basically reproduce the temporal structure of the climate models.61

Hence, although the resulting marginal (i.e., one-dimensional) statistical distributions of the62

corrected data are improved, those one-dimensional techniques suffer from various limita-63

tions. Among the latter, one major limitation for many impact studies is that, because they64

are applied to one location at a time, the spatial and temporal structures of the corrected65

time series are misrepresented (Colette et al. 2012; Maraun 2013) and basically correspond66

to the structures of the model to be corrected. This leads to potentially significant inade-67

quacies when used as forcing, for example in a hydrological model where spatialization and68

chronology of the input rainfall are of importance.69
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Moreover, as most of the BC methods correct one variable at a time – e.g., temperature70

is corrected separately and independently from precipitation –, the corrected variables can71

be inconsistent between each other and then generate unrealistic situations (e.g., Chen et al.72

2011; Muerth et al. 2013).73

Such (spatial, temporal and inter-variable) issues also appear when BC is applied to74

de-bias GCM outputs prior to downscaling with regional climate models. Although Colette75

et al. (2012) and White and Toumi (2013) showed that such a “prior” correction of the76

large-scale inputs for RCMs with a quantile-association based method clearly improves the77

quality of the RCM simulations, White and Toumi (2013) found that it can nevertheless78

produce undesirable results in the RCM simulations.79

Recently, efforts have been made to improve or create BC models that solve (some of)80

those issues. Piani and Haerter (2012) developed a BC methodology to bypass the problem81

of physical consistency between two variables (e.g., temperature and precipitation) to be82

corrected. Their approach consists in applying a univariate BC to the time series of one83

variable (e.g., precipitation) conditionally on the bias corrected values of the time series84

for the other variable (e.g., temperature). Their results show the clear improvement of the85

temperature-precipitation dependence representation with respect to the traditional separate86

univariate temperature and precipitation bias corrections.87

Furthermore, to overcome the lack of realistic spatial variability and temporal persistence88

in precipitation and temperature fields simulated by a numerical weather prediction (NWP)89

model, Clark et al. (2004) presented a method for reordering NWP outputs to recover the90

space-time variability. In this approach, each time series is ranked and matched with ob-91

servation data. The element of the time series are then shuffled to match the original order92
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of the historical dataset. Based on this shuffling technique, Clark et al. (2004) correctly93

reconstructed the space-time variability of forecasted precipitation and temperature fields.94

This technique has seen great success in hydrological applications, e.g. for flood forecasts95

(Voisin et al. 2010, 2011), to construct ensemble forecasts from single-value forecasts of pre-96

cipitation and temperature (Schaake et al. 2007), or for ensemble post-processing (Verkade97

et al. 2013; Robertson et al. 2013). The ensemble copula coupling (ECC) is an adaptation98

thereof to multivariate ensemble postprocessing (Schefzik et al. 2013a; Möller et al. 2012;99

Schuhen et al. 2012; Thorarinsdottir et al. 2013b). Related methods are also described in100

Johnson and Bowler (2009), Pinson (2012) and Roulin and Vannitsem (2012). A recent ar-101

ticle by Wilks (2014) compares the Schaake shuffle and the ECC in the context of ensemble102

post-processing. To the best of our knowledge, the shuffle technique has not yet been applied103

for the purpose of multivariate bias correction or downscaling of climate simulations.104

The main objective of this article is to promote a technique that is readily available and105

easy to apply. This technique will be referred to as the “empirical copula - bias correction”106

(EC-BC) approach and combines a univariate BC method with the shuffling technique pre-107

sented by Clark et al. (2004). We further provide an intercomparison of this method with a108

one-dimensional BC method and the conditional approach of Piani and Haerter (2012).109

This article is organized as follows: In the next section, the data to be corrected and110

the reference data are first presented, as well as the experimental cross-validation setup. In111

section 3, a short description of the 1d-bias correction method used as a benchmark in this112

study is provided. Then, theoretical and technical details are given concerning the bivariate113

and multivariate bias correction methods compared in this article in Section 4, namely: the114

“conditional” technique, the shuffling-based method and the EC-BC approach. Section 5115
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contains the results of the intercomparison in terms of inter-variable, spatial and temporal116

analyses. Finally, general conclusions are given in section 6 as well as a discussion concerning117

the underlying assumptions and some potential adaptations of the various approaches.118

2. Reference and model data119

In this article, the reference data are daily temperature and precipitation time series120

from the SAFRAN reanalysis data (Quintana-Segui et al. 2008) over the south-west region121

of France [2oE, 7.5oE] × [42oN, 45oN ] corresponding to 1506 continental grid-cells with an122

approximate 8×8 km spatial resolution. Fig. 1(a) displays the map of France with the region123

of interest in a box, as well as the mean cumulated annual precipitation (fig. 1(b)) and the124

mean daily temperature (fig. 1(c)). The SAFRAN dataset allows one to avoid gaps in the125

time series. It has been employed as a reference for evaluation of different statistical or126

dynamical downscaling approaches in various studies (e.g., Lavaysse et al. 2012; Vrac et al.127

2012). A detailed description of SAFRAN, its validation and its application over France is128

given by Quintana-Segui et al. (2008).129

Model data to be corrected are the ERA-Interim (hereafter ERA-I) daily reanalysis tem-130

perature and precipitation data with a 0.75o by 0.75o spatial resolution. Using an improved131

atmospheric model and assimilation system from those used in ERA-40 (Simmons and Gib-132

son 2000), ERA-Interim represents a third generation reanalysis system (Dee et al. 2011).133

ERA-Interim reanalyses are now widely employed (e.g., Vautard and 25 authors 2013) and134

serve as meteorological forcing of the downscaling models involved in the “COordinated135
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Regional Downscaling EXperiment” (CORDEX) initiative1.136

For both model and reference datasets, data have been extracted from Jan., 1, 1980 to137

Dec., 31, 2009. Then, each ERA-I grid-cell has been Co-located with the SAFRAN grid-cell138

the closest to its center. Hence, each ERA-I grid-cell time series to be corrected has a unique139

reference SAFRAN grid-cell.140

Moreover, in the following, all bias correction methods are applied separately to two141

periods of the year : from October 15th to April 14th (hereafter referred to as ”winter”) and142

from April 15th to October 14th (hereafter referred to as ”summer”).143

The calibration of the following BC methods is performed over the period 1980-1994 and144

all evaluations are performed over the period 1995-2009.145

3. Univariate bias correction146

A variant of EQM has been recently developed by Michelangeli et al. (2009) and applied147

in many climate-related studies (e.g., Oettli et al. 2011; Colette et al. 2012; Tisseuil et al.148

2012; Vrac et al. 2012; Vigaud et al. 2013, among others). This variant first estimates149

the distributions FY p and FXp for the random variables Y and X over the projection time150

period (either future, or simply evaluation time period) before applying a distribution-derived151

quantile mapping as defined in Eq. (2) in replacing X and Y by Xp and Y p respectively.152

If FXp can be directly modeled – parametrically or not – from the data to be corrected in153

the projection period, the modeling of FY p is based on the assumption that a mathematical154

1http://wcrp-cordex.ipsl.jussieu.fr/
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transformation T allows to go from FX to FY in the calibration period:155

T (FX(z)) = FY (z) (3)

for any z in the domain of X and Y ; and that T is still valid in the projection period, i.e.:156

T (FXp(z)) = FY p(z). (4)

Replacing z by F−1
X (u) in (3), where u is any probability in [0, 1], we obtain157

T (u) = FY (F−1
X (u)), (5)

corresponding to a simple definition for T . Inserting (5) in (4) leads to a modeling of FY p:158

FY p(z) = FY (F−1
X (FXp(z))). (6)

Once FXp and then FY p are modeled, a distribution-based quantile-mapping is applied as in159

(2). Hence, this so-called ”Cumulative Distribution Function - transform” (CDFt) approach160

– as named by Michelangeli et al. (2009) – includes the information about the distributions161

over the projection time period in the quantile-mapping technique. Some more details about162

CDFt can be found in Vrac et al. (2012).163

In the following, only the CDFt univariate bias correction approach will be applied.164

Indeed, preliminary analyses showed that EQM and CDFt display equivalent results in the165

context of the present study. Although this has not been tested, we strongly expect other166

univariate bias correction techniques (parametric or not, distribution-based or not) to behave167

relatively similarly. Hence, the univariate BC method CDFt is first applied independently to168

precipitation (PR) and 2m-temperature (T2) from ERA-I. This will provide the benchmark169

bias corrected ERA-I dataset to which some bivariate or multivariate correction procedures170

will be compared.171
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4. Bivariate / Multivariate bias correction172

a. A short reminder on statistical dependence and copulas173

The notion of (spatial, temporal or inter-variable) dependence structure is in close re-174

lationship with the so-called copula functions (e.g., Nelsen 2006). An introduction of the175

copula approach for climate research is given, e.g., in Schoelzel and Friederichs (2008). The176

basis of the copula approach is Sklar’s theorem (Sklar 1959) which states that every multi-177

variate or joint CDF can be expressed by the marginal CDFs of the univariate components of178

the multivariate random variable and the copula. The copula is a joint CDF that describes179

the statistical dependence of the transformed random variables Uj = FXj
(Xj), where Xj180

is the j-th component of the multivariate random variable X = (X1, . . . , Xd)
T and FXj

the181

respective marginal CDF. Sklar’s theorem states that every joint CDF FX can be expressed182

as183

FX = CX (FX1 , . . . , FXd
) , (7)

where CX is the copula of X. Both bivariate and multivariate BC methods presented next are184

designed to restore the dependence structure and therefore the underlying copula function.185

b. The bivariate “Conditional” approach186

Piani and Haerter (2012) developed a bivariate BC method whose the main idea is to187

apply a univariate BC to precipitation time series conditionally on the bias corrected values188

of temperature classified into binned temperature values. This “conditional” approach works189

in three steps: First, a standard 1d-BC method is applied separately to model temperature.190
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Then, the (temperature, precipitation) pairs are grouped into temperature quantile bins.191

Finally, a standard 1d-BC method is applied for precipitation within each temperature bin.192

They concluded that this approach improved the 2d temperature-precipitation copula and193

that even a relatively small number of temperature bins allows to significantly improve the194

dependence structure (i.e., the copula) between the two physical variables. Technical details195

can be found in Piani and Haerter (2012). In the following, this conditional approach is196

applied both ways to our data: to bias correct precipitation time series conditionally on the197

bias corrected values of temperature, and to bias correct temperature time series condition-198

ally on the bias corrected values of precipitation. For precipitation given temperature, five199

quantile bins have been used. Higher numbers of bins have also been tested but the quality200

of the results did not change significantly (not shown). For temperature given precipitation,201

only three quantile bins have been used (with the first interval bin including all zeros) to202

avoid the size of the bins to be too much different due to a larger number of dry days. Note203

that this 2D approach is relatively independent of the 1d-BC method since the conditional204

correction can be performed with most of the classical 1d-BC techniques. This is a very205

interesting feature that makes the procedure flexible.206

However, this conditional approach reproduces only the 2D inter-variable dependences:207

we may want to correct the spatial and or temporal structures as well. Then, other techniques208

have to be employed.209

c. The “Schaake Shuffle” method210

Clark et al. (2004) highlighted another shuffling technique – sometimes named as the211
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“Schaake shuffle” after Dr. J. Schaake (National Weather Service Office of Hydrologic De-212

velopment) – in the context of correcting forecasts from NWP models. This method was213

adapted by Schefzik et al. (2013b) and by Möller et al. (2012) in the context of ensemble214

postprocessing. Here, the Schaake approach is adapted and presented in the context of bias215

correction of time series generated by (global or regional) climate models – potentially previ-216

ously dynamically or statistically downscaled – whose spatial, temporal and/or inter-variable217

properties have to be corrected.218

The “Schaake shuffle” as illustrated in Table 1 is very simple to implement. Assume we219

have a reference sample of length 4 for the variable Z. The reference sample has a certain220

rank structure given by the rank k of an element in the sample with respect to the other221

data in the sample. When new samples arrive – e.g., from model output or from 1d-bias222

corrected data –, the main idea is to reorder the new samples such that their rank structure223

is identical to that of the reference sample. Let’s take the example of the variable Z with224

reference sample ZR = (0.3, 0.5, 0.9, 0.8) and prediction sample (i.e., the sample data to be225

corrected) ZP = (0.7, 0.5, 0.2, 0.9). The associated ranks of ZR are k(ZR) = (k(0.3) = 1,226

k(0.5) = 2, k(0.9) = 4, k(0.8) = 3) – noted as k(ZR) = (1, 2, 4, 3) – and those of ZP are227

k(ZP ) = (k(0.7) = 3, k(0.5) = 2, k(0.2) = 1, k(0.9) = 4) – noted as k(ZP ) = (3, 2, 1, 4). The228

shuffling procedure consists in reordering the elements of ZP into a new sample Zshuffled such229

that the rank of this new sample is identical to the rank of the training sample: k(Zshuffled) =230

k(ZR) = (1, 2, 4, 3). Hence, based on the present example, the first element of Zshuffled must231

be the element of ZP with rank 1, that is 0.2; the second element of Zshuffled must be the232

element of ZP with rank 2, that is 0.5; the third element of Zshuffled must the element of ZP233

with rank 4, that is 0.9; and the four element of Zshuffled must the element of ZP with rank234
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3, that is 0.7. Therefore, Zshuffled = (0.2, 0.5, 0.9, 0.7) and satisfies k(Zshuffled) = k(ZR).235

See Clark et al. (2004) for a more technical and mathematical formulation of the shuffling236

procedure. Note that ZR represents the dataset from which the dependence structure is237

“learned”. In our case it represents one time series in the SAFRAN reference dataset during238

the training period. ZP represents the prediction, which in our study is the corresponding239

ERA-I time series, either bias corrected or not. The main difference between the shuffling240

methods mentioned in the introduction, namely the Schaake shuffle and the ECC, is the241

dataset that determines the dependence structure (i.e. the ranks).242

In the present work, for practical reasons, the rank associated with exact same values243

(such as zeros for precipitation) is supposed to be increasing with time. In other words,244

if zt1 = zt2 = 0 are precipitation values at time t1 and t2 respectively, with t1 < t2, then245

rank(zt1) < rank(zt2). In the context of a 3-dimensional data matrix (say, n time steps,246

s gridcells or stations, p physical variables), the Schaake method is applied separately to247

the n-component vector resulting from each combination “one gridcell × one variable” (i.e.,248

it is applied s × p times). The remarkable effect is that simply by reordering the data249

independently in time, not only the temporal, but also intervariable and spatial dependencies250

are restored. How powerful the “Schaake shuffle” is will be shown in section 5.251

Why is Sklar’s theorem (Eq. 7) of relevance for the shuffling method presented here? An252

important property of the transformed random variables Uj is that if Zj has the CDF FZj
then253

Uj = FZj
(Zj) ∼ Unif(0, 1), i.e. Uj are uniformly distributed on the interval [0, 1]. Lets now254

assume we have a sample z
(i)
j , i = 1, . . . , N of Zj without knowing FZj

, then u
(i)
j = FZj

(z
(i)
j )255

is generally estimated as the rank k
(i)
j of z

(i)
j with respect to the sample z

(i)
j , i = 1, . . . , N256

divided by N + 1, i.e. û
(i)
j = k

(i)
j /(N + 1). Hence, re-shuffling of the multivariate data with257
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respect to their ranks k
(i)
j has the potential to restore (parts of) the dependence structure,258

namely the copula CZ. It is the same reason why rank correlation is an adequate measure to259

assess dependence between random variables. An important consequence of Sklar’s theorem260

(Eq. 7) is that the BC of the marginals and the restoration of the dependence structure261

can be performed independently, at least as long as the BC of the marginals does not affect262

the ranks of the data (this is generally given since transfer functions are usually monotonic263

functions). In the following, the application of the Schaake shuffling technique to previously264

1d-bias corrected time series will be referred to as “Empirical Copula - Bias Correction”265

(EC-BC).266

d. Raw and shuffled ERA-I reanalyses267

For comparison purposes, the “raw” ERA-I data (i.e., without any correction) as well268

as the Schaake shuffling technique are directly applied to ERA-I without any preliminary269

univariate bias correction are also evaluated. Hence, in the “Results” section, the following270

BC methods are intercompared:271

• the independent univariate bias corrections (CDFt) of the ERA-I reanalyses of272

precipitation and temperature;273

• CDFt on ERA-I followed by the Schaake shuffle method, i.e., the EC-BC approach;274

• the conditional approach based on CDFt on ERA-I (with precipitation corrected275

conditionally on temperature and the other way around);276

• the raw ERA-I data (i.e., without any correction);277
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• and the Schaake shuffling technique directly applied to ERA-I without any278

preliminary univariate bias correction.279

5. Results280

The various BC methods are evaluated according to three different angles: How do the281

corrected data reproduce the inter-variable statistical properties? How do they reproduce282

the spatial properties? How do they reproduce the temporal properties? In the following,283

due to the large number of figures available, only winter evaluations are shown. However,284

summer plots are fairly equivalent or provide equivalent conclusions and are provided as285

auxiliary material.286

a. Inter-variable correlations287

For many impact models (e.g., hydrology, agriculture), the correlation between variables288

– here precipitation and temperature – is an important feature that must be accurately mod-289

eled by the meteorological input data. Hence, fig. 2 shows maps of inter-variable Spearman290

correlation coefficients between PR and T in winter over the evaluation period for the various291

BC models as well as for the SAFRAN dataset. While the Pearson correlation coefficient292

is the most widely used, the Spearman correlation is employed here. Indeed, the Pearson293

coefficient measures the strength of the linear relationship between normally distributed294

variables. However, precipitation is not normally distributed and, besides, the relationship295

between temperature and precipitation is not supposed to be linear. Hence, in that context,296
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it is more appropriate to use the Spearman correlation that does not require a linear rela-297

tionship, neither the variables to be normally distributed (e.g., Hauke and Kossowski 2011).298

In fig. 2, only correlations that are statistically equivalent to the SAFRAN correlation (i.e.,299

not significantly different at 95%) are shown in those plots. A bootstrap technique (Efron300

and Tibshirani 1993) with block-replacement of 10-day blocks has been applied to deter-301

mine if the correlations were significantly different or not at 95%. The procedure was the302

following for each grid-cell: (i) Take the N daily observations in the verification period; (ii)303

Generate 1000 times N -day long bootstrapped samples with replacement (i.e., each sample304

is constituted of (N/10) 10-day blocks); (iii) Compute the 2.5% and 97.5% percentiles from305

the 1000 correlations as the 95% uncertainty interval: if the correlations of the BC data are306

outside this range, they are considered as significantly different. The length of the blocks (10307

days) has been chosen to account for temporal correlations, i.e., that the effective number308

of degrees of freedom in the daily time series is significantly smaller than N . In each panel309

of fig. 2, the percentage of grid-points with correlation significantly different (%GPCSD)310

from that of SAFRAN is also indicated. As expected, ERA-I correlations appear clearly as311

inappropriate (%GPCSD is more than 66%). This is true also for the correlations from the312

univariate BC method that roughly reproduce the ERA-I pattern (%GPCSD'61%). Inter-313

estingly, the “conditional” approach does not give the same correlations when applied to314

correct temperature given the precipitation (fig. 2(d)) or to correct precipitation given the315

temperature (fig. 2(e)): the former provides much better correlations in the present setting316

(about 30% vs. 75% for the %GPCSD). One explanation is that while a given PR interval317

provides useful constraints on the possible range of associated temperatures, the opposite318

is not true: temperature is not a good predictor of precipitation that remains relatively319
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highly variable even for a given small interval of temperatures. The EC-BC method gener-320

ates equivalently good results in terms of inter-variable dependence and provides satisfactory321

correlations (%GPCSD'27%). This is true also when the Schaake shuffle is applied directly322

to ERA-I reanalyses (%GPCSD'38%). It is interesting to note that some ”not-significantly323

equivalent correlations” regions are different from one model to another. Some additional324

analyses and experiments (not shown) illustrate that the EC-BC method is not sensitive325

to the choice of the univariate BC method (CFt or EQM) as preliminary step. This is326

not exactly the case for the conditional approach where some differences appear between327

“Cond. CDFt” and “Cond. EQM” (not shown) and one must be cautious to this point when328

applying the bivariate conditional approach.329

b. Spatial correlations330

The statistical spatial properties are also very important in many impact studies. A very331

common way to investigate spatially coherent variability is a principal component analysis332

(PCA). It has first to be noted, that the dominant empirical orthogonal function (EOF)333

for both temperature and precipitation represents almost constant changes over the entire334

region. This is due to the small spatial extent of the region, where day to day weather vari-335

ability is large and affects the whole domain in a very similar way. We thus first investigate336

the variability of the area-mean temperature and precipitation times series, which is then337

removed from the data for the PCA.338

Figure 3 represents bivariate histograms of area-mean 2m temperatures. We here consider339

the complete verification period taking summer and winter data together. In order to also340
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show equivalent figures for the reference data, we generated a perturbed series of observed341

area-mean temperatures by randomly changing the order of the years while preserving the342

order of the day in the year. The reference data reveal a distinct seasonal cycle with an343

amplitude of more than 15 K. The seasonal cycle seems well reproduced in the bias corrected344

temperature, whereas it is largely underestimated in ERA-Interim (Fig. 3 (b) and (f)). Thus,345

univariate BC is helpful to correct the amplitude of the seasonal cycle. EC-BC or conditional346

BC seem not to significantly improve the distribution of the area-mean values.347

Since the distribution of precipitation is highly skewed, we set the zero precipitation348

values to a small value different from zero (0.00033) and work in the following on the loga-349

rithm of precipitation. For area-mean precipitation (Fig. 4) no obvious seasonal cycle exists.350

The effect of the Schaake shuffle (e.g., comparing Figs. 4 (b) and (f)) seems to concentrate351

the area-mean precipitation values, presumably because the Schaake shuffle increases the352

spatial variability of ERA-Interim precipitation (i.e., induces more small scale structures by353

shuffling). The conditional BC seems to shift the modus of the precipitation values to lower354

values. None of the area-mean precipitation series seems superior from this analysis.355

For the PCA we now removed the area-mean from the data at each time step. We356

concentrate on winter data, but the results are similar for summer. Figs. 5 and 6 show357

the eigenvalues and explained variance fractions of the leading EOF for temperature and358

log-precipitation, respectively. Zero precipitation values were again set to a small value of359

0.00033. Note that a principal component analysis for the still non-Gaussian log-precipitation360

fields should be interpreted with caution. We think, however, that in our case it is a valuable361

tool to compare spatially coherent modes of variability.362

The eigenvalue spectra for temperature in Fig. 5 show, that the total variance, i.e. the363

17



sum of the eigenvalues, is generally largest for the reference data, and smallest for ERA-364

Interim, either shuffled or not. Thus, one important effect of BC is to correct for total365

variance of the data. The conditional BC approach has a realistic variance spectrum, whereas366

the EC-BC provides an eigenvalue spectrum very close to that of the reference data. The367

explained variance spectra in Fig. 5 in turn give an indication of the relative importance of368

the leading EOF. A flat spectrum indicates weak coherence in the spatial patterns, whereas369

a steep spectrum generally indicates the presence of large-scale coherent structures. Since370

independent BC inherits the spatial dependence of ERA-Interim, they both have a very371

dominant first EOF. The explained variance spectra for the conditional and the EC-BC372

approaches are very realistic.373

Similar results are obtained for precipitation (Fig. 6). The total variance of ERA-Interim374

and the shuffled ERA-Interim data is much too small, whereas BC has a very positive effect375

even for the independent BC. The conditional BC seems to underestimate the variance of376

the first EOF. The explained variance spectra show only small differences. Precipitation377

generally has much more small-scale variability which is reflected in the small explained378

variance fraction of the leading EOF. ERA-Interim and independently bias-corrected ERA-379

Interim exhibit slightly larger scale dominant patterns.380

The differences become even more evident in the structure of the leading EOFs. The381

leading EOF for temperature (Fig. 7) in the reference data represents a dipole pattern with382

higher than normal temperatures near the Mediterranean coast and colder temperatures383

in the northern and north-eastern part of the region. All BC methods except those that384

apply the Schaake shuffle, reproduce the checked pattern imposed by the ERA-Interim grid385

structure and an east-west dipole. The conditional approach only slightly modifies the386
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large-scale pattern. This effect also pervades higher order EOF (not shown). In contrast,387

the EC-BC has a very realistic leading EOF, and albeit with a smaller amplitude, the first388

EOF is also well reproduced in the shuffled ERA-I dataset.389

For log-precipitation (Fig. 8) the results are similar. Again, the leading EOF of the390

EC-BC data set is very close to that of the reference data. The conditional BC introduces391

some noise, but besides this its first EOF is very close to the first EOF of ERA-I. Note392

that the conditional approach has been applied here to model temperature conditionally393

on precipitation (Figs. 5 and 7) or the other way around (Figs. 6 and 8), i.e., in an inter-394

variable context and not a spatial one. One can expect this conditional technique to work395

better if applied in a spatial one, e.g., if the station i is modeled according to the station j.396

Nevertheless, one could get as many references as stations j. Hence, the correction is then397

not unique and therefore may be quite complicated to interpret. Besides, the combinatory398

of BC to be applied can quickly increase and make the practical implementation intractable.399

Globally, EC-BC shows the most satisfying spatial variance pattern, whenever designed400

with CDFt or EQM (not shown for EQM). The results are also satisfactory – to a lesser401

extent – for the Schaake shuffle directly applied to the raw ERA-I data. In order to assess402

the similarity of spatial variance patterns more objectively, we performed a reduction of403

spatial degrees of freedom. To this end, we calculate the EOF of the reference data and404

project all data onto the leading 10 EOF of the reference data. We thus obtain 10 times405

series (i.e. expansion coefficients) for each dataset. The analysis is now performed within406

the 10 dimensional subspace spanned by the 10 leading EOF.407

We first examine the covariance matrices of the reduced data sets for 2m temperature408

(Fig. 9). By construction, the expansion coefficients of the reference data show a diagonal409
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covariance matrix. The covariances between the expansion coefficients are zero since the410

eigenvectors of the covariance matrix are statistically orthogonal. This is not anymore the411

case for the other datasets. Here, the covariances between the expansion coefficients are412

generally non-zero. The degree to which the off-diagonal are different from zero indicates413

how different the respective variation patterns are. EC-BC seems to project very well on the414

EOF of the reference data, all other methods show substantial differences. For precipitation415

(Fig. 10) results are similar. The similarity of the covariance matrix obtained from EC-BC416

with that of the reference data is again striking.417

We finally want to quantify the quality of each of the approaches by using a distance418

function between the empirical (multivariate) distribution of the reference data and each419

of the BC methods. As distance measure we use the integrated quadratic distance (IQD),420

which is a proper divergence function Thorarinsdottir et al. (2013a). It measures the distance421

between two distribution functions. The IQD between two distribution functions F and G422

is defined as the integral423

d(F,G) =

∫
Ω

(F (ω)−G(ω))2dω, (8)

where Ω represents the sample space. The IQD is closely related to the energy score used424

in forecast verification (Gneiting and Raftery 2007). It may be empirically estimated using425

the equivalent formulation426

d(F,G) = E||X−Y|| − 1

2
E||X−X′|| − 1

2
E||Y −Y′||, (9)

where X and X′, and Y and Y′ represent independent draws from multivariate distribution427

functions F and G, respectively. The vector norm used here is the Euclidian norm.428

In our application, X and Y are the expansion coefficients of the reference and the BC429
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data, respectively. To get independent random realizations of the differences we randomly430

draw 50.000 vectors with replacement for X, X′, Y and Y′ out of the available data sets of431

length 2.734 winter days, respectively, and calculate the IQD using (9). In order to assess432

the uncertainty of the IQD, we additionally apply a bootstrap method with replacement433

(Efron and Tibshirani 1993). Repeating this 200 times provides estimates of the uncertainty434

of the IQD. Fig. 11 shows the IQD estimates together with the 95% bootstrap sampling435

uncertainty. The IQD in Fig. 11 is evaluated hierarchically, first in the subspace of the436

leading, then the first 2 leading upto the first 10 leading EOF of the reference data.437

The IQD quantitatively confirms the superiority of EC-BC. For 2m temperature (Fig. 11438

(a)) the IQD for the EC-BC data varies closely above zero throughout the hierarchy. It only439

slightly increases with a higher dimensionality. There is a rather clear ranking between the440

different approaches, with EC-BC performing best, conditional BC second best when using441

more that 2 EOF, followed by ERA-Interim with Schaake shuffle, and independent BC. The442

raw ERA-Interim data have the largest IQD, so any approach provides improvements in443

terms of IQD. For temperature, large improvements of the spatial covariances are obtained444

solely by the Schaake shuffle. Its effect on the IQD is stronger that that of the independent445

BC of the marginals. In comparison to independent BC, the conditional BC only slightly446

improves the spatial covariances.447

For precipitation (Fig. 11 (b)) again EC-BC is clearly superior, but the ranking is not the448

same as for temperature and less distinct. EC-BC performs best, followed by independent449

BC. Interestingly, the Schaake shuffle applied without BC seems to degrade the IQD. The450

most important correction here is the BC of the marginals, whereas the correction for the451

dependence structure is less important for precipitation. The conditional approach seems to452
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work less well for precipitation under this respect.453

c. Temporal correlations454

We finally investigate the temporal structure of the time series, which used as input in455

impact models may also have great consequences. Its accurate modeling may then be crucial.456

To this end, n-day lag autocorrelations have been studied for n between 1 and 5. Fig-457

ures 12 and 13 display the lag-1 auto-correlations for the different BC models in winter for458

temperature and precipitation respectively.459

For temperature, the conditional approach (Fig. 12(d)) clearly underestimates lag-1 auto-460

correlations, while, in that temporal context, the independent BC (Fig. 12(c)) gives rel-461

atively consistent results, although strongly imperfect due to the structure in “squares”462

already present in non-corrected ERA-I auto-correlations (Fig. 12(b)). The shuffling pro-463

cedure provides the best temporal dependencies either applied to CDFt results (i.e., the464

EC-BC approach, Fig. 12(e)) or directly to ERA-I data (Fig. 12(f)). Most of the conclu-465

sions from lag-1 temperature auto-correlation are still valid for lag-5 auto-correlations (not466

shown): The results of the shuffling procedure (on 1d-BC or non-corrected data) are still467

very close to the reference, while the conditional approach provides too low correlations and468

ERA-I data continue to have too high correlations. However, the independent BC method469

is not as consistent as for lag-1 results, with too low lag-n auto-correlations for n ≥ 2.470

471

In terms of precipitation, (Fig. 13), contrary to temperature, lag-1 correlations from in-472

dependent BC (Fig. 13(c)) are not acceptable, showing a pronounced underestimation. On473
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the opposite, the direct shuffling of ERA-I (Fig. 13(f)) globally overestimates the 1-day auto-474

correlation, especially on the North-East part of the domain. This was already true (with a475

smaller magnitude) for uncorrected ERA-I (Fig. 13(b)). The EC-BC approach (Fig. 13(e))476

provides the precipitation lag-1 auto-correlation structures and intensities the closest to477

those of the SAFRAN dataset (Fig. 13(a)), while the conditional approach (Fig. 13(d)) gives478

correct auto-correlation magnitudes but with relatively inappropriate structures. For lags479

longer than one day, the precipitation auto-correlation drops very quickly close to zero for480

observations and almost all models (not shown), except for the direct shuffling of ERA-I481

data that continues to provide very high (unobserved and unrealistic) auto-correlations of482

about 0.8 – at least until a 5-day lag – for the north-east region. This is somehow surprising483

since the “raw” ERA-I data (i.e., without any bias correction) do not show such a strong484

feature although with a very slight overestimation of the auto-correlation for this region.485

486

Moreover, to describe more specifically the rainfall occurrence temporal structure ob-487

tained from the BC methods, the maps of the probability of a dry day given that the488

previous day was wet – i.e., Proba(dry|wet) noted as Pdw –, as well as the opposite – i.e.,489

Proba(wet|dry) noted as Pwd – have been computed and are displayed in Figs. 14 and 15490

respectively. For the maps of Proba(dry|wet), it is quickly seen that ERA-I (Fig. 14(b))491

and the conditional approach (Fig. 14(d)) globally overestimate the probability of a dry day492

given that the previous day was wet. However, all the other BC methods provide satisfying493

Pdw values, close to those of SAFRAN.494

Interestingly, the Pwd maps (Fig. 15) are not completely the ”symmetric” of the Pdw maps.495

Here, the conditional approach (Fig. 15(d)), ERA-I (Fig. 15(b)), as well as its direct shuffling496
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(Fig. 15(f)) underestimate the dry day probabilities (particularly strongly for the latter two497

datasets). The independent BC (Fig. 15(c)) shows better Pwd values, although too high498

in the north-east region. However, the Pwd results the closest to those of the reference499

dataset are obtained from the EC-BC model (Fig. 15(e)), which shows quite similar values500

and spatial structures.501

6. Conclusions and Discussion502

a. Conclusions503

In this paper, we have compared several univariate, bivariate and multivariate bias cor-504

rection (BC) methods designed for specific multivariate properties:505

• One univariate “independent BC” based on the CDFt approach;506

• The “Conditional approach” (Piani and Haerter 2012) (here, based on CDFt) devel-507

oped specifically for producing a correct two-dimensional inter-variable structure;508

• The ‘Schaake Shuffle”method (Clark et al. 2004) applied directly to raw (i.e., uncor-509

rected) ERA-I reanalyses precipitation and temperature time series;510

• The “Empirical Copula - Bias Correction” (EC-BC) approach constituted with the511

Schaake Shuffle method applied to previously 1d-bias corrected time series (here,512

through the CDFt method) of precipitation and temperature.513

The Schaake method is based on temporal shuffling of the elements in each time series such514

that the temporal rank structure is reconstructed.515
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Globally, on those datasets and with this experimental setting, although it is quite useful516

for correction of the marginal distributions, the one-dimension CDFt bias correction alone517

is not good at reproducing any of the inter-variable, spatial or temporal properties of the518

observed data. This is true also for the univariate EQM method (not shown). In contrast,519

the application of the EC-BC techniques clearly improves those properties. The conditional520

and the shuffling methods improve the inter-variable properties – often, even when applied521

directly to ERA-I data. This is not the case for the spatial structure where the conditional522

technique – which was initially designed only for inter-variable structures – is not suitable,523

whereas the EC-BC approach is quite efficient in general. This inappropriateness of the524

conditional method is also visible in the temporal properties where auto-correlations are525

underestimated. Again, in this temporal context, the EC-BC technique is relatively satisfying526

for both temperature and precipitation.527

As global conclusions:528

• The one-dimensional BC method CDFt is not able to produce correct multidimensional529

properties (similar results were obtained with the EQM method, not shown);530

• The conditional technique – at least as applied in this experimental setup – is only531

good for inter-variable properties reproduction;532

• The EC-BC approach is good for both, inter-variable, spatial and temporal correlations.533

The preliminary of 1d-BC before the shuffling procedure is nevertheless an important534

requisite for precipitation since the combination “1d BC/shuffling” generally provides535

the most satisfying results;536

• Due to its easiness of coding, its speed of application and the good quality of its results537
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for both inter-variable, spatial and temporal properties, the Schaake Shuffle method538

applied after a 1d BC method (i.e., the EC-BC approach) is a very good candidate for539

all needs in multivariate bias correction.540

Although not tested, the application of these BC methods to correct GCM outputs541

instead of reanalysis data is expected to slightly degrade the results but to produce equivalent542

rankings: the simpler methods should perform worse when based on GCM data due to543

the GCM weather sequence that generally needs additional corrections, while the EC-BC544

approach should continue to work well. More precisely, the 1d methods (CDF-t and EQM)545

will basically reproduce the inter-variable, spatial and temporal properties of the input data.546

So if those properties are wrong from the GCMs, they will be wrong as well for the 1d547

corrected data. The conditional approach, by construction, should work fine to reconstruct548

an inter-variable dependence close to that of the observations, even when driven by GCM549

outputs. However, the spatial and temporal properties of the data corrected in following550

this approach should stay relatively close to those of the GCM data. Moreover, although551

the use of the Schaake shuffle directly to the GCM simulations should improve those, it is552

expected that EC-BC will provide the best results in terms of the three types of properties553

studied in this paper. Hence, by construction of the EC-BC approach, results similar to554

those presented in this article can be expected on different regions or with different reference555

or model datasets.556
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b. Discussion557

The general idea of the EC-BC and shuffling methods presented here is to re-shuffle the558

predictive multivariate spatio-temporal data according to some rank structure derived from559

training data. In doing so the data in the evaluation set receives a dependence structure560

close to the dependence structure of the training dataset. More concretely, lets assume we561

have training and test datasets, each with a multivariate spatio-temporal structure. With562

the Schaake shuffle method, simply by shuffling the test data set in time such that the ranks563

of the data in time is identical to that of the training data, we restore at least partly the564

inter-variable, spatial and temporal dependencies of the training data set. Since the uni-565

variate BC as presented above is a monotonic transformation of the data and is applied to566

each variable and point in space independently, it has no influence on the copula function.567

Shuffling can be performed prior or after univariate BC.568

569

Note also that, if the CDFt method has been employed as univariate BC within the EC-570

BC approach, other techniques can be used. This shuffling post-processing can be performed571

based on most of the standard 1d-BC techniques. This interesting feature makes the proce-572

dure flexible and easily applicable. Note that the shuffling can even be applied to most (if573

not all) of the 1d statistical downscaling (SD) approaches. This application of the Schaake574

shuffle to 1d-SD outputs should improve their temporal, spatial and inter-variable properties575

as much as it has been shown for the BC methods in the present article. Therefore, it would576

be interesting to compare such a multivariate SD based on shuffling post-processing to sta-577

tistical downscaling models taking explicitly into account the multi-dimensional structure of578
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the data to be downscaled (e.g., Yang et al. 2005; Flecher et al. 2010; Vrac et al. 2007, for579

multi-site, multi-variable and temporal dependences modeling respectively).580

581

Moreover, other re-ordering of data might be applied to restore and preserve some spe-582

cific structures. The Schaake method shuffles elements in time. In other words, one value583

associated to a given location (grid-cell or station) stays associated to this location but is584

placed at another time. However, one may want to allow shuffling values both in time and585

in space. This could improve the reproduction of the spatial dependences. To do so, it is586

easy to extend the Schaake approach: instead of computing ranks and shuffling values within587

vectors, this is made within 2-dimensional matrices. Hence, one value initially associated588

to a given location at a given time may be placed at another time and another location589

after this “full” shuffling. This technique has been tested and the results (not shown) both590

in terms of inter-variable, spatial and temporal properties are very similar to those of the591

Schaake shuffling presented all along the present study, except for precipitation where this592

full Schaake shuffle applied directly to ERA-I is not as efficient as the “regular” Schaake593

shuffling. Note that this full shuffling could also be performed for different physical variables594

at once. If the variables have the same units (e.g., all variables are temperature values), this595

can make sense. However, if the variables are different (e.g., precipitation and temperature),596

the shuffling of values between the two variables can be strongly inappropriate and quite597

difficult to interpret afterward.598

599

Finally, there are essential assumptions to BC and EC-BC. Univariate BC estimates a600

transfer function (TF) between model and observations from the training data, and applies601
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this TF to the evaluation (or projection) dataset. The main assumption is that the relation602

between model and observations remains unchanged during the projection period. However,603

if the distribution of the model data changes in the projection period so does the distribution604

of the projected values. EC-BC (through the Schaake shuffle) represents a method to restore605

the dependence structure within the projected values, which is inherited from the dependence606

structure of the observations in the training dataset. The dependence structure of the model607

data is completely ignored. This is absolutely reasonable in our context of downscaling, since608

we know that the dependence structure in the large-scale model is erroneous. However, EC-609

BC also ignores potential changes in the dependence structure suggested by the model data.610

This is an important assumption: the (spatial, temporal and/or inter-variable) dependence611

structures do not change between the training period and the projection period. Although612

this conservative assumption is reasonable and simplifies the bias corrections, it may not613

be valid in a climate change context where the multivariate properties to be corrected may614

evolve as well. Hence, if changes in the dependence properties or its temporal evolutions are615

of interest, the development of models allowing to make the dependence structures change616

in time or in function of some atmospheric covariates would be of great interest for both the617

climate and impacts communities.618
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Table 1. Reference data of sample size 4 for the illustration of the “Schaake shuffle”. k()
indicates the rank within the sample.

Training Prediction Schaake Shuffle

x
(i)
T k(x

(i)
T ) y

(i)
T k(y

(i)
T ) x

(i)
P k(x

(i)
P ) y

(i)
P k(y

(i)
T ) x

(i)
P k(x

(i)
TSS

) y
(i)
P k(y

(i)
PSS

)

0.3 1 1.1 1 0.7 3 1.3 2 0.2 1 1.1 1

0.5 2 1.7 3 0.5 2 1.8 4 0.5 2 1.4 3

0.9 4 1.2 2 0.2 1 1.1 1 0.9 4 1.3 2

0.8 3 1.9 4 0.9 4 1.4 3 0.7 3 1.8 4
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Fig. 1. (a) Map of France with the region of interest in a box, as well as (b) the mean
cumulated annual precipitation and (c) the mean daily temperature.

44



2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(a)

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(b)

%GPCSD = 66.14%

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(c)

%GPCSD = 60.82%

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(d)

%GPCSD = 30.35%

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(e)

%GPCSD = 75.03%

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(f)

%GPCSD = 27.09%

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4(g)

%GPCSD = 38.45%

Fig. 2. Maps of inter-variable (PR, T) spearman correlations for the different approaches
in winter: (a) SAFRAN; (b) ERA-I; (c) independent BC (through CDFt); (d) conditional
BC of T2 given PR; (e) conditional BC of PR given T2; (f) EC-BC; (g) Schaake shuffle
on ERA-I. The percentage of grid-points with correlation significantly different (%GPCSD)
from that of SAFRAN is indicated on each panel.
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Fig. 3. Bivariate histogram between area-mean 2m temperature of reference data and (a)
annually exchanged reference data, (b) ERA-I without bias correction, (c) bias corrected
ERA-I data using independent bias correction, (d) conditional approach with T2 given PR,
(e) EC-BC (solid line) and (f) Schaake shuffle on ERA-I.
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Fig. 4. Same as Fig. 3 but for precipitation.
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Fig. 5. Eigenvalues (left) and explained variance (right) of leading EOF of the 2m temper-
ature reference data (circles), bias corrected ERA-I data using independent bias correction
(dashed line), ERA-I without bias correction (long dashed line), conditional approach with
T2 given PR (dotted line), EC-BC (solid line) and Schaake shuffle on ERA-I (dot-dashed
line).
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Fig. 6. Eigenvalues (left) and explained variance (right) of leading EOF of the precipitation
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Fig. 7. First EOF of 2m temperature for (a) reference, (b) ERA-I, (c) independent bias
correction, (d) conditional approach with T2 given PR, (e) EC-BC and (f) Schaake shuffle
on ERA-I without BC.
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Fig. 8. First EOF of log-precipitation (zeros set to 0.00033) for (a) reference, (b) ERA-I,
(c) independent bias correction, (d) conditional approach with PR given T2, (e) EC-BC and
(f) Schaake shuffle on ERA-I without BC.
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Fig. 9. Covariance matrix of leading 10 PC of 2m temperature for (a) reference, (b) ERA-I,
(c) independent bias correction, (d) conditional approach with T2 given PR, (e) EC-BC and
(f) Schaake shuffle on ERA-I.
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Fig. 10. Covariance matrix of leading 10 PC of log-precipitation (zeros set to 0.00033) for
(a) reference, (b) ERA-I, (c) independent bias correction, (d) conditional approach with PR
given T2, (e) EC-BC and (f) Schaake shuffle on ERA-I.
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Fig. 11. IQD for (a) 2m temperature and (b) log-precipitation (zeros set to 0.00033) for
bias corrected ERA-I data using independent bias correction (dashed line), ERA-I without
bias correction (long dashed line), conditional approach (a) with T2 given PR and (c) with
PR given T2 (dotted line), EC-BC (solid line) and Schaake shuffle on ERA-I (dot-dashed
line).
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Fig. 12. Maps of 1-day lag temperature auto-correlations in winter for (a) reference, (b)
ERA-I, (c) independent bias correction, (d) conditional approach with T2 given PR, (e)
EC-BC and (f) Schaake shuffle on ERA-I without BC.
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Fig. 13. Maps of 1-day lag precipitation auto-correlations in winter for (a) reference, (b)
ERA-I, (c) independent bias correction, (d) conditional approach with PR given T2, (e)
EC-BC and (f) Schaake shuffle on ERA-I without BC.
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Fig. 14. Maps of daily probability of a dry rain given that the previous day was wet – i.e.,
Proba(dry|wet) – in winter for (a) reference, (b) ERA-I, (c) independent bias correction,
(d) conditional approach with PR given T2, (e) EC-BC and (f) Schaake shuffle on ERA-I
without BC.
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Fig. 15. Maps of daily probability of rain occurrence (i.e., wet day) given that the previous
day was dry – i.e., Proba(wet|dry) – in winter for (a) reference, (b) ERA-I, (c) independent
bias correction, (d) conditional approach with PR given T2, (e) EC-BC and (f) Schaake
shuffle on ERA-I without BC.
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