

The ORCHIDEE global land surface model

Philippe Peylin for the whole ORCHIDEE project group

- \Rightarrow From site-level to global applications !
- \Rightarrow Component of IPSL/CNRM climate model

Land surface model

⇒ Solve for Energy / Water / Carbon / Nitrogen budgets

Process-based land model В С А Surface energy fluxes Hydrology **Carbon Cycle** Precipitation Diffuse Evaporation Interception radiation Autotrophic Photosynthesis respiration Momentum flux wind speed Direct solar Transpiration radiation Transpiratio EL. Reflected solar Absorbed radiation solar radiation Fire Litterfal stemflow Ster Sublimation Evaporation Heterotrophic respiration Melt Surface runoff Infiltration Snow Root Soil carbon Soil heat flux Nutrien uptake Mineralization Drainage

Hydrological modelling

Routing / Irrigation

\Rightarrow Routing parametrization to calculate water discharge to river

From Guimberteau (thesis, 2010)

Photosynthesis: "Farquard, Ball & Berry model"

CO2

H₂O

From the leaf to the canopy

ORCHIDEE : Forest AGB dynamics

⇒ include diameter & age classes⇒ recruitment & mortality processes

Key processes

- 2 stream Radiative Transfer
- Dynamic LAI
- Hydraulic architecture to calculate water stress + 11 layers soil water
- Potentially multi-layer energy budget (+ intra-canopy climate)
- Mortality from (wind, fires, barkbeetles)
- N cycle impact on C allocation

Mortality cascade is key to model ecosystem stability

An example of mortality cascade we would like to implement.

Abrupt mortality events need to be linked together in order to model mortality cascade

Developments by S. Luyssaert, G. Marie,

 \rightarrow Tree mortality

ORCHIDEE : Crop / grass dynamics

ORCHIDEE-Crop (based on STICS modules)

ORCHIDEE-GM (based on PaSim modules)

 \Rightarrow From intensive pasture to rangeland

Chang et al. 2017

⇒ On-going merge of Crop / Grass branches into Trunk with N cycle

ORCHIDEE : Soil C dynamics

- Discretized soil carbon (11 layers) + new pools introduced (DOC)
- New decomposition scheme (priming):

$$\frac{\partial SOC}{\partial t} = I - k_{SOC} \times \frac{SOC \times (1 - e^{-c \times FOC})}{SOC} \times \theta \times \tau$$

Soil Carbon model: on-going developments

⇒ Accounting
for soil Microbial
biomass

Abramoff et al., 2018

Accounting for the N cycle impact on the C cycle

Vuichard et al., 2019

Respective contributions of CO2 and Ndep to cumulated NBP

CO2 only / Ndep only / Covarying effect

Raino Sanchez et al., in rev.

Accounting for the P cycle impact on the C cycle

Goll et al., 2017

- ORCHIDEE CNP version that accounts for both N and P nutrient limitations; Significant impact of P cycle in Tropics
- Ongoing effort to include back the P cycle in ORC Trunk

The terrestrial biosphere and atmospheric chemistry

34 **TYPES OF PEATLANDS** Laguette peatlands, Sologne, France 80% of sphagnum type peatlands are above 40°N Peatland cover (%) 0.5 20% of tropical 6 - 10 peatlands forest 11 - 20 21 - 30 31 - 40 120°E Peat swamp forest in PEATMAP (Xu et al., 2018) Zamrud National Park Indonesia

Several branches of ORCHIDEE (PEAT, LEAK, ...) \Rightarrow On going merge in the TRUNK \Rightarrow Contact E. Salmon

30°N

Peatland and CH4 modelling in ORCHIDEE

What makes SIF so interesting for vegetation monitoring?

Solar-Induced Fluorescence (SIF)

- Chlorophyll fluorescence is an electromagnetic signal emitted by the photosynthetic machinery of green plants that can be linked to **instantaneous photosynthesis**
- SIF can be retrieved by atmospheric spectrometers with the required spectral and radiometric resolution

 \Rightarrow Development of a process-based SIF model in ORCHIDEE

Assimilation of Space-borne SIF (parameter optimization)

Application with OCO-2

 \Rightarrow Improvement of GPP magnitude and seasonality & large reduction of total GPP

Bacour, Maignan, MacBean et al. (2019)

Optimisation of a new hydraulic architecture

• New physical scheme linking soil water potential to leaf potential !

• Optimisation of the STD vs NEW scheme with FluxNet latent heat fluxes at site level !

⇒ Higher capability to model temporal flux variations especially during droughts!

Vertical multi-layers scheme..

- Free number of layers
- E / W / C exchange at each level
- Turbulance mixing within air canopy
- Light penetration following Pgap model

Implementation constraints :

- Coupling with plant growth / harvesting module (variable plant height)
- Implicit coupling with Atmospheric model (30' step)
- Parametrisation of intra-canopy turbulence

Vertical multi-layers scheme..

Temperature difference between top canopy and surface in 2004

Normalized intra-canopy temperature gradient

- Overall canopy temperature gradient dynamics well represented during the year;
- Intra-canopy climate well reproduced most of the time;

Other Mature/Ongoing developments

Le comité de pilotage d'ORCHIDEE

⇒ Un groupe regroupant des expertises multiples et variées !
⇒ Nombreuses personnes au LSCE !

Thank you...

Temperature profile at Tumbarumba site

Observations

Model

Ryder et al., 2015

ORCHIDEE

