
Web Processing Services (WPS) over IPSL Earth
System Grid Federation (ESGF) node
Nikolay Kadygrov2,1, Sebastien Denvil1, Nils Hempelmann, Carsten

Ehbrecht3, Soulivanh Thao2 and Pascal Yiou2

IPSL WPS Training, 15 March 2018

Motivation and Objectives
• The amount of climate data archives are huge and will

continuously increase during the next 5 years

• IPSL locally holds ~ 450 Tb of model replicas along with
observations and reanalysis data (CMIP5, CORDEX,
obs4MIPs etc.)

• The aim is to let scientist do research and perform
calculation not locally, after downloading vast amount of
data, but remotely at HPC close to the data archives. For
that purpose, WPS were installed at IPSL in test mode.

Workshop topics

• What is WPS?

• IPSL Earth System Grid Federation (ESGF) Node

• Birdhouse WPS: Existing processes and scientific needs

• TP: Installation, configuration, add your own WPS process

What is WPS?

• The very short answer – WPS is acronym for Web
Processing Services

• The slightly longer answer: Say you have a function
(maybe written in Python) which might calculate the
“summer days in Finland since 1990”. Then this function
has probably input parameters (region, from-date, to-date,
NetCDF files, ...) and an output (or even more ...) which
might be just an integer number or a text document or
even a nice diagram. Now, you would like to provide this
function as a web service, so that other people can call it
with just a simple URL like:
http://myhost/wps/identifier=summer_days®ion=finland
&from=1990

What is WPS?
• WPS offers a simple web-based method of finding,

accessing, and using all kinds of calculations and models.

• WPS is an OGC standard that defines how to implement
geographic calculations or models (i.e. "processes") as a
web service. Processes can include any algorithm,
calculation or model that operates on spatially referenced
data.

• WPS uses standard HTTP and XML as a mechanism for
describing processes and the data to be exchanged and
provides rules for inputs and outputs (requests-responses).

• The data required by the WPS can be delivered across a
network or they can be available at the server.

aims3.llnl.gov
cordexesg.dmi.dk
esg-dn1.nsc.liu.se
esg.cnrm-game-meteo.fr
esgf-data.jpl.nasa.gov
esgf-data1.ceda.ac.uk
…

On client side
calculations

Scientist: “I tuned my model and I want to
compare results with other models and/or
observations.”
OR
“I need to do research on different models”
OR
“I need specific models output on my custom
grid”
OR…

IPSL ESGF node:
esgf-node.ipsl.upmc.fr
vesg.ipsl.upmc.fr
vesg.ipsl.polytechnique.fr
esgf.extra.cea.fr

- Earth System Grid Federation
(ESGF) provides access to climate
data for the international climate
community. ESGF is a system of
distributed and federated nodes that
dynamically interact with each other.
- One could search and download
data geographically distributed over
the world through standardized API.

Processing
aims3.llnl.gov
cordexesg.dmi.dk
esg-dn1.nsc.liu.se
esg.cnrm-game-meteo.fr
esgf-data.jpl.nasa.gov
esgf-data1.ceda.ac.uk
…

IPSL ESGF node:
esgf-node.ipsl.upmc.fr
vesg.ipsl.upmc.fr
vesg.ipsl.polytechnique.fr
esgf.extra.cea.fr

HPC

IPSL LOCAL ESGF node:
esgf-local.ipsl.upmc.fr
/prodigfs/project
./obs4MIP/
./CORDEX/
…
./CMIP5/
 ../BCC: bcc-csm1-1, bcc-csm1-1-m
 BNU: BNU-ESM
 CCCma:CanAM4,CanCM4,CanESM2
 CMCC:CMCC-CESM,CMCC-CM,CMCC-CMS
 …
 NIMR-KMA:HadGEM2-AO
 NOAA-GFDL:GFDL-CM2p1,GFDL-CM3,GFDL-ESM2G
 GFDL-ESM2M,GFDL-HIRAM-C180

R
es

ul
ts

Web Application
wps-test.ipsl.jussieu.fr

search

sy
nd

a
WPS

WPS cache
Other (not IPSL esgf-local)

indexed files

~450 Tb
WPS at IPSL

Blackswan

Hummingbird

Birdhouse Web Processing Service (WPS)

 Malleefowl

Identity
providers

Data sources
Flyingpigeon

ESGF

Thredds

Replicas of ESGF
data at IPSL

(CMIP5,
obs4MIPs, etc.)
Available with

local ESGF
search API

OpenID

OAuth

LDAP

Download with cache
Access to
local IPSL files

Workflow engine

Phoenix Web Application

PyCSW Catalog Service
Pyramid
Web GUI

Celery (scheduler)

WPS

execute Register
service

ESGF logon

Publish
results

WPS Output files

Birdy execute

ESGF search

Main components of birdhouse are:

• Phoenix: Web-based WPS client.
• Malleefowl - backend service. Data

access processes, workflow engine…
• Flyingpigeon: processes for climate data,

indices, satellite imaginary.
• Hummingbird: data processing based on

CDO, core functions (ensemble mean,
interpolation, regriding etc.)

• Birdy: Command line tool. May be
installed on scientist desktop and run
WPS processes at IPSL remotely.

• Blackswan: service with the processes
focusing on extreme weather event
assessments.

Birdhouse is the home of Web Processing Services
used in climate science and components to support
them (the birds)
- Based on open source
- Open GeoSpatial Consortium (OGC) Standards
- Easy to implement

How PyWPS works. Example process code

PyWPS 4

__init__.py

wps_cdo_sinfo.py

Adding your R script in PyWPS
wps_weatherregimes_model.py

Phoenix web-based WPS client wps-test.ipsl.jussieu.fr

1
2

6

3 4 Register (admin setup)

And Use (all users)

5

Try Weather regimes process

1
2

3

5 4

WPS processes use local archive with ESGF-local search

Try Weather regimes process

6

7

Analogs with Reanalysis or Model data
Based on Fortran Castf90 program

Input for the Fortran program
analogue.out

Prepare the config file in the process

Examples of different available WPS processes, Analogs in NCEP

And the outputs

So, here we can see all the inputs we
defined in our class for the process

Examples of different available WPS processes, Analogs in NCEP

WPS services could be accessed not only through web-application,
Phoenix, but also from scripts or birdy cmd-client

#Here could be any process from registered WPS - 8091 corresponds to Malleefowl,
and esgsearch is one of it’s processes

$ export WPS_SERVICE=http://wps-test.ipsl.jussieu.fr:8091/wps

$ birdy –h
gives you all available processes for $WPS_SERVICE

birdy esgsearch --url https://esgf-node.ipsl.upmc.fr/esg-search --distrib False --replica False --temporal True --offset 0 --
search_type File \
 --constraints project:CMIP5,model:IPSL-CM5A-LR,variable:tas,experiment:historical , ensemble:r1i1p1,time_frequency:mon --
start 1900-01-11T12:00:00Z \
--end 2010-12-31T12:00:00Z

INFO:Execution status: ProcessAccepted

INFO:Execution status: ProcessSucceeded

INFO:Output:INFO:facet_counts=http://wps-test:8090/wpsoutputs/malleefowl/facet_counts-12edb5ea-03dd-11e6-bbcc-
3be3bbcfb726.json (application/json)

INFO:output=http://wps-test:8090/wpsoutputs/malleefowl/output-12edb5ea-03dd-11e6-bbcc-3be3bbcfb726.json
(application/json)

INFO:summary=http://wps-test:8090/wpsoutputs/malleefowl/summary-12edb5ea-03dd-11e6-bbcc-3be3bbcfb726.json
(application/json)

[
 "http://esgf.extra.cea.fr/thredds/fileServer/work_cmip5/output1/IPSL/IPSL-CM5A-LR
/historical/mon/atmos/Amon/r1i1p1/v20110406/tas/tas_Amon_IPSL-CM5A-LR_historical_r1i1p1_185001-200512.nc“
]

WPS services could be accessed not only through web-application,
Phoenix, but also from scripts or birdy cmd-client

from owslib.wps import WebProcessingService, monitorExecution

wps = WebProcessingService(url="http://wps-test.ipsl.jussieu.fr:8091/wps", verbose=False, skip_caps=False)

#Here could be any process as well!
execute = wps.execute(identifier="esgsearch", inputs=[("url","https://esgf-node.ipsl.upmc.fr/esg-search"),
 ("constraints","project:CMIP5,model:IPSL-CM5A-LR,
 experiment:historical,ensemble:r1i1p1,time_frequency:mon"),
 ("search_type","File")],output=[("output",True)])

for o in execute.processOutputs:
 print o.reference

http://wps-test.ipsl.jussieu.fr:8090/wpsoutputs/malleefowl/output-ed807284-03dc-11e6-bbcc-3be3bbcfb726.json

 ["http://esgf.extra.cea.fr/thredds/fileServer/work_cmip5/output1/IPSL/IPSL-CM5A-LR/historical/mon
 /atmos/Amon/r1i1p1/v20110406/rlds/rlds_Amon_IPSL-CM5A-LR_historical_r1i1p1_185001-200512.nc",
 "http://esgf.extra.cea.fr/thredds/fileServer/work_cmip5/output1/IPSL/IPSL-CM5A-LR/historical/mon/atmos
 /Amon/r1i1p1/v20110406/ccb/ccb_Amon_IPSL-CM5A-LR_historical_r1i1p1_185001-200512.nc", ...]

Script language

Also the log file with debugging info for every process is available

Some more examples, Remapping core function

Some more examples, Climate indices.
1

2

3 4

Demonstration and TPs
• TP: After the lunch we will check how-to:

• Install WPS service from the sources on gitgub
• Run WPS process as HTTP request
• Install command-line tool to work with WPS
• Run the process from cmd
• Configure and run processes using Phoenix GUI
• Study how to use Jupyter notebooks with Python, and call WPS

processes from it.

• Create your first WPS process

• Check how to use WPS call for event attribution using analogues

Thank you!
https://github.com/bird-house
http://birdhouse.readthedocs.io/en/latest

Appendix

Birdy

Slide courtesy of S. Kindermann

CDO seasonal cycle

CDO yearavg + ncWMS visualisation

Supervisor

Users

	Web Processing Services (WPS) over IPSL Earth System Grid Federation (ESGF) node
	Motivation and Objectives
	Workshop topics
	Слайд номер 4
	Слайд номер 5
	Слайд номер 6
	Слайд номер 7
	Слайд номер 8
	Слайд номер 9
	Слайд номер 10
	Слайд номер 11
	Слайд номер 12
	Слайд номер 13
	Слайд номер 14
	Слайд номер 15
	Слайд номер 16
	Слайд номер 17
	Слайд номер 18
	Слайд номер 19
	Слайд номер 20
	Слайд номер 21
	Слайд номер 22
	Demonstration and TPs
	Слайд номер 24
	Appendix
	Слайд номер 26
	Слайд номер 27
	Слайд номер 28
	Слайд номер 29
	Слайд номер 30
	Слайд номер 31
	Слайд номер 32
	Слайд номер 33

