Studing the link between photosynthesis and coccolites production from calcium carbonate isotopic anomalies

Marie Pesnin¹

² Daniel Chevrier, ³ Sandrine Le Houedec, ¹ Maxime Tremblin, ⁴ Stéphanie Duchamp-Alphonse, ¹ Mathieu Daëron, ¹ Claire Rollion-Bard, ¹ Sebastien Nomade.

I. General approche

How dissociate biological from environmental control on biocarbonate istopic signature ?

0

Metabolism

Paleoclimat

Bio-minerals

0

Climate

I. Case study: Coccolithophores

Emiliana huxleyi

- **Type**: phytoplankton (unicellular algae)
 - Primary producer
 - Photosynthetic (capture of CO₂)
- Living environment: Ocean sub-surface
- Fossil record: Trias
- Resistance to P_{CO2} elevation

Etretat (Cretaceous)

II. Case study: Coccolithophores

Major Role in atmospheric carbon removal

Intracellular production of CaCO₃

1. How do coccolithophores mineralize?

2. How environmental changes control their production?

II. Tools: Stable isotopes (O and C)

II. Tools: isotopic anomalies (Δ_{47} and Δ^{17} O)

III. Strategy

1. To establish a model (culture)

CITÉ DES ÉNERGIES

SBJA

D. Chevrier

2. Applications(sedimentary record)

Last galcial-interglacial cycles (IODP 762)

III. Culture strategy

Fixed: T°, pCO₂, luminosity, salinity

Variabie: species, cell size, cell constration

IV. Monitoring ([DIC], TA, $\delta^{18}O_w$, $\delta^{13}C_c$

9.50 -

9.25

- Big cell (*P.cart*)
- Little cell (E.hux)
- Little cell (E.hux)
- Little cell (*E.hux*), low contration

Laser CRDS Picarro

Jour

2500

Jour

Evolution of coccoliths δ^{13} C and δ^{18} O with [cell], [DIC], [pH]

IV. Stable isotope results (δ^{13} C and δ^{18} O)

- Big cell (P.cart)
- Little cell (E.hux)
- Little cell (E.hux)
- Little cell (E.hux), low contration

[DIC]

[pH]

IV. Δ_{47} measurements

Isoprime 100 dual-inlet equipped with 6 Faraday collectors

Carbonate preparation line

IV. Challenge for coccoliths Δ_{47} mesurments

Model predictions (Guo, 2020)

 δ^{13} C, δ^{18} O metabolic CO₂

- -25 ‰, 41.2 ‰
- -25 ‰, 81.2 ‰
- + 20 ‰, 41.2 ‰
- + 20 ‰, 81.2 ‰

Work in progress

Normal mass requirement: 30 mg

 $2 \text{ SD } \Delta_{47} = 8.1 \text{ ppm} \simeq 1.9^{\circ}\text{C}$

<u>Objective</u>: 25% reduction of mass requirement for Coccoliths Δ_{47} measurements 13

III. Facilities for culture experiment (BIAM)

BIAM (MEM team)

To go futher : Mesurments with VCOF CRDS

