Modeling the photosynthetic processes in the ORCHIDEE model and ways of improvement

Fabienne Maignan, Nicolas Viovy, Nicolas Vuichard

Journées LSCE-BIAM – 29-30 Janvier 2024

Coupling energy, water and carbon cycles

Journées LSCE-BIAM – 29-30 Janvier 2024

LSCE

ORCHIDEE

3 state variables / 3 equations

- The rate of [CO₂] assimilation, A
 - $A = \min(A_{c}, A_{j})$

LSC

where A_c is the Rubisco-limited rate of CO_2 assimilation A_i is the e- transport-limited rate of CO_2 assimilation

- Both A_c and A_j are function of C_i
- The intercellular CO_2 partial pressure, C_i
 - $C_i = C_a A (1/g_b + 1/g_s)$

where C_s is the leaf-surface CO_2 partial pressure g_b the boundary-layer conductance

- The stomatal conductance, g_s
 - $g_s = g_0 + (A + R_d) / (C_i C_i^*) f_{VPD}$

where g_0 is the stomatal conductance when irradiance is 0 R_d the dark respiration

3 state variables / 3 equations

The rate of [CO₂] assimilation, A

 $- A = \min(A_c, A_j)$

LSCE

where A_c is the Rubisco-limited rate of CO_2 assimilation A_i is the e- transport-limited rate of CO_2 assimilation

• Both A_c and A_j are function of C_i

- The intercellular CO_2 partial pressure, C_i
 - $C_i = C_a A (1/g_b + 1/g_s)$

where C_s is the leaf-surface CO_2 partial pressure g_b the boundary-layer conductance

- The stomatal conductance, g_s
 - $g_s = g_0 + (A + R_d) / (C_i C_i^*) f_{VPD}$
 - where g_0 is the stomatal conductance when irradiance is 0 R_d the dark respiration

CO₂ assimilation by photosynthesis

- The Farquhar, von Caemmerer and Berry model (FvCB)
 - A_c , the Rubisco-limited rate of CO₂ assimilation

$$A_{c} = \frac{(C_{i} - \Gamma_{0}V_{C \max})}{C_{i} + K_{mC}(1 + O/K_{mO})} - R_{d}$$

 Maximum rate of Rubisco activity-limited carboxylation (µmol CO₂ m⁻² s⁻¹)

-
$$A_j$$
, the e- transport-limited rate of CO_2 assimilation

$$A_j = \frac{(C_i - I_i)J}{4C_i + 8\Gamma_*} R_d$$
Rate of e- transport
 $f = (irradiance, ..., J_{max})$
Maximum value at
saturated light

Journées LSCE-BIAM – 29-30 Janvier 2024

LSCE

Parametrization and co-dependancy of V_{cmax} and J_{max}

• $V_{C \max, 25}$ = *NUE* x N_L where *NUE* is the Nitrogen Use Efficiency and N_L the leaf N content

 $J_{max.25} = r_{J.V} V_{C max.25}$

where *NUE* is the Nitrogen Use

Efficiency and N_l the leaf N content

Link between photosynthesis and fluorescence

An extended model of the fate of absorbed light

- Extends the Farquhar model to include a mechanistic description of the electron transport system.
- First implementation done in ORCHIDEE

I AND SURFACE MOD

Journées LSCE-BIAM – 29-30 Janvier 2024

 Can we reparametrize the V_{Cmax}/J_{max} stochiometry to represent the "Green Scale" panel of 8 barley varieties and simulate the observed changes in photosynthesis activity ?

Cmax

J_{max}

Leaf Nitrogen

Content

LSCE

 Can we reparametrize the V_{Cmax}/J_{max} stochiometry to represent the "Green Scale" panel of 8 barley varieties and simulate the observed changes in photosynthesis activity ?

Cmax

J_{max}

Chlorophy

Content

Leaf Nitrogen

Content

 Can we explicitly model the Chlorophyll content (and the associated N) and use this information in our modelling scheme ?

Journées LSCE-BIAM – 29-30 Janvier 2024

 Can we reparametrize the V_{Cmax}/J_{max} stochiometry to represent the "Green Scale" panel of 8 barley varieties and simulate the observed changes in photosynthesis activity ?

Cmax

J_{max}

Chlorophy

Content

Fluorescence

- Can we explicitly model the Chlorophyll Content (and the associated N) and use this information in our modelling scheme ?
- Can we simulate the observed ChI fluorescence at field scale and how this information may help to better constrain the FvCB photosynthetic and fluorescence model ?

