Relation entre la variabilité du δO2∕N2 dans les carottes de glace et les conditions de surface de la calotte glaciaire en Antarctique.

Relation entre la variabilité du δO2∕N2 dans les carottes de glace et les conditions de surface de la calotte glaciaire en Antarctique.

Une étude récente renseigne comment les processus de formation des bulles d’air dans la glace affectent la composition de l’air qui est piégé dans les carottes de glace. Cette étude se concentre sur le rapport des concentrations O2/N2 et l’implication pour la datation des carottes de glace

While the processes controlling pore closure are broadly understood, the physical mechanisms driving the associated elemental fractionation remains ambiguous. Previous studies have shown that the pore closure process leads to a depletion in small-sized molecules (e.g. H2, O2, Ar, Ne, He) in ice core bubbles relative to larger-sized molecules like N2.

This size-dependent fractionation, identified using ice core dO2/N2 records, exhibits a clear anti-correlation with local summer solstice insolation, making a valuable ice core dating tool. Mechanisms controlling this relationship are attributed to the physical properties of deep firn. In this study, we compile dO2/N2 records from 15 polar ice cores and show a new additional link between dO2/N2 and local surface temperature and/or accumulation rate. Using the Crocus snowpack model, we perform sensitivity tests to identify the response of near-surface snow properties to changes in insolation intensity, accumulation rate, and air temperature. These tests support a mechanism linked to firn grain size, such that the larger the grain size for a given density, the stronger the pore closure fractionation and, hence, the lower the dO2/N2 values archived in the ice. Based on both snowpack model outputs and data compilation, our findings suggest that local accumulation rate and temperature should be considered when interpreting as a local insolation proxy.

Fig. 1. Scatterplots showing the dependence of dO2/N2 on (a) Summer Solstice Insolation, (b) accumulation rate (A), and (c) air temperature (Tair). correlation coefficient (r), and p value (p).

Auteurs: R. Harris Stuart, A. Landais, L. Arnaud, C. Buizert, E. Capron, M. Dumont, Q. Libois, R. Mulvaney, A. Orsi, G. Picard, Frédéric Prié, J. Severinghaus, B. Stenni, and P. Martinerie

Article: The Cryosphere, 18, 8 (2024) https://doi.org/10.5194/tc-18-3741-2024